New Approaches to Irrigation Scheduling of Vegetables
Abstract
:1. Introduction
1.1. Water Scarcity and Commercial Vegetable Production
1.2. Challenges for Irrigation Scheduling in Modern Vegetable Operations
2. Advances in Soil Moisture Sensor Technology
2.1. Recent Developments in Soil Moisture Sensing
2.2. Limitations of Soil Moisture Sensors for Irrigation Scheduling in Vegetables
3. ET-Based Approaches to Scheduling Irrigations in Vegetables
4. Software for ET Based Scheduling of Vegetables
4.1. Overview of Sofware Tools
4.2. Achieving Widescale Adoption of Irrigation Software
5. Field Measurements of Crop ET
6. Satellite-Based Crop ET Determination
6.1. Energy Balance
6.2. Vegetation Index
7. Satellite Based Irrigation Management Services
7.1. Prototype Systems
7.2. Satellite Remote Sensing Considerations for Irrigation Scheduling
8. Remote Sensing Using Manned Aircraft and Unmanned Aerial Vehicles (UAV)
9. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
API | application programming interface |
BIS | basic irrigation scheduling |
CIMIS | California irrigation management and information system |
CUP | consumptive use program |
EEFlux | earth engine evapotranspiration flux |
EM | electromagnetic |
ET | evapotranspiration |
ET0 | reference evapotranspiration |
ETc | crop evapotranspiration |
Fc | fractional cover |
GMS | granular matrix sensor |
Kc | crop coefficient |
LE | latent heat flux |
METRIC | mapping evapotranspiration at high resolution with internalized calibration |
NDVI | normalized difference vegetation index |
NIR | near infra-red |
SEBAL | surface energy balance algorithm for land |
SIMS | satellite irrigation management system |
SSURGO | soil survey geographic database |
UAV | unmanned aerial vehicle |
UC | University of California |
USDA | United States Department of Agriculture |
WISE | Washington irrigation scheduling expert |
References
- Mount, J.; Chappelle, C.; Gray, B.; Hanak, E.; Howitt, R.; Lund, J.; Frank, R.; Gartrell, G.; Grantham, T.; Medellín-Azuara, J.; et al. California’s Water: Managing Droughts. Public Policy Institute of California, Water Policy Center, 2016; p. 4. Available online: http://www.ppic.org/content/pubs/report/R_1016JM2R.pdf (accessed on 18 February 2017).
- Hanak, E.; Mount, J.; Chappelle, C.; Lund, J.; Medellín-Azuara, J.; Moyle, P.; Thompson, B.; Viers, J.; Seavy, N. What If California’s Drought Continues? Public Policy Institute of California, Water Policy Center, 2015; p. 20. Available online: http://www.ppic.org/content/pubs/report/R_815EHR.pdf (accessed on 18 February 2017).
- Pedrero, F.; Alarcon, J.J.; Nicolas, E.; Asano, T. Monterey Regional Water Pollution Control Agency (MRWPCA): Transforming wastewater into a profitable resource. Agric. Vergel Frutic. Hortic. Floric. Citric. Vid Arroz 2009, 28, 464–469. [Google Scholar]
- Khan, S. Managing climate risks in Australia: Options for water policy and irrigation management. Aust. J. Exp. Agric. 2008, 48, 265–273. [Google Scholar] [CrossRef]
- Arumí, J.L.; Rivera, D.; Holzapfel, E.; Muñoz, E. Effect of drought on groundwater in a Chilean irrigated valley. Proc. Inst. Civ. Eng. Water Manag. 2013, 166, 231–241. [Google Scholar] [CrossRef]
- Ortega-Reig, M.; Palau-Salvador, G.; Cascant i Sempere, M.J.; Benitez-Buelga, J.; Badiella, D.; Trawick, P. The integrated use of surface, ground and recycled waste water in adapting to drought in the traditional irrigation system of Valencia. Agric. Water Manag. 2014, 133, 55–64. [Google Scholar] [CrossRef]
- Harter, T.; Lund, J.R. Addressing Nitrate in California’s Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley Groundwater. Report for the State Water Resources Control Board Report to the Legislature; Center for Watershed Sciences, University of California: Davis, CA, USA, 2012; p. 78. [Google Scholar]
