Productivity Benefits from Plastic Mulch in Vegetable Production Likely to Limit Adoption of Alternate Practices that Deliver Water Quality Benefits: An On-Farm Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Descriptions
2.2. Management Systems
Nutrient Inputs
2.3. Yield Estimation and Economic Analysis
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ding, R.; Kang, S.; Hao, X.; Du, T.; Tong, L.; Li, S. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland. Agric. Water Manag. 2017, 179, 122–131. [Google Scholar] [CrossRef]
- Wang, Y.P.; Li, X.G.; Fu, T.; Wang, L.; Turner, N.C.; Siddique, K.H.M.; Li, F.-M. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric. For. Meteorol. 2016, 228–229, 42–51. [Google Scholar] [CrossRef]
- Huo, L.; Pang, H.; Zhao, Y.; Wang, J.; Lu, C.; Li, Y. Buried straw layer plus plastic mulching improves soil organic carbon fractions in an arid saline soil from northwest China. Soil Tillage Res. 2017, 165, 286–293. [Google Scholar] [CrossRef]
- Chan, K.Y.; Dorahy, C.G.; Tyler, S.; Wells, A.T.; Milham, P.P.; Barchia, I. Phosphorus accumulation and other changes in soil properties as a consequence of vegetable production, sydney region, Australia. Aust. J. Soil Res. 2007, 45, 139–146. [Google Scholar] [CrossRef]
- Chan, K.Y.; Wells, T.; Fahey, D.; Eldridge, S.M.; Dorahy, C.G. Assessing p fertiliser use in vegetable production: Agronomic and environmental implications. Soil Res. 2010, 48, 674–681. [Google Scholar] [CrossRef]
- Nachimuthu, G.; Kristiansen, P.; Guppy, C.; Lockwood, P.; King, K. Organic vegetable farms are not nutritionally disadvantaged compared with adjacent conventional or integrated vegetable farms in eastern australia. Sci. Hortic. 2012, 146, 164–168. [Google Scholar] [CrossRef]
- Wells, A.T.; Cornish, P.S.; Hollinger, E. Nutrient runoff and drainage from organic and other vegetable production systems near sydney, australia. In Cultivating Communities, Proceedings of the 14th Ifoam Organic World Congress, Victoria, Canada, 21–28 August 2002; Thompson, R., Ed.; Canadian Organic Growers: Ottawa, ON, Canada, 2002; p. 118. [Google Scholar]
- Wells, A.T.; Chan, K.Y.; Cornish, P.S. Comparison of conventional and alternative vegetable farming systems on the properties of a yellow earth in new south wales. Agric. Ecosyst. Environ. 2000, 80, 47–60. [Google Scholar] [CrossRef]
- Carroll, C.; Waters, D.; Vardy, S.; Silburn, D.M.; Attard, S.; Thorburn, P.J.; Davis, A.M.; Halpin, N.; Schmidt, M.; Wilson, B.; et al. A paddock to reef monitoring and modelling framework for the great barrier reef: Paddock and catchment component. Mar. Pollut. Bull. 2012, 65, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Nachimuthu, G.; Halpin, N.; Bell, M. Impact of practice change on runoff water quality and vegetable yield—An on-farm case study. Agriculture 2017, 7, 30. [Google Scholar] [CrossRef]
- Rice, P.J.; Harman-Fetcho, J.A.; Sadeghi, A.M.; McConnell, L.L.; Coffman, C.B.; Teasdale, J.R.; Abdul-Baki, A.; Starr, J.L.; McCarty, G.W.; Herbert, R.R.; et al. Reducing insecticide and fungicide loads in runoff from plastic mulch with vegetative-covered furrows. J. Agric. Food Chem. 2007, 55, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.J.; McConnell, L.L.; Heighton, L.P.; Sadeghi, A.M.; Isensee, A.R.; Teasdale, J.R.; Abdul-Baki, A.A.; Harman-Fetcho, J.A.; Hapeman, C.J. Runoff loss of pesticides and soil: A comparison between vegetative mulch and plastic mulch in vegetable production systems. J. Environ. Qual. 2001, 30, 1808–1821. [Google Scholar] [CrossRef] [PubMed]
- Nachimuthu, G.; Halpin, N.V.; Bell, M.J. Effect of sugarcane cropping systems on herbicide losses in surface runoff. Sci. Total Environ. 2016, 557–558, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Isbell, R. The Australian Soil Classification; The Commonwealth Scientific and Industrial Research Organisation (CSIRO): Canberra, Australia, 2002. [Google Scholar]
- Van Grieken, M.E.; Thomas, C.R.; Roebeling, P.C.; Thorburn, P.J. Integrating economic drivers of social change into agricultural water quality improvement strategies. Agric. Ecosyst. Environ. 2013, 180, 166–175. [Google Scholar] [CrossRef]
- Hassan, S.A.; Abidin, R.Z.; Ramlan, M.F. Growth and yield of chilli (Capsicum annuum L.) in response to mulching and potassium fertilization. Pertanika J. Trop. Agric. Sci. 1995, 18, 113–117. [Google Scholar]
