Nitrogen Related Diffuse Pollution from Horticulture Production—Mitigation Practices and Assessment Strategies
Abstract
:1. Introduction
2. Nitrogen Loss Pathways and Processes
2.1. Nitrate Leaching
2.2. Ammonia Volatilization
2.3. Nitrification and Denitrification
3. Strategies to Mitigate Nitrogen Diffuse Pollution from Horticultural Production
3.1. Crop Management
3.1.1. Management of Crop Residues
- Incorporation of the vegetable crop residues into the soil reduces NH3 emissions [43]. However, this practice may increase the leaching losses (pollution swapping) (source);
- Leaving the crop residues intact on the soil surface following harvest in autumn will slow down mineralization [76]; incorporation can be delayed to a period where the risks of N leaching losses are lower [77]. However, this practice may lead to an increase in gaseous emissions and also to severe phytosanitary problems, as the inocula remains in the fields from one season to the other [78] (source);
- Co-incorporation of crop residues with other residues presenting a higher C:N ratio may decrease mineral N availability through the immobilization process or even by reducing the mineralization rate of the residues; this practice was successfully tested using different types of materials as wheat straw and green waste compost (e.g., [29,67]); also, this material will be free of fungal inocula from the previous season, as spores usually lose their viability during the composting procedure [79] (source, timing and transport);
- When the harvest method leaves the root systems intact (e.g., cauliflower and broccoli), they grow and act as a catch crop during winter. This practice reduced the soil nitrate contents during winter by 39% as compared with the no catch crop situation [80] (transport);
- Removal of the crop residues from the field, which can be applied later, will reduce the potential for all kinds of losses [71]. The application time requires the synchronization of crop nutrient demand and nutrient availability from the previous crop residues. A leaching reduction of 8% when 20% of cauliflower residues were removed was reported [16] (source, timing and transport).
3.1.2. Use of Cover Crops
3.1.3. Crop Rotations
3.1.4. Use of N Use-Efficient Plants
3.2. Irrigation and Fertilization Management
3.2.1. Irrigation Water Management
3.2.2. Fertilizer Management
4. Assessment of the Effectiveness of Mitigation Measures
4.1. Measurements
4.2. Farm Surveys and Nutrient Budgets
4.3. Modelling Water and N-Related Processes in Horticultural Systems
5. Conclusions
Author Contributions
Conflicts of Interest
References
- World Meteorological Organization. Planning of Water Quality Monitoring Systems; Technical report series 3; WMO: Geneva, Switzerland, 2013; p. 117. [Google Scholar]
- Oenema, O.; Bleeker, A.; Braathen, N.A.; Budnakova, M.; Bull, K.; Cermak, P.; Geupel, M.; Hicks, K.; Hoft, R.; Kozlova, N.; et al. Nitrogen in current European policies. In The European Nitrogen Assessment; Sutton, M., Howard, C., Erisman, J., Billen, G., Bleeker, A., Grennfelt, P., Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 62–81. [Google Scholar]
- Addiscott, T.M. Fertilizers and nitrate leaching. In Agricultural Chemicals and the Environment Issues; Hester, R.E., Harrison, R.M., Eds.; CABI: Oxfordshire, UK, 1996; pp. 1–26. [Google Scholar]
- Di, H.J.; Cameron, K.C. Nitrate leaching in temperate agroecosystems: Sources, factors and mitigating strategies. Nutr. Cycl. Agroecosyst. 2002, 64, 237–256. [Google Scholar] [CrossRef]
- Ward, M.H.; DeKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J. Workgroup report: Drinking-water nitrate and health-recent findings and research needs. Environ. Health Perspect. 2005, 113, 1607–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grizzetti, B.; Bouraoui, F.; Billen, G.; van Grinsven, H.; Cardoso, A.C.; Thieu, V.; Garnier, J.; Curtis, C.; Howarth, R.W.; Johnes, P. Nitrogen as a threat to European water quality. In The European Nitrogen Assessment; Sutton, M., Howard, C., Erisman, J., Billen, G., Bleeker, A., Grennfelt, P., Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 379–404. [Google Scholar]
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Moldanovaá, J.; Grennfelt, P.; Jonsson, Å.; Simpson, D.; Spranger, T.; Aas, W.; Munthe, J.; Rabl, A. Nitrogen as a threat to European air quality. In The European Nitrogen Assessment; Sutton, M., Howard, C., Erisman, J., Billen, G., Bleeker, A., Grennfelt, P., Grinsven, H., Grizzetti, B., Eds.; Cambridge University Press: Cambridge, UK, 2011; pp. 405–433. [Google Scholar]
- Cameron, K.C.; Rate, A.W.; Noonan, M.J.; Moore, S.; Smith, N.P.; Kerr, L.E. Lysimeter study of the fate of nutrients following subsurface injection and surface application of dairy pond sludge to pasture. Agric. Ecosyst. Environ. 1996, 58, 187–197. [Google Scholar] [CrossRef]