- Hallberg, G.R. Nitrate in Ground Water in the United States; Follett, R.F., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Zhang, L.; Ju, X.; Liu, C.; Kou, C. A study on nitrate contamination of ground water sources in areas of protected vegetables-growing fields—A case study in Huimin County, Shandong Province. Sci. Agric. Sin. 2010, 43, 4427–4436. [Google Scholar]
- Howarth, R.W.; Sharpley, A.; Walker, D. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 2002, 25, 656–676. [Google Scholar] [CrossRef]
- Ng, C.M.; Weston, D.P.; Lydy, M.J. Pyrethroid insecticide transport into Monterey Bay through riverine suspended solids. Arch. Environ. Contam. Toxicol. 2012, 63, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.S.; Hunt, J.W.; Phillips, B.M.; Nicely, P.A.; Gilbert, K.D.; Vlaming, V.D.; Connor, V.; Richard, N.; Tjeerdema, R.S. Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA. Environm. Toxicol. Chem. 2003, 22, 2375–2384. [Google Scholar] [CrossRef]
- Agricultural Order No. R3-2012-0011 Conditional Waiver of Waste Discharge Requirements for Discharges from Irrigated Lands. 2012; p. 94. Available online: http://www.waterboards.ca.gov/centralcoast/water_issues/programs/ag_waivers/docs/ag_order/agorder_final_011014.pdf (accessed on 20 January 2017).
- Council Directive 91/676/EEC of 12 December 1991 Concerning the Protection of Waters against Pollution Caused by Nitrates from Agricultural Sources. 1991. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31991L0676 (accessed on 20 January 2017).
- Koike, S.; Cahn, M.D.; Cantwell, M.; Fennimore, S.; LeStrange, M.; Natwick, E.; Smith, R.; Takale, E. Spinach production in California. In Vegetable Production Series; Vol. ANR Publication 7212; UCANR: Richmond, CA, USA, 2011. [Google Scholar]
- Smith, R.; Cahn, M.; Hartz, T.; Love, P.; Farrara, B. Nitrogen dynamics of cole crop production: Implications for fetility management and environmental protection. HortScience 2016, 51, 1586–1591. [Google Scholar] [CrossRef]
- Shock, C.C.; Wang, F. Soil water tension, a powerful measurement for productivity and stewardship. HortScience 2011, 46, 178–185. [Google Scholar]
- Pardossi, A.; Incrocci, L. Traditional and New Approaches to Irrigation Scheduling in Vegetable Crops. HortTechnology 2011, 21, 309–313. [Google Scholar]
- Shock, C.; Pereira, A.; Hanson, B.; Cahn, M. Vegetable irrigation. In Irrigation of Agricultural Crops, 2nd ed.; Lanscano, R., Sojka, R., Eds.; ASA-CSSA-SSSA (American Society of Agronomy-Crop Science Society of America-Soil Science Society of America): Madison, WI, USA, 2007; pp. 535–606. [Google Scholar]
- Thompson, T.L.; Doerge, T.A.; Godin, R.E. Subsurface drip irrigation and fertigation of broccoli: I. Yield, quality, and nitrogen uptake. Soil Sci. Soc. Am. J. 2002, 66, 186–192. [Google Scholar] [CrossRef]
- Smittle, D.A.; Dickens, W.L.; Stansell, J.R. Irrigation regimes affect cabbage water use and yield. J. Am. Soc. Hortic. Sci. 1994, 119, 20–23. [Google Scholar]
- Thompson, T.L.; Doerge, T.A.; Godin, R.E. Nitrogen and water interactions in subsurface drip-irrigated cauliflower: I. Plant response. Soil Sci. Soc. Am. J. 2000, 64, 406–411. [Google Scholar] [CrossRef]
- Gallardo, M.; Jackson, L.E.; Schulbach, K.; Snyder, R.L.; Thompson, R.B.; Wyland, L.J. Production and water use in lettuces under variable water supply. Irrig. Sci. 1996, 16, 125–137. [Google Scholar] [CrossRef]
- Thompson, T.L.; Doerge, T.A. Nitrogen and water rates for subsurface trickle-irrigated romaine lettuce. HortScience 1995, 30, 1233–1237. [Google Scholar]
- Wang, F.-X.; Wu, X.-X.; Shock, C.C.; Chu, L.-Y.; Gu, X.-X.; Xue, X. Effects of drip irrigation regimes on potato tuber yield and quality under plastic mulch in arid Northwestern China. Field Crops Res. 2011, 122, 78–84. [Google Scholar] [CrossRef]