- Jolliffe, P.A.; Gaye, M.-M. Dynamics of growth and yield component responses of bell peppers (Capsicum annuum L.) to row covers and population density. Sci. Hortic. 1995, 62, 153–164. [Google Scholar] [CrossRef]
- Cook, H.F.; Valdes, G.S.B.; Lee, H.C. Mulch effects on rainfall interception, soil physical characteristics and temperature under Zea mays L. Soil Tillage Res. 2006, 91, 227–235. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern vietnam. Field Crop. Res. 2006, 95, 115–125. [Google Scholar] [CrossRef]
- Nachimuthu, G.; Halpin, N.; Bell, M. Paddock Scale Water Quality Monitoring of Vegetable-Sugarcane and Legume-Sugarcane Farming Systems—Final Technical Report Submitted to Australian and Queensland Government; Department of Agriculture, Fisheries and Forestry: Brisbane, QLD, Australia; Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland: St. Lucia, QLD, Australia, 2013; p. 153. [Google Scholar]
Treatment | Conventional Practice | Improved Practice | Trash Mulch Practice | Vegetable Only Practice ** |
---|---|---|---|---|
Previous management | Cane—1.8 m PCTF # | Cane—1.8 m PCTF # | Cane—1.8 m PCTF # | Rhodes grass |
First crop (planting date) | Capsicum (13 October 2010) | Capsicum (13 October 2010) | Capsicum (13 October 2010) | Capsicum (13 October 2010) |
Trash management | Removed | Removed | Retained | Retained |
Cultivation | full tillage | full tillage | strip | none |
Ground cover in bed | Plastic mulch | Plastic mulch | Trash blanket | Rhodes grass |
Ground cover-inter-row | None | Jap millet growing | Trash blanket | Rhodes grass |
Fertiliser | Traditional | Improved | Improved | Improved |
N (kg/ha) | 315 | 147 | 200 | 200 |
P (kg/ha) | 130 | 35 | 24 | 24 |
K (kg/ha) | 306 | 175 | 200 | 200 |
Fallow management (1 February 2011–13 May 2011) | Knockdown herbicide | Forage sorghum grown and slashed before planting zucchini | Forage sorghum grown and slashed before planting zucchini | Forage sorghum grown and slashed before planting zucchini |
Ground cover in bed | Plastic mulch | Plastic mulch | Trash mulch, capsicum residues | Rhodes grass mulch, capsicum residues |
Ground cover in inter-row | Capsicum residues | Capsicum residues, Jap millet mulch | Trash mulch, capsicum residues | Rhodes grass mulch, capsicum residues |
Second crop (planting date) | Zucchini (13 May 2011) | Zucchini (13 May 2011) | Zucchini (13 May 2011) | Zucchini (13 May 2011) |
Cultivation | No tillage | No tillage | No tillage | No tillage |
Ground cover in bed | Plastic mulch | Plastic mulch | Forage sorghum mulch | Forage sorghum mulch |
Ground cover in inter-row | None | Forage sorghum mulch | Forage sorghum mulch | Forage sorghum mulch |
Fertiliser * | Soil test-based | Improved | Soil test-based | Soil test-based |
N (kg/ha) | 105 | 82 | 104 | 104 |
P (kg/ha) | 8 | 13 | 19 | 19 |
K (kg/ha) | 111 | 76 | 86 | 86 |
Management Practices | Capsicum | Zucchini | Zucchini Extra Fertiliser |
---|---|---|---|
Trash mulch | 11.10 ± 3.55 | 11.09 ± 3.31 | 13.10 ± 0.86 |
Improved | 21.05 ± 0.89 | 17.97 ± 1.19 | 21.34 ± 0.22 |
Conventional | 25.20 ± 2.87 | 22.59 ± 2.18 | 25.18 ± 1.66 |
Vegetable only | 14.35 ± 4.80 | 9.22 ± 1.10 | 14.08 ± 1.02 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nachimuthu, G.; Halpin, N.V.; Bell, M.J. Productivity Benefits from Plastic Mulch in Vegetable Production Likely to Limit Adoption of Alternate Practices that Deliver Water Quality Benefits: An On-Farm Case Study. Horticulturae 2017, 3, 42. https://doi.org/10.3390/horticulturae3030042
Nachimuthu G, Halpin NV, Bell MJ. Productivity Benefits from Plastic Mulch in Vegetable Production Likely to Limit Adoption of Alternate Practices that Deliver Water Quality Benefits: An On-Farm Case Study. Horticulturae. 2017; 3(3):42. https://doi.org/10.3390/horticulturae3030042
Chicago/Turabian StyleNachimuthu, Gunasekhar, Neil V. Halpin, and Michael J. Bell. 2017. "Productivity Benefits from Plastic Mulch in Vegetable Production Likely to Limit Adoption of Alternate Practices that Deliver Water Quality Benefits: An On-Farm Case Study" Horticulturae 3, no. 3: 42. https://doi.org/10.3390/horticulturae3030042
APA StyleNachimuthu, G., Halpin, N. V., & Bell, M. J. (2017). Productivity Benefits from Plastic Mulch in Vegetable Production Likely to Limit Adoption of Alternate Practices that Deliver Water Quality Benefits: An On-Farm Case Study. Horticulturae, 3(3), 42. https://doi.org/10.3390/horticulturae3030042