- Oenema, O.; Oudendag, D.A.; Witzke, H.P.; Monteny, G.J.; Velthof, G.L.; Pietrzak, S.; Pinto, M.; Britz, W.; Schwaiger, E.; Erisman, J.W.; et al. Integrated Measures in Agriculture to Reduce Ammonia Emissions; Final Summary Report; Alterra: Wageningen, The Netherlands, 2007. [Google Scholar]
- Stevens, C.J.; Quinton, J.N. Diffuse pollution swapping in arable agricultural systems. Crit. Rev. Environ. Sci. Technol. 2009, 39, 478–520. [Google Scholar] [CrossRef]
- Goulding, K. Nitrate leaching from arable and horticultural land. Soil Use Manag. 2000, 16, 145–151. [Google Scholar] [CrossRef]
- Pionke, H.B.; Sharma, M.L.; Hirschberg, K.J. Impact of irrigated horticulture on nitrate concentrations in groundwater. Agric. Ecosys. Environ. 1990, 32, 119–132. [Google Scholar] [CrossRef]
- Zhu, J.H.; Li, X.L.; Christie, P.; Li, J.L. Environmental implications of low nitrogen use efficiency in excessively fertilized hot pepper (Capsicum frutescens L.) cropping systems. Agric. Ecosys. Environ. 2005, 111, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B.; Farneselli, M.; Padilla, F.M. Assessing crop N status of fertigated vegetable crops using plant and soil monitoring techniques. Ann. Appl. Biol. 2015, 167, 387–405. [Google Scholar] [CrossRef] [PubMed]
- Agneessens, L.; De Waele, J.; De Neve, S. Review of alternative management options of vegetable crop residues to reduce nitrate leaching in intensive vegetable rotations. Agronomy 2014, 4, 529–555. [Google Scholar] [CrossRef]
- Congreves, K.A.; Van Eerd, L.L. Nitrogen cycling and management in intensive horticultural systems. Nutr. Cycl. Agroecosyst. 2015, 102, 299–318. [Google Scholar] [CrossRef]
- Connor, D.J.; Gómez-del-Campo, M.; Rousseaux, M.C.; Searles, P.S. Structure, management and productivity of hedgerow olive orchards: A review. Sci. Hortic. 2014, 169, 71–93. [Google Scholar] [CrossRef]
- Rufat, J.; Villar, J.M.; Pasqual, M.; Falguera, V.; Arbonés, A. Productive and vegetative response to different irrigation and fertilization strategies of an Arbequina olive orchard grown undersuper-intensive conditions. Agric. Water Manag. 2014, 144, 33–41. [Google Scholar] [CrossRef]
- FAO. Statistical Year Book, Europe and Central Asia Food and Agriculture; FAO: Budapest, Hungary, 2014. [Google Scholar]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2006, 112, 313–323. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Agostini, F.; Tei, F.; Silgram, M.; Farneselli, M.; Benincasa, P.; Aller, M.F. Decreasing nitrate leaching in vegetable crops with better N management. In Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming; Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Heidelberg, Germany, 2010; Volume 4, pp. 147–200. [Google Scholar]
- Christensen, B.T. Tightening the Nitrogen Cycle. In Managing Soil Quality—Challenges in Modern Agriculture; CAB International: Wallingford, UK, 2004; pp. 47–67. [Google Scholar]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Hillel, D. Environmental Soil Physics: Fundamentals, Applications, and Environmental Considerations; Academic Press: London, UK, 1998; p. 771. [Google Scholar]
- Mitchell, R.; Webb, J.; Harrison, R. Crop residues can affect N leaching over at least two winters. Eur. J. Agron. 2001, 15, 17–29. [Google Scholar] [CrossRef]
- Wyland, L.J.; Jackson, L.E.; Chaney, W.E.; Klonsky, K.; Koike, S.T.; Kimple, B. Winter cover crops in a vegetable cropping system: Impacts on nitrate leaching, soil water, crop yield, pests and management costs. Agric. Ecosyst. Environ. 1996, 59, 1–17. [Google Scholar] [CrossRef]
- De Neve, S.; Sáez, S.G.; Daguilar, B.C.; Sleutel, S.; Hofman, G. Manipulating N mineralization from high N crop residues using on-and off-farm organic materials. Soil Biol. Biochem. 2004, 36, 127–134. [Google Scholar] [CrossRef]
- Feaga, J.B.; Selker, J.S.; Dick, R.P.; Hemphill, D.D. Long-term nitrate leaching under vegetable production with cover crops in the Pacific Northwest. Soil Sci. Soc. Am. J. 2010, 74, 186–195. [Google Scholar] [CrossRef]
- Campiglia, E.; Mancinelli, R.; Radicetti, E.; Marinari, S. Legume cover crops and mulches: Effects on nitrate leaching and nitrogen input in a pepper crop (Capsicum annuum L.). Nutr. Cycl. Agroecosyst. 2011, 89, 399–412. [Google Scholar] [CrossRef]
- Bruin, A.J.; Ball Coelho, B.R.; Beyaert, R.P.; Reeleder, R.D.; Roy, R.C.; Capell, B. High value crops in coarse-textured soil and nitrate leaching—How risky is it? Can. J. Plant Sci. 2010, 90, 515–528. [Google Scholar] [CrossRef]
- Sharma, P.; Shukla, M.K.; Sammis, T.W.; Adhikari, P. Nitrate-nitrogen leaching from onion bed under furrow and drip irrigation systems. Appl. Environ. Soil Sci. 2012, 2012, 650206. [Google Scholar] [CrossRef]
