Impact of Low and Moderate Salinity Water on Plant Performance of Leafy Vegetables in a Recirculating NFT System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Propagation
2.2. Hydroponic System and Greenhouse Climate
2.3. Treatments and Reservoir Tank Replenishment
2.4. Data Collection and Mineral Analysis
2.5. Statistical Analysis
3. Results
3.1. Dynamic Changes of Ion Concentrations in the Recirculating Solution
3.2. Plant Growth and Relative Chlorophyll Content (SPAD)
3.3. Mineral Nutrition
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Craver, J.K.; Williams, K.A. Assessing student learning from an experiential module in a greenhouse management course using hydroponics and recirculating solution culture. HortTechnology 2014, 24, 610–617. [Google Scholar]
- Wortman, S.E. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hort. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: San Diego, CA, USA, 2015. [Google Scholar]
- Walter, K.J.; Currey, C.J. Hydroponic greenhouse basil production: Comparing systems and cultivars. HortTechnology 2015, 25, 645–650. [Google Scholar]
- Kumar, R.R.; Cho, J.Y. Reuse of hydroponic waste solution. Environ. Sci. Pollut. Res. 2014, 21, 9569–9577. [Google Scholar] [CrossRef] [PubMed]
- Neocleous, D.; Savvas, D. NaCl accumulation and macronutrient uptake by a melon crop in a closed hydroponic system in relation to water uptake. Agric. Water Manag. 2016, 165, 22–32. [Google Scholar] [CrossRef]
- Schwarz, D.; Franken, P.; Krumbein, A.; Klaring, H.P.; Bar-Yosef, B. Nutrient management in soilless culture in the conflict of plant, microorganism, consumer and environmental demand. Acta Horticult. 2009, 843, 27–34. [Google Scholar] [CrossRef]
- Grattan, S.R.; Grieve, C.M. Salinity–mineral nutrient relations in horticultural crops. Sci. Hort. 1999, 78, 127–157. [Google Scholar] [CrossRef]
- Fausey, B.; Bauerle, B.; Draper, C.; Hansen, R.; Keener, H.; Ling, P. Research and outreach efforts sustain Ohio hydroponic industry. Acta Horticult. 2009, 843, 389–392. [Google Scholar] [CrossRef]
- Bugbee, B. Nutrient management in recirculating hydroponic culture. Acta Horticult. 2004, 648, 99–112. [Google Scholar] [CrossRef]
- Soares, H.R.; Silva, E.F.d.F.e.; Silva, G.F.d.; Pedrosa, E.M.R. Lettuce growth and water consumption in NFT hydroponic system using brackish water. Revista Brasileira de Engenharia Agricola e Ambiental 2015, 19, 636–642. [Google Scholar] [CrossRef]
- Cova, A.M.W.; Freitas, F.T.O.; Soares, P.C. Content of inorganic solutes in lettuce grown with brackish water in different hydroponic systems. Revista Brasileira de Engenharia Agricola e Ambiental 2017, 21, 150–155. [Google Scholar] [CrossRef]
- Carmassi, G.; Incrocci, L.; Maggini, R.; Malorgio, F.; Tognoni, F.; Pardossi, A. Modeling salinity build-up in recirculating nutrient solution culture. J. Plant Nutr. 2005, 28, 431–445. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Bibbiani, C.; Carmassi, G.; Malorgio, F.; Pardossi, A. Simulation of crop water and mineral relatons in greenhouse soilless culture. Environ. Model. Softw. 2011, 26, 711–722. [Google Scholar] [CrossRef]
- Molinar, R. Indigenous Asian specialty vegetables in the central valley of California. HortScience 2012, 47, 835–838. [Google Scholar]
- Sciarappa, W.J.; Simon, J.; Govindasamy, R.; Kelly, K.; Mangan, F.; Zhang, S.; Arumugam, S.; Nitzsche, P.; Van Vranken, R.; Komar, S.; et al. Asian crops overview: Consumer preference and cultivar growth on the east coast of the United States. HortScience 2016, 51, 1344–1350. [Google Scholar] [CrossRef]