- Munoz-Carpena, R.; Dukes, M.D.; Li, Y.C.; Klassen, W. Field comparison of tensiometer and granular matrix sensor automatic drip irrigation on tomato. HortTechnology 2005, 15, 584–590. [Google Scholar]
- Markovic, M.P.; Josipovic, M.A.; Sostaric, J.I.; Zebec, V.B.; Rapcan, I.A. Effectiveness of granular matrix sensors in different irrigation treatments and installation depths. J. Agric. Sci. Belgrad. 2016, 61, 257–269. [Google Scholar] [CrossRef]
- Munoz-Carpena, R.; Dukes, M.D.; Li, Y.; Klassen, W. Design and Field Evaluation of a New Controller for Soil-Water Based Irrigation. Appl. Eng. Agric. 2008, 24, 183–191. [Google Scholar] [CrossRef]
- Phene, C.J.; Howell, T.A. Soil sensor control of high-frequency irrigation systems. Trans. Am. Soc. Agric. Eng. 1984, 27, 392–396. [Google Scholar] [CrossRef]
- Dukes, M.D.; Scholberg, J.M. Soil moisture controlled subsurface drip irrigation on sandy soils. Appl. Eng. Agric. 2005, 21, 89–101. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Barreto, T.P. Use of Soil Moisture Sensor-based Irrigation on Vegetable Crops. Proc. Fla. State Hort. Soc. 2009, 122, 218–220. [Google Scholar]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Femminella, K.; Munoz-Carpena, R. Irrigation scheduling for green bell peppers using capacitance soil moisture sensors. J. Irrig. Drain. Eng. 2011, 137, 73–81. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.S.; Munoz-Carpena, R.; Icerman, J. Tomato nitrogen accumulation and fertilizer use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 1247–1258. [Google Scholar] [CrossRef]
- Zotarelli, L.; Scholberg, J.M.; Dukes, M.D.; Munoz-Carpena, R.; Icerman, J. Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agric. Water Manag. 2009, 96, 23–34. [Google Scholar] [CrossRef]
- Zotarelli, L.; Dukes, M.D.; Scholberg, J.M.; Hanselman, T.; Le Femminella, K.; Muñoz-Carpena, R. Nitrogen and water use efficiency of zucchini squash for a plastic mulch bed system on a sandy soil. Sci. Hortic. 2008, 116, 8–16. [Google Scholar] [CrossRef]
- Thompson, R.B.; Gallardo, M.; FerncLndez, M.D.; Valdez, L.C.; Martcnez-GaitcLn, C. Salinity Effects on Soil Moisture Measurement Made with a Capacitance Sensor. Soil Sci. Soc. Am. J. 2007, 71, 1647–1657. [Google Scholar] [CrossRef]
- Visconti, F.; de Paz, J.M.; Martcnez, D.; Molina, M.J. Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils. Agric. Water Manag. 2014, 132, 111–119. [Google Scholar] [CrossRef]
- Kargas, G.; Soulis, K.X. Performance analysis and calibration of a new low-cost capacitance soil moisture sensor. J. Irrig. Drain. Eng. 2012, 138, 632–641. [Google Scholar] [CrossRef]
- Kelleners, T.J.; Soppe, R.W.O.; Ayars, J.E.; Skaggs, T.H. Calibration of capacitance probe sensors in a saline silty clay soil. Soil Sci. Soc. Am. J. 2004, 68, 770–778. [Google Scholar] [CrossRef]
- Parvin, N.; Degré, A. Soil-specific calibration of capacitance sensors considering clay content and bulk density. Soil Res. 2016, 54, 111–119. [Google Scholar] [CrossRef]
- Soulis, K.X.; Elmaloglou, S. Optimum soil water content sensors placement in drip irrigation scheduling systems: Concept of time stable representative positions. J. Irrig. Drain. Eng. 2016, 142, 04016054. [Google Scholar] [CrossRef]
- Soulis, K.X.; Elmaloglou, S.; Dercas, N. Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems. Agric. Water Manag. 2015, 148, 258–268. [Google Scholar] [CrossRef]
- Heinrich, A.; Smith, R.; Cahn, M. Nutrient and water use of fresh market spinach. HortTechnology 2013, 23, 325–333. [Google Scholar]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. 1948, 120–145. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and the environment. Symp. Soc. for Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Allen, R.G.; Walter, I.A.; Elliot, R.; Itenfisu, D.; Brown, P.; Jensen, M.E.; Mecham, B.; Howell, T.A.; Snyder, R.; Eching, S.; et al. The ASCE standardized reference evapotranspiration equation. In Water for a Sustainable World, Limited Supplies and Expanding Demand, Proceedings of the Second International Conference on Irrigation and Drainage, Phoenix, AZ, USA, 12–15 May 2003. [Google Scholar]
- Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Baselga Yrisarry, J.; et al. A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agric. Water Manag. 2006, 81, 1–22. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper; Food and Agriculture Organization (FAO): Rome, Italy, 1998. [Google Scholar]
- Guerra, E.; Ventura, F.; Snyder, R.L. Crop coefficients: A literature review. J. Irrig. Drain. Eng. 2016, 142, 06015006. [Google Scholar] [CrossRef]
- Grattan, S.R.; Bowers, W.; Dong, A.; Snyder, R.L.; Carroll, J.J.; George, W. New crop coefficients estimate water use of vegetables, row crops. Calif. Agric. 1998, 52, 16–21. [Google Scholar] [CrossRef]
- Estaciones Agroclimáticas, Consejería de Agricultura, Pesca y Desarrollo Rural. Available online: http://www.juntadeandalucia.es/agriculturaypesca/ifapa/ria/servlet/FrontController?action=Init (accessed on 27 January 2017).
- Rete Agrometeorologica Nazionale, Ministero delle Politiche Agricole Alimentari e Forestali. Available online: https://www.politicheagricole.it/flex/FixedPages/Common/miepfy200_reteAgrometeorologica.php/L/IT (accessed on 27 January 2017).
- Hart, Q.; Brugnach, M.; Temesgen, B.; Rueda, C.; Ustin, S.; Frame, K. Daily reference evapotranspiration for California using satellite imagery and weather station measurement interpolation. Civ. Eng. Environ. Syst. 2009, 26, 19–33. [Google Scholar] [CrossRef]
- Gallardo, M.; Snyder, R.L.; Schulbach, K.; Jackson, L.E. Crop growth and water use model for lettuce. J. Irrig. Drain. Eng. 1996, 122, 354–359. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. (Special Issue: Evapotranspiration prediction in irrigated agriculture). J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef]
- El-Shikha, D.W.P.; Hunsaker, D.; Clarke, T.; Barnes, E. Ground-based remote sensing for assessing water and nitrogen status of broccoli. Agric. Water Manag. 2007, 92, 183–193. [Google Scholar] [CrossRef]
- Hunsaker, D.F.G.; French, A.; Clarke, T.; Ottman, M.; Pinter, P. Wheat irrigation management using multispectral crop coefficients. Trans. ASABE 2007, 50, 2017–2033. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, M.M.L. Spectral vegetation indices for benchmarking water productivity of irrigated cotton and sugarbeet crops. Agric. Water Manag. 2008, 95, 48–58. [Google Scholar] [CrossRef]
- Campos, I.N.C.; Calera, A.; Balbontin, C.; Gonzalez-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes. Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT. A computer program for irrigation planning and management. In FAO Irrigation and Drainage Paper; FAO Land and Water Development Division: Rome, Italy, 1992. [Google Scholar]
- Snyder, R.L.; Orang, M.N.; Bali, K.M.; Eching, S. Basic Irrigation Scheduling (BIS), 2000. p. 10. Available online: https://www.researchgate.net/publication/255580842_BASIC_IRRIGATION_SCHEDULING_BIS (accessed on 20 January 2017).
- Orang, M.N.; Matyac, J.S.; Snyder, R.L. Consumptive use program (CUP) model. Acta Hortic. 2004, 664, 461–468. [Google Scholar] [CrossRef]
- Lieb, B. Washington Irrigation Scheduling Expert. Available online: https://sourceforge.net/projects/wsuwise/ (accessed on 20 January 2017).
- Leib, B.G.; Elliott, T.V. Washington Irrigation Scheduling Expert (WISE) Software. In National Irrigation Symposium, Proceedings of the 4th Decennial Symposium, Phoenix, AZ, USA, 14–16 November 2000; pp. 540–548. [Google Scholar]
- Washington State University IrrigationScheduler Mobile. Available online: http://weather.wsu.edu/is/ (accessed on 20 January 2017).