- Chotangui, A.H.; Sugahara, K.; Okabe, M.; Kasuga, S.; Isobe, K.; Higo, M.; Torigoe, Y. Evaluation of NO3-N Leaching in Commercial Fields of Leafy Vegetables by the Soil Nitrogen Balance Estimation System. Environ. Control Biol. 2015, 53, 145–157. [Google Scholar] [CrossRef]
- Woli, P.; Hoogenboom, G.; Alva, A. Simulation of potato yield, nitrate leaching, and profit margins as influenced by irrigation and nitrogen management in different soils and production regions. Agric. Water Manag. 2016, 171, 120–130. [Google Scholar] [CrossRef]
- Merwin, I.A.; Ray, J.A.; Steenhuis, T.S.; Boll, J. Groundcover management systems influence fungicide and nitrate-N concentrations in leachate and runoff from a New York apple orchard. J. Am. Soc. Hortic. Sci. 1996, 121, 249–257. [Google Scholar]
- Cameira, M.R.; Pereira, A.; Ahuja, L.; Ma, L. Sustainability and environmental assessment of fertigation in an intensive olive grove under Mediterranean conditions. Agric. Water Manag. 2014, 146, 346–360. [Google Scholar] [CrossRef]
- Hardie, M.A.; Oliver, G.; Clothier, B.E.; Bound, S.A.; Green, S.A.; Close, D.C. Effect of biochar on nutrient leaching in a young apple orchard. J. Environ. Qual. 2015, 44, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Lea-Cox, J.D.; Syvertsen, J.P.; Graetz, D.A. Springtime 15Nitrogen uptake, partitioning, and leaching losses from young bearing citrus trees of differing nitrogen status. J. Am. Soc. Hort. Sci. 2001, 126, 242–251. [Google Scholar]
- Lehmann, J.; Schroth, G. Nutrient leaching. In Trees, Crops and Soil Fertility; Schroth, G., Sinclair, F.L., Eds.; CABI: Oxfordshire, UK, 2003; pp. 151–166. [Google Scholar]
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia emission from mineral fertilizers and fertilized crops. Adv. Agron. 2004, 82, 557–622. [Google Scholar]
- Huijsmans, J.F.M.; Hol, J.M.G.; Vermeulen, G.D. Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmos. Environ. 2003, 37, 3669–3680. [Google Scholar] [CrossRef]
- Miola, E.C.; Rochette, P.; Chantigny, M.H.; Angers, D.A.; Aita, C.; Gasser, M.O.; Pelster, D.E.; Bertrand, N. Ammonia volatilization after surface application of laying-hen and broiler-chicken manures. J. Environ. Qual. 2014, 43, 1864–1872. [Google Scholar] [CrossRef] [PubMed]
- De Ruijter, F.J.; Huijsmans, J.F.M.; Rutgers, B. Ammonia volatilization from crop residues and frozen green manure crops. Atmos. Environ. 2010, 44, 3362–3368. [Google Scholar] [CrossRef]
- Sadeghpour, A.; Hashemi, M.; Weis, S.A.; Spargo, J.T.; Mehrvarz, S.; Herbert, S.J. Assessing tillage systems for reducing ammonia volatilization from spring-applied slurry manure. Commun. Soil Sci. Plant Anal. 2015, 46, 724–735. [Google Scholar] [CrossRef]
- Sutton, M.A.; Grinsven, H. Summary for policy makers. In The European Nitrogen Assessment; Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Grennfelt, P., van Grinsven, H., Grizzetti, B., Eds.; Cambridge Univerity Press: Cambridge, UK, 2011; pp. 2–18. [Google Scholar]
- Bishop, P.; Manning, M. Urea Volatilisation: The Risk Management and Mitigation Strategies; Occasional Report no. 24; Massey University: Palmerston North, New Zealand, 2010. [Google Scholar]
- Rochette, P.; Tremblay, N.; Fallon, E.; Angers, D.A.; Chantigny, M.H.; MacDonald, J.D.; Bertrand, N.; Parent, L.É. N2O emissions from an irrigated and non-irrigated organic soil in eastern Canada as influenced by N fertilizer addition. Europ. J. Soil Sci. 2010, 61, 186–196. [Google Scholar] [CrossRef]
- Trost, B.; Prochnow, A.; Drastig, K.; Meyer-Aurich, A.; Ellmer, F.; Baumecker, M. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain. Dev. 2013, 33, 733–749. [Google Scholar] [CrossRef]
- Benckiser, G.; Schartel, T.; Weiske, A. Control of NO3− and N2O emissions in agroecosystems: A review. Agron. Sustain. Dev. 2015, 35, 1059–1074. [Google Scholar] [CrossRef]
- Prosser, J.I. The ecology of nitrifying bacteria. In Biology of the Nitrogen Cycle; Bolhe, H., Fergusoin, S.J., Newton, W.E., Eds.; Elsevier: Oxford, UK, 2006; pp. 223–245. [Google Scholar]
- Kool, D.M.; Müller, C.; Wrage, N.; Oenema, O.; Van Groenigen, J.W. Oxygen exchange between nitrogen oxides and H2O can occur during nitrifier pathways. Soil Biol. Biochem. 2009, 41, 1632–1641. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Haynes, R. Mineral Nitrogen in the Plant-Soil System; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Monaghan, R.M.; Barraclough, D. Some chemical and physical factors affecting the rate and dynamics of nitrification in urine-affected soil. Plant Soil 1992, 143, 11–18. [Google Scholar] [CrossRef]
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Kim, D.-G.; Zaman, M.; Tillman, R.W. Denitrification and N2O: N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 2013, 465, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.B.; Averill, B.A.; Tiedje, J.M. Denitrification: Production and consumption of nitric oxide. Appl. Environ. Microbiol. 1994, 60, 1053–1058. [Google Scholar] [PubMed]