- Gavlak, R.G.; Horneck, D.A.; Miller, R.O. Plant, Soil, and Water Reference Methods for the Western Region; University of Alaska: Fairbanks, AK, USA, 1994. [Google Scholar]
- Havlin, J.L.; Soltanpour, P.N. A nitric acid and plant digest method for use with inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 1989, 14, 969–980. [Google Scholar] [CrossRef]
- Isaac, R.A.; Johnson, W.C. Collaborative study of wet and dry ashing techniques for the elemental analysis of plant tissue by atomic absorption spectrophotometry. J. Assoc. Off. Anal. Chem. 1975, 58, 436–440. [Google Scholar]
- Pardossi, A.; Malorgio, F.; Incrocci, L.; Campiotti, C.A.; Tognoni, F. A comparison between two methods to control nutrient delivery to greenhouse melons grown in recirculating nutrient solution culture. Sci. Horticult. 2002, 92, 89–95. [Google Scholar] [CrossRef]
- Signore, A.; Serio, F.; Santamaria, P. A targeted management of the nutrient solution in a soilless tomato crop according to plant needs. Front. Plant Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Hochmuth, G.; Maynard, D.; Vavrina, C.; Hanlon, E.; Simonne, E. Plant Tissue Analysis and Interpretation for Vegetable Crops in Florida; University of Florida IFAS Extension: Gainesville, FL, USA, 2015. [Google Scholar]
- Hamdy, A.; Alghazal, R.K.; Pacucci, G.; Troccoli, C. Green salad production in soilless culture under saline irrigation. Acta Horticult. 2009, 843, 103–110. [Google Scholar] [CrossRef]
- Xu, C.; Mou, B. Evaluation of lettuce genotypes for salinity tolerance. HortScience 2015, 50, 1441–1446. [Google Scholar]
- Kim, H.J.; Fonseca, J.M.; Choi, J.H.; Kubota, C.; Kwon, D.Y. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.). J. Agric. Food Chem. 2008, 56, 3772–3776. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Kogi, M.; Yanagisawa, T. Effects of salinity and nutrients in seawater on hydroponic culture of red leaf lettuce. Environ. Control Biol. 2014, 52, 189–195. [Google Scholar] [CrossRef]
Expt. 1 Treatments | Initial Solution | EC (dS∙m−1) | Replenishment Solution | EC (dS∙m−1) |
CNS17 | CNS17 NS made with RO water | 1.58 | CNS17 NS made with RO water | 1.58 |
RO | CNS17 NS made with RO water | 1.58 | RO water | <0.01 |
Tap | CNS17 NS made with RO water | 1.58 | Tap water | 0.88 |
Expt. 2 Treatments | Initial Solution | EC (dS∙m−1) | Replenishment Solution | EC (dS∙m−1) |
RO2 | CNS17 NS made with RO water | 1.58 | 1/3 strength of CNS17 NS made with RO water | 0.72 |
Tap2 | CNS17 NS made with tap water | 2.35 | 1/3 strength of CNS17 NS made with tap water | 1.62 |
Tap2 + NaCl | CNS17 NS made with tap water + NaCl | 3.20 | 1/3 strength of CNS17 NS made with tap water + NaCl | 2.40 |
Variety | Treatment | Height (cm) | Shoot FW (g) | Shoot DW (g) | SPAD |
---|---|---|---|---|---|
Leaf lettuce ‘Tropicana’ | CNS17 | 20.5 a z | 87.8 a | 4.4 a | 32.0 a |
RO | 20.7 a | 90.3 a | 4.3 a | 34.6 a | |
Tap | 20.4 a | 90.7 a | 4.0 a | 32.6 a | |
Pac choi ‘Mei Qing choi’ | CNS17 | 23.9 ab | 100.5 a | 4.9 a | 39.8 a |
RO | 22.9 b | 98.8 a | 5.1 a | 40.3 a | |
Tap | 25.2 a | 97.7 a | 4.2 a | 39.3 a | |
Pac choi ‘Rosie’ | CNS17 | 27.1 b | 54.0 a | 3.3 a | 37.0 a |
RO | 26.3 b | 45.9 b | 2.8 a | 39.1 a | |
Tap | 29.7 a | 56.9 a | 3.3 a | 38.3 a | |
Pac choi ‘Tokyo Bekna’ | CNS17 | 29.4 b | 154.5 a | 8.1 a | 20.5 a |
RO | 27.2 b | 110.2 b | 6.0 b | 18.7 a | |
Tap | 