- Hillyer, C.; English, M. Irrigation Management Online. Available online: http://oiso.bioe.orst.edu/RealtimeIrrigationSchedule/index.aspx (accessed on 20 January 2017).
- Wateright. Available online: http://www.wateright.org (accessed on 20 January 2017).
- Thompson, W. Irrigation scheduling made simple(r): Wateright website does the hard work for you. Calif. Grow. Avocados Citrus Subtrop. 1998, 22, 22–23. [Google Scholar]
- CropManage. Available online: https://cropmanage.ucanr.edu (accessed on 20 January 2017).
- Cahn, M.; Smith, R.; Farrara, B.; Hartz, T.; Johnson, L.; Melton, F.; Post, K. Irrigation and nitrogen management decision support tool for vegetables and berries. In Proceedings of the U.S Committee on Irrigation and Drainage Conference: Groundwater Issues and Water Management—Strategies Addressing the Challenges of Sustainability USCID, Sacramento, CA, USA, 4–7 March 2014; pp. 53–64. [Google Scholar]
- Bartlett, A.C.; Andales, A.A.; Arabi, M.; Bauder, T.A. A smartphone app to extend use of a cloud-based irrigation scheduling tool. Comput. Electron. Agric. 2015, 111, 127–130. [Google Scholar] [CrossRef]
- SmartIrrigation Apps. Available online: http://smartirrigationapps.org/ (accessed on 20 January 2017).
- Migliaccio, K.W.; Morgan, K.T.; Vellidis, G.; Zotarelli, L.; Fraisse, C.; Zurweller, B.A.; Andreis, J.H.; Crane, J.H.; Rowland, D.L. Smartphone apps for irrigation scheduling. Trans. ASABE 2016, 59, 291–301. [Google Scholar]
- Vellidis, G.; Liakos, V.; Andreis, J.H.; Perry, C.D.; Porter, W.M.; Barnes, E.M.; Morgan, K.T.; Fraisse, C.; Migliaccio, K.W. Development and assessment of a smartphone application for irrigation scheduling in cotton. Comput. Electron. Agric. 2016, 127, 249–259. [Google Scholar] [CrossRef]
- Mannini, P.; Genovesi, R.; Letterio, T. IRRINET: Large Scale DSS Application for On-farm Irrigation Scheduling. Procedia Environ. Sci. 2013, 19, 823–829. [Google Scholar] [CrossRef]
- Montoro, A.; Lopez-Fuster, P.; Fereres, E. Improving on-farm water management through an irrigation scheduling service. Irrig. Sci. 2011, 29, 311–319. [Google Scholar] [CrossRef]
- Deumier, J.M.; Leroy, P.; Peyremorte, P. Tools for improving management of irrigated agricultural crop systems. Water Rep. 1996, 8, 39–49. [Google Scholar]
- Car, N.J.; Christen, E.W.; Hornbuckle, J.W.; Moore, G.A. Using a mobile phone Short Messaging Service (SMS) for irrigation scheduling in Australia Farmers participation and utility evaluation. Comput. Electron. Agric. 2012, 84, 132–143. [Google Scholar] [CrossRef]
- USDA SSURGO. Available online: https://sdmdataaccess.nrcs.usda.gov/ (accessed on 20 January 2017).
- Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop-Water Requirements, 2nd ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977; p. 156. [Google Scholar]
- Johnson, L.F.; Cahn, M.; Martin, F.; Melton, F.; Benzen, S.; Farrara, B.; Post, K. Evapotranspiration-based irrigation scheduling of head lettuce and broccoli. HortScience 2016, 51, 935–940. [Google Scholar]
- Morrison, M. Encouraging The Adoption of Decision Support Systems by Irrigators. Rural Soc. 2009, 19, 17–31. [Google Scholar] [CrossRef]
- Giannakis, E.; Bruggeman, A.; Djuma, H.; Kozyra, J.; Hammer, J. Water pricing and irrigation across Europe: Opportunities and constraints for adopting irrigation scheduling decision support systems. Water Sci. Technol. Water Supply 2016, 16, 245–252. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Allen, R.G. Lysimeters for Evapotranspiration and Environmental Measurements; American Society of Civil Engineers: New York, NY, USA, 1991. [Google Scholar]
- Snyder, R.L.; Spano, D. Using surface renewal measurements to estimate crop evapotranspiration. In Proceedings of the Third Congress of the European Society for Agronomy, Abano Padova, Italy, 18–22 September 1994. [Google Scholar]
- Hanson, B.R.; May, D.M. Crop coefficients for drip-irrigated processing tomato. Agric. Water Manag. 2006, 81, 381–399. [Google Scholar] [CrossRef]
- Cahn, M.; Snyder, R.; Hanson, B. Estimating evapotranspiration in processing tomato. Acta Hortic. 1999, 487, 493–497. [Google Scholar] [CrossRef]
- Hanson, B.R.; May, D.M. Crop evapotranspiration of processing tomato in the San Joaquin Valley of California, USA. Irrig. Sci. 2006, 24, 211–221. [Google Scholar] [CrossRef]
- Rosa, R.; Dicken, U.; Tanny, J. Estimating evapotranspiration from processing tomato using the surface renewal technique. (Special Issue: Sensing technologies for sustainable agriculture.). Biosyst. Eng. 2013, 114, 406–413. [Google Scholar] [CrossRef]
- Lopez Avendano, J.E.; Diaz Valdes, T.; Watts Thorp, C.; Rodriguez, J.C.; Castellanos Villegas, A.E.; Partida Ruvalcaba, L.; Velazquez Alcaraz, T.D.J. Evapotranspiration and crop coefficient of bell pepper in Culiacan Valley, Mexico. Terra Latinoam. 2015, 33, 209–219. [Google Scholar]
- Hanson, B.R.; May, D.M. New crop coefficients developed for high-yield processing tomatoes. Calif. Agric. 2006, 60, 95–99. [Google Scholar] [CrossRef]
- Shapland, T.M.; McElrone, A.J.; Khaw Tha Paw, U.; Snyder, R.L. A turnkey data logger program for field-scale energy flux density measurements using eddy covariance and surface renewal. Ital. J. Agrometeorol. 2013, 18, 5–16. [Google Scholar]
- Courault, D.; Seguin, B.; Olioso, A. Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrig. Drain. Syst. 2005, 19, 223–249. [Google Scholar] [CrossRef]
- Kalma, J.; McVicar, T.; McCabe, M. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, M.; Neale, C.; Mateos, L.; Kustas, W.; Prueger, J.; Anderson, M.; Li, F. A comparison of operational remote sensing-based methods for estimating crop evapotranspiration. Agric. For. Meteorol. 2009, 149, 1843–1853. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Meneti, M.; Feddes, R.; Holtslag, A. A remote sensing surface energy balance algorithm for land (SEBAL). J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Teixeira, A.; Bastiaanssen, W.; Ahmad, M.; Bos, M. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Lower-Middle Sao Francisco river basin, Brazil, Part A: Calibration and validation. Agric. For. Meteorol. 2008, 149, 462–476. [Google Scholar] [CrossRef]
- Allen, R.; Burnett, B.; Kramber, W.; Huntington, J.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated calibration of the METRIC-Landsat evapotranspiration process. J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Bryla, D.R.; Trout, T.J.; Ayars, J.E. Weighing Lysimeters for Developing Crop Coefficients and Efficient Irrigation Practices for Vegetable Crops. HortScience 2010, 45, 1597–1604. [Google Scholar]
- Johnson, L.F.; Trout, T. Satellite NDVI assisted monitoring of vegetable crop evapotranspiration in California’s San Joaquin Valley. Remote Sens. 2012, 4, 439–455. [Google Scholar] [CrossRef]
- Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Trout, T.; Johnson, L.; Gartung, J. Remote sensing of canopy cover in horticultural crops. HortScience 2008, 43, 333–337. [Google Scholar]
- Neale, C.; Jayanthi, H.; Wright, J. Irrigation water management using high resolution airborne remote sensing. Irrig. Drain. Syst. 2005, 19, 321–326. [Google Scholar] [CrossRef]
- Calera-Belmonte, A.; Jochum, A. Operational Tools for Irrigation Water Management Based on Earth Observation: The DEMETER Project. In Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII; SPIE: Stockholm, Sweden, 2006. [Google Scholar]
- Melton, F.; Johnson, L.F. Satellite Irrigation Management System. Available online: https://ecocast.arc.nasa.gov/dgw/sims (accessed on 27 January 2017).