- Ussiri, D.; Lal, R. The role of nitrous oxide on climate change. In Soil Emission of Nitrous Oxide and Its Mitigation; Springer: Dordrechet, The Netherlands, 2013; pp. 1–28. [Google Scholar]
- Davidson, E.A. Soil water content and the ratio of nitrous oxide to nitric oxide emitted from soil. In Biogeochemistry of Global Change; Springer: Berlin, Germany, 1993; pp. 369–386. [Google Scholar]
- Pfab, H.; Palmer, I.; Buegger, F.; Fiedler, S.; Müller, T.; Ruser, R. Influence of a nitrification inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy soil. Agric. Ecosyst. Environ. 2012, 150, 91–101. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, J.; Yang, W.; Cai, Z. Effects of organic material amendment and water content on NO, N2O, and N2 emissions in a nitrate-rich vegetable soil. Biol. Fertil. Soils 2013, 49, 153–163. [Google Scholar] [CrossRef]
- Velthof, G.L.; Kuikman, P.J.; Oenema, O. Nitrous oxide emission from soils amended with crop residues. Nutr. Cycl. Agroecosyst. 2002, 62, 249–261. [Google Scholar] [CrossRef]
- Cherry, K.A.; Shepherd, M.; Withers, P.J.A.; Mooney, S.J. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Sci. Total Environ. 2008, 406, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.W.; Dryden, G. Fruit mineral removal rates from New Zealand apple (Malus domestica) orchards in the Nelson region. N. Z. J. Crop Hortic. Sci. 2006, 34, 27–32. [Google Scholar] [CrossRef]
- De Neve, S.; Hofman, G. N mineralization and nitrate leaching from vegetable crop residues under field conditions: A model evaluation. Soil Biol. Biochem. 1998, 30, 2067–2075. [Google Scholar] [CrossRef]
- Chaves, B.; De Neve, S.; Cabrera, M.D.C.L.; Boeckx, P.; Van Cleemput, O.; Hofman, G. The effect of mixing organic biological waste materials and high-N crop residues on the short-time N2O emission from horticultural soil in model experiments. Biol. Fertil. Soils 2005, 41, 411–418. [Google Scholar] [CrossRef]
- De Neve, S.; Pannier, J.; Hofman, G. Temperature effects on C-and N-mineralization from vegetable crop residues. In Proceedings of the 8th Nitrogen Workshop, Ghent, Belgium, 5–8 September 1996; pp. 41–46.
- Trinsoutrot, I.; Nicolardot, B.; Justes, E.; Recous, S. Decomposition in the field of residues of oilseed rape grown at two levels of nitrogen fertilisation. Effects on the dynamics of soil mineral nitrogen between successive crops. Nutr. Cycl. Agroecosyst. 2000, 56, 125–137. [Google Scholar] [CrossRef]
- Congreves, K.A.; Vyn, R.J.; Van Eerd, L.L. Evaluation of post-harvest organic carbon amendments as a strategy to minimize nitrogen losses in cole crop production. Agronomy 2013, 3, 181–199. [Google Scholar] [CrossRef]
- Rahn, C.R.; Vaidyanathan, L.V.; Paterson, C.D. Nitrogen residues from brassica crops. Asp. Appl. Biol. 1992, 30, 263–270. [Google Scholar]
- Everaarts, A.P.; De Moel, C.P.; Van Noordwijk, M. The effect of nitrogen and the method of application on nitrogen uptake of cauliflower and on nitrogen in crop residues and soil at harvest. NJAS Wagening. J. Life Sci. 1996, 44, 43–55. [Google Scholar]
- Nett, L.; Feller, C.; George, E.; Fink, M. Effect of winter catch crops on nitrogen surplus in intensive vegetable crop rotations. Nutr. Cycl. Agroecosyst. 2011, 91, 327–337. [Google Scholar] [CrossRef]
- Whitmore, A.P. Modelling the release and loss of nitrogen after vegetable crops. NJAS Wagening. J. Life Sci. 1996, 44, 73–86. [Google Scholar]
- Bakker, C.J.; Swanton, C.J.; McKeown, A.W. Broccoli growth in response to increasing rates of pre-plant nitrogen. I. Yield and quality. Can. J. Plant Sci. 2009, 89, 527–537. [Google Scholar] [CrossRef]
- Wehrmann, J.; Scharpf, H.C. Reduction of nitrate leaching in a vegetable farm: Fertilization, crop rotation, plant residues. In Management Systems to Reduce Impact of Nitrates; Elsevier Applied Sciences: London, UK, 1989. [Google Scholar]
- Coppens, F.; Garnier, P.; Findeling, A.; Merckx, R.; Recous, S. Decomposition of mulched versus incorporated crop residues: Modelling with PASTIS clarifies interactions between residue quality and location. Soil Biol. Biochem. 2007, 39, 2339–2350. [Google Scholar] [CrossRef]
- Mitchell, R.D.J.; Harrison, R.; Russell, K.J.; Webb, J. The effect of crop residue incorporation date on soil inorganic nitrogen, nitrate leaching and nitrogen mineralization. Biol. Fertil. Soils 2000, 32, 294–301. [Google Scholar] [CrossRef]
- Smit, A.L.; de Ruijter, F.J.; ten Berge, H.F.M. The fate of nitrogen from crop residues of broccoli, leek and sugar beet. In Proceedings of the IV International Symposium on Ecologically Sound Fertilization Strategies for Field Vegetable Production, Alnarp, Sweden, 22–29 September 2008; Volume 852, pp. 157–162.
- Nutter, F., Jr. The role of plant disease epidemiology in developing successful integrated disease management programs. In General Concepts in Integrated Pest and Disease Management; Ciancio, A., Mukerji, K.J., Eds.; Springer: Berlin, Germany, 2007; pp. 45–90. [Google Scholar]
- Thorup-Kristensen, K.; Dresbøll, D.B.; Kristensen, H.L. Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. Eur. J. Agron. 2012, 37, 66–82. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations. Plant Soil. 2006, 288, 233–248. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Muñoz-Carpena, R.; Quemada, M. The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecosyst. Environ. 2012, 155, 50–61. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, E.; Mancinelli, R.; Di Felice, V.; Radicetti, E. Long-term residual effects of the management of cover crop biomass on soil nitrogen and yield of endive (Cichorium endivia L.) and savoy cabbage (Brassica oleracea var. sabauda). Soil Tillage Res. 2014, 139, 1–7. [Google Scholar] [CrossRef]
- Bliss, C.; Andersen, P.; Brodbeck, B.; Wright, D.; Olson, S.; Marois, J. The Influence of Bahiagrass, Tillage, and Cover Crops on Organic Vegetable Production and Soil Quality in the Southern Coastal Plain. Sustain. Agric. Res. 2016, 5, 65. [Google Scholar] [CrossRef]
- Morgan, R.P. Soil Erosion and Conservation; Longman Science & Technical: Hoboken, NJ, USA, 1995. [Google Scholar]
- Govers, G.; Poesen, J.; Goossens, D.; Christensen, B.T. Soil erosion-processes, damages and countermeasures. In Managing Soil Quality, Challenges in Modern Agriculture; Schjønning, P., Elmholt, S., Christensen, B.T., Eds.; Institute of Agricultural Sciences: Tjele, Denmark, 2004; pp. 199–217. [Google Scholar]
- Wiman, M.R.; Kirby, E.M.; Granatstein, D.M.; Sullivan, T. Cover crops influence meadow vole presence in organic orchards. HortTechnology 2009, 19, 558–562. [Google Scholar]
- Quemada, M.; Baranski, M.; Nobel-de Lange, M.N.J.; Vallejo, A.; Cooper, J.M. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 2013, 174, 1–10. [Google Scholar] [CrossRef]
- Khan, S.A.; Mulvaney, R.L.; Ellsworth, T.R.; Boast, C.W. The myth of nitrogen fertilization for soil carbon sequestration. J. Environ. Qual. 2007, 36, 1821–1832. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crops Res. 2010, 115, 203–216. [Google Scholar] [CrossRef]
- Li, X.; Hu, C.; Delgado, J.A.; Zhang, Y.; Ouyang, Z. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain. Agric. Water Manag. 2007, 89, 137–147. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. Utilising differences in rooting depth to design vegetable crop rotations with high nitrogen use efficiency (NUE). In Proceedings of the Workshop Towards and Ecologically Sound Fertilisation in Field Vegetable Production, Wageningen, The Netherlands, 11–14 September 2000; Volume 571, pp. 249–254.