- Melton, F.; Johnson, L.; Lund, C.; Pierce, L.; Michaelis, A.; Hiatt, S.; Guzman, A.; Adhikari, D.; Purdy, A.; Rosevelt, C.; et al. Satellite Irrigation Management Support with the Terrestrial Observation and Prediction System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1709–1721. [Google Scholar] [CrossRef]
- Johnson, L.; Cassel-Sharma, F.; Goorahoo, D.; Melton, F. Landsat-based calculation of agricultural water use fractions in California. In Proceedings of the 19th William T. Pecora Memorial Remote Sensing Symposium, Denver, CO, USA, 17–20 November 2014. [Google Scholar]
- IrriSat. Available online: https://irrisat-cloud.appspot.com/ (accessed on 27 January 2017).
- Montgomery, J.; Hornbuckle, J.; Hume, I.; Vleeshouwer, J. IrriSAT—Weather based scheduling and benchmarking technology. In Proceedings of the 17th ASA Conference, Hobart, Australia, 20–24 September 2015. [Google Scholar]
- Hornbuckle, J.; Vleeshouwer, J.; Ballester, C.; Montgomery, J.; Hoogers, R.; Bridgart, R. IrriSAT Technical Reference; Deakin University: Victoria, Australia, 2016. [Google Scholar]
- Vuolo, F.; D’Urso, G.; De Michele, C.; Bianchi, B.; Cutting, M. Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia. Agric. Water Manag. 2015, 147, 82–95. [Google Scholar] [CrossRef]
- D’Urso, G. Current status and perspectives for the estimation of crop water requirements from earth observation. Ital. J. Agron. 2010, 5, 107–120. [Google Scholar] [CrossRef]
- EEflux. Available online: http://eeflux-level1.appspot.com/ (accessed on 27 January 2017).
- Allen, R.; Morton, C.; Kamble, B.; Kilic, A.; Huntington, J.; Thau, D.; Ratcliffe, I. EEFlux: A Landsat-based evapotranspiration mapping tool on the Google Earth Engine. In Proceedings of the ASABE/IA Irrigation Symposium, Long Beach, CA, USA, 10–12 November 2015. [Google Scholar]
- Pereira, L.; Allen, R. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Vermote, E.; Saleous, N. LEDAPS Surface Reflectance Product Description; University of Maryland: College Park, MD, USA, 2007. [Google Scholar]
- Tasumi, M.; Allen, R.; Trezza, R. At-surface albedo from Landsat and MODIS satellites for use in energy balance studies of evapotranspiration. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Johnson, L.; Cahn, M.; Rosevelt, C.; Guzman, A.; Melton, F.; Lockhart, T.; Farrara, B.; Melton, F. Satellite Estimation of Fractional Cover in Several California Specialty Crops; American Geophysical Union: San Francisco, CA, USA, 2016. [Google Scholar]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolas, E.; Nortes, P.A.; Alarcon, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Torres-Sanchez, J.; Pena, J.M.; de Castro, A.I.; Lopez-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Torres-Sanchez, J.; Lopez-Granados, F.; Pena, J.M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; The World Water Council. Toward a Water and Food Secure Future: Critical Perspectives for Policy-Makers. 2015, p. 61. Available online: http://www.fao.org/nr/water/docs/FAO_WWC_white_paper_web.pdf (accessed on 20 January 2017).
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cahn, M.D.; Johnson, L.F. New Approaches to Irrigation Scheduling of Vegetables. Horticulturae 2017, 3, 28. https://doi.org/10.3390/horticulturae3020028
Cahn MD, Johnson LF. New Approaches to Irrigation Scheduling of Vegetables. Horticulturae. 2017; 3(2):28. https://doi.org/10.3390/horticulturae3020028
Chicago/Turabian StyleCahn, Michael D., and Lee F. Johnson. 2017. "New Approaches to Irrigation Scheduling of Vegetables" Horticulturae 3, no. 2: 28. https://doi.org/10.3390/horticulturae3020028
APA StyleCahn, M. D., & Johnson, L. F. (2017). New Approaches to Irrigation Scheduling of Vegetables. Horticulturae, 3(2), 28. https://doi.org/10.3390/horticulturae3020028