- Asghari, H.R.; Cavagnaro, T.R. Arbuscular mycorrhizas reduce nitrogen loss via leaching. PLoS ONE 2012, 7, e29825. [Google Scholar] [CrossRef] [PubMed]
- Syvertsen, J.P.; Smith, L.M. Nitrogen leaching, N uptake efficiency and water use from citrus trees fertilized at three N. Proc. Fla. State Hort. Soc. 1995, 108, 151–155. [Google Scholar]
- Shang, F.; Ren, S.; Yang, P.; Chi, Y.; Xue, Y. Effects of Different Irrigation Water Types, N Fertilizer Types, and Soil Moisture Contents on N2O Emissions and N Fertilizer Transformations in Soils. Water Air Soil Pollut. 2016, 227, 225. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Keller, J.; Bliesner, R.D. Sprinkle and Trickle Irrigation; The Blackburn Press: Caldwel, NJ, USA, 1990; p. 652. [Google Scholar]
- Thompson, R.B.; Gallardo, M.; Valdez, L.C.; Fernández, M.D. Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agric. Water Manag. 2007, 88, 147–158. [Google Scholar] [CrossRef]
- Granados, M.R.; Thompson, R.B.; Fernández, M.D.; Martínez-Gaitán, C.; Gallardo, M. Prescriptive–corrective nitrogen and irrigation management of fertigated and drip-irrigated vegetable crops using modeling and monitoring approaches. Agric. Water Manag. 2013, 119, 121–134. [Google Scholar] [CrossRef]
- Rekika, D.; Caron, J.; Rancourt, G.T.; Lafond, J.A.; Gumiere, S.J.; Jenni, S.; Gosselin, A. Optimal irrigation for onion and celery production and spinach seed germination in Histosols. Agron. J. 2014, 106, 981–994. [Google Scholar] [CrossRef]
- Létourneau, G.; Caron, J.; Anderson, L.; Cormier, J. Matric potential-based irrigation management of field-grown strawberry: Effects on yield and water use efficiency. Agric. Water Manag. 2015, 161, 102–113. [Google Scholar] [CrossRef]
- Rahil, M.H.; Qanadillo, A. Effects of different irrigation regimes on yield and water use efficiency of cucumber crop. Agric. Water Manag. 2015, 148, 10–15. [Google Scholar] [CrossRef]
- Berrie, A.; Ellerker, B.; Lower, K. Evaluation of alternative treatments to urea to eliminate leaf litter in organic apple production. IOBC/WPRS Bull. 2006, 29, 139. [Google Scholar]
- Mitre, V.; Mitre, J.; Sestras, A.; Petrisor, P.; Sestras, R.E. Reducing primary inoculum of apple scab using foliar application of urea in autumn. Bull. UASVM Hortic. 2012, 69, 415–416. [Google Scholar]
- Rochette, P.; Angers, D.A.; Chantigny, M.H.; Gasser, M.O.; MacDonald, J.D.; Pelster, D.E.; Bertrand, N. Ammonia volatilization and nitrogen retention: How deep to incorporate urea? J. Environ. Qual. 2013, 42, 1635–1642. [Google Scholar] [CrossRef] [PubMed]
- Black, A.S.; Sherlock, R.R.; Smith, N.P.; Cameron, K.C.; Goh, K.M. Effects of form of nitrogen, season, and urea application rate on ammonia volatilisation from pastures. N. Z. J. Agric. Res. 1985, 28, 469–474. [Google Scholar] [CrossRef]
- Sanz-Cobena, A.; Misselbrook, T.H.; Arce, A.; Mingot, J.I.; Diez, J.A.; Vallejo, A. An inhibitor of urease activity effectively reduces ammonia emissions from soil treated with urea under Mediterranean conditions. Agric. Ecosyst. Environ. 2008, 126, 243–249. [Google Scholar] [CrossRef]
- Neto, C.; Carranca, C.; Clemente, J.; de Varennes, A. Nitrogen distribution, remobilization and re-cycling in young orchard of non-bearing ‘Rocha’ pear trees. Sci. Hortic. 2008, 118, 299–307. [Google Scholar] [CrossRef]
- Shan, L.; He, Y.; Chen, J.; Huang, Q.; Wang, H. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. 2015, 38, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Chambers, B.; Dampney, P. Nitrogen Efficiency and Ammonia Emissions from Urea-Based and Ammonium Nitrate Fertilisers; The International Fertiliser Society: Colchester, UK, 2009; p. 657. [Google Scholar]
- Riches, D.; Mattner, S.; Davies, R.; Porter, I. Mitigation of nitrous oxide emissions with nitrification inhibitors in temperate vegetable cropping in southern Australia. Soil Res. 2016, 54, 533–543. [Google Scholar] [CrossRef]
- Lam, S.K.; Suter, H.; Mosier, A.R.; Chen, D. Using nitrification inhibitors to mitigate agricultural N2O emission: A double-edged sword? Glob. Chang. Biol. 2016, 23, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Shehata, S.M.; Abdel-Azem, H.S.; El-Yazied, A.A.; Abou, A.; El-Gizawy, A.M. Effect of foliar spraying with amino acids and seaweed extract on growth chemical constitutes, yield and its quality of celeriac plant. Eur. J. Sci. Res. 2011, 58, 257–265. [Google Scholar]
- Elwell, D.L.; Keener, H.M.; Carey, D.S.; Schlak, P.P. Composting unamended chicken manure. Compost. Sci. Util. 1998, 6, 22–35. [Google Scholar] [CrossRef]
- Van Kessel, J.S.; Reeves, J. Nitrogen mineralization potential of dairy manures and its relationship to composition. Biol. Fertil. Soils 2002, 36, 118–123. [Google Scholar] [CrossRef]
- Chambers, B.J.; Smith, K.A.; Pain, B.F. Strategies to encourage better use of nitrogen in animal manures. Soil Use Manag. 2000, 16, 157–166. [Google Scholar] [CrossRef]
- Heinrich, A.L.; Pettygrove, G.S. Influence of dissolved carbon and nitrogen on mineralization of dilute liquid dairy manure. Soil Sci. Soc. Am. J. 2012, 76, 700–709. [Google Scholar] [CrossRef]
- Schepers, J.S.; Mosier, A.R. Accounting for nitrogen in nonequilibrium soil-crop systems. In Managing Nitrogen for Groundwater Quality and Farm Profitability; Soil Science Society of America: Fitchburg, WI, USA, 1991; pp. 125–138. [Google Scholar]
- Farneselli, M.; Tei, F.; Simonne, E. Reliability of petiole sap test for N nutritional status assessing in processing tomato. J. Plant Nutr. 2014, 37, 270–278. [Google Scholar] [CrossRef]
- Parry, C.; Blonquist, J.; Bugbee, B. In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant Cell Environ. 2014, 37, 2508–2520. [Google Scholar] [CrossRef] [PubMed]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Threshold values of canopy reflectance indices and chlorophyll meter readings for optimal nitrogen nutrition of tomato. Ann. Appl. Biol. 2015, 166, 271–285. [Google Scholar] [CrossRef]
- Lord, E.I.; Anthony, S.G.; Goodlass, G. Agricultural nitrogen balance and water quality in the UK. Soil Use Manag. 2002, 18, 363–369. [Google Scholar] [CrossRef]
- Harris, G.; Heathwaite, A.L. Inadmissible evidence: Knowledge and prediction in land and riverscapes. J. Hydrol. 2005, 304, 3–19. [Google Scholar] [CrossRef]
- Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
- HongYeng, L.; Agamuthu, P. Nitrogen flow in organic and conventional vegetable farming systems: A case study of Malaysia. Nutr. Cycl. Agroecosyst. 2015, 103, 131–151. [Google Scholar] [CrossRef]
- Oborn, I.; Edwards, A.C.; Witter, E.; Oenema, O.; Ivarsson, K.; Withers, P.J.A.L.; Nilsson, S.I.; Stinzing, A.R. Element balances as a tool for sustainable nutrient management: A critical appraisal of their merits and limitations within an agronomic and environmental context. Eur. J. Agron. 2003, 20, 211–225. [Google Scholar] [CrossRef]
- Bechmann, M.; Eggestad, H.O.; Vagstad, N. Nitrogen balances and leaching in four agricultural catchments in southeastern Norway. Environ. Pollut. 1998, 102, 493–499. [Google Scholar] [CrossRef]
- Oenema, O.; Kros, H.; de Vries, W. Approaches and uncertainties in nutrient budgets: Implications for nutrient management and environmental policies. Eur. J. Agron. 2003, 20, 3–16. [Google Scholar] [CrossRef]
- Ding, X.; Shen, Z.; Hong, Q.; Yang, Z.; Wu, X.; Liu, R. Development and test of the export coefficient model in the upper reach of the Yangtze River. J. Hydrol. 2010, 383, 233–244. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar]
- Zhang, Y.; Niu, H.; Wang, S.; Xu, K.; Wang, R. Application of the DNDC model to estimate N2O emissions under different types of irrigation in vineyards in Ningxia, China. Agric. Water Manag. 2016, 163, 295–304. [Google Scholar] [CrossRef]
- Uzoma, K.C.; Smith, W.; Grant, B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Goglio, P.; Li, C. Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model. Agric. Ecosyst. Environ. 2015, 206, 71–83. [Google Scholar] [CrossRef]
- Rahn, C.R.; Zang, K.; Lillywhite, R.D.; Ramos, C.; De Paz, J.M.; Doltra, J.; Riley, H.; Fink, M.; Nendel, C.; Thorup-Kristensen, K.; et al. Development of a Model Based Decision Support System to Optimise Nitrogen Use in Horticultural Crop Rotations Across Europe—EU-ROTATE N; Final Scientific Report QLK5–2002–01100; Horticulture Research International: Wellesbourne, UK, 2007. [Google Scholar]
- Nendel, C.; Venezia, A.; Piro, F.; Ren, T.; Lillywhite, R.D.; Rahn, C.R. The performance of the EU-Rotate-N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment. J. Agric. Sci. 2013, 151, 538–555. [Google Scholar] [CrossRef]
- Bakhsh, A.; Kanwar, R.S.; Jaynes, D.B.; Colvin, T.S.; Ahuja, L.R. Simulating effects of variable nitrogen application rates on corn yields and NO3–N losses in subsurface drain water. Trans. ASAE. 2001, 44, 269. [Google Scholar] [CrossRef]
- Fang, Q.X.; Ma, L.; Halvorson, A.D.; Malone, R.W.; Ahuja, L.R.; Del Grosso, S.J.; Hatfield, J.L. Evaluating four nitrous oxide emission algorithms in response to N rate on an irrigated corn field. Environ. Model. Softw. 2015, 72, 56–70. [Google Scholar] [CrossRef]
- Cameira, M.R.; Tedesco, S.; Leitão, T.E. Water and nitrogen budgets under different production systems in Lisbon urban farming. Biosys. Eng. 2014, 125, 65–79. [Google Scholar] [CrossRef]
- Chaplot, V.; Saleh, A.; Jaynes, D.B.; Arnold, J. Predicting water, sediment and NO3-N loads under scenarios of land-use and management practices in a flat watershed. Water Air Soil Pollut. 2004, 154, 271–293. [Google Scholar] [CrossRef]
- Santhi, C.; Srinivasan, R.; Arnold, J.G.; Williams, J.R. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environ. Model. Softw. 2006, 21, 1141–1157. [Google Scholar] [CrossRef]
- Arabi, M.; Frankenberger, J.R.; Engel, B.A.; Arnold, J. Representation of agricultural conservation practices with SWAT. Hydrol. Process. 2008, 22, 3042–3055. [Google Scholar] [CrossRef]
- Giménez, C.; Gallardo, M.; Martínez-Gaitán, C.; Stöckle, C.O.; Thompson, R.B.; Granados, M.R. VegSyst, a simulation model of daily crop growth, nitrogen uptake and evapotranspiration for pepper crops for use in an on-farm decision support system. Irrig. Sci. 2013, 31, 465–477. [Google Scholar] [CrossRef]
- Gallardo, M.; Thompson, R.B.; Giménez, C.; Padilla, F.M.; Stöckle, C.O. Prototype decision support system based on the VegSyst simulation model to calculate crop N and water requirements for tomato under plastic cover. Irrig. Sci. 2014, 32, 237–253. [Google Scholar] [CrossRef]
- Gallardo, M.; Fernández, M.D.; Giménez, C.; Padilla, F.M.; Thompson, R.B. Revised VegSyst model to calculate dry matter production, critical N uptake and ET of several vegetable species grown in Mediterranean greenhouses. Agric. Syst. 2016, 146, 30–43. [Google Scholar] [CrossRef]
Crop | N Content (kg·ha−1) | Reference |
---|---|---|
Cabbage | 170–200 | [70] |
Cauliflower | 150 | [70] |
98–128 | [71] | |
193 | [72] | |
Brussels sprouts | 140–240 | [73] |
Broccoli | 76–304 | [74] |
Leek | 54 | [73] |
Celery | 25–60 | [75] |
Soil Texture | SMP a (cb) | Soil Moisture Status and Irrigation Requirements |
---|---|---|
Sand, loamy sand | 5–10 | Soil at field capacity No irrigation required |
Sandy loam, loam, silty loam | 10–20 | |
Clay loam, clay | 20–40 | |
Sand, loamy sand | 20–40 | 50% available water depleted Irrigation required |
Sandy loam, loam, silt loam | 40–60 | |
Clay loam, clay | 50–10 |
Mitigation Type | Assessment Method | ||
---|---|---|---|
Measurement | Budget | Modelling | |
Source | Y | Y | Y |
Timing | Y | N | Y |
Transport | Y | N | Y |
Data requirements | medium | low | medium/high |
Uncertainty | low | medium | medium |
Model | Type | N Loss Mitigation Measures | Pros | Cons | Application Examples |
---|---|---|---|---|---|
Export-coefficient | E | fertilizer management | simplicity and minimum data requirements | does not allow extrapolation beyond the range of available information | [129] |
Sticks | C | irrigation and fertilizer management | adaptability to various crops; reasonable amount of input data | so far, it has not been used much for vegetables | [130] |
DNDC | PB | fertilizer and manure management; crop management (cover crops, rotation, tillage); nitrification inhibitors and slow release fertilizers; irrigation management | big detail in simulating the soil biogeochemical processes; holistic in relation to the different N path losses | big amount of crop physiological parameters as input data; needs more evaluation for vegetable production systems | [131,132] |
EU-Rotate | PB | fertilizer management | database with parameters for most vegetable crops; big detail in the N transformations; simple calibration; economic assessment | research model that needs more work; additional studies are necessary to calibrate the mineralization factor of this model for Mediterranean conditions | [133,134] |
RZWQM2 | PB | fertilizer and manure management; crop management (rotation, mulching, tillage); cover crops; irrigation management; nitrification inhibitors and slow-release fertilizers | database with parameters for most vegetable crops and fruit trees; holistic for the soil-crop-atmosphere system and for the different N path losses; extensive database | considerable amount of soil, crop parameters; average to high difficulty in parameterization and calibration | [36,135,136,137] |
SWAT | PB | reduced fertilization; cover crops, filter strips; crop management (rotation and tillage); fertilization strategies | holistic in relation to the different N path losses (with a modified version) | requires a big amount of soil, crop parameters; difficult parameterization and calibration | [138,139,140] |
VegSyst | C | dry matter production and crop uptake as a result of fertilization management; when incorporated in a DSS predicts N fertilization requirements | specific for vegetable production | it does not predict N losses, but as it predicts uptake, it can be used to optimize crop uptake efficiency | [141,142,143] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cameira, M.D.R.; Mota, M. Nitrogen Related Diffuse Pollution from Horticulture Production—Mitigation Practices and Assessment Strategies. Horticulturae 2017, 3, 25. https://doi.org/10.3390/horticulturae3010025
Cameira MDR, Mota M. Nitrogen Related Diffuse Pollution from Horticulture Production—Mitigation Practices and Assessment Strategies. Horticulturae. 2017; 3(1):25. https://doi.org/10.3390/horticulturae3010025
Chicago/Turabian StyleCameira, Maria Do Rosário, and Mariana Mota. 2017. "Nitrogen Related Diffuse Pollution from Horticulture Production—Mitigation Practices and Assessment Strategies" Horticulturae 3, no. 1: 25. https://doi.org/10.3390/horticulturae3010025
APA StyleCameira, M. D. R., & Mota, M. (2017). Nitrogen Related Diffuse Pollution from Horticulture Production—Mitigation Practices and Assessment Strategies. Horticulturae, 3(1), 25. https://doi.org/10.3390/horticulturae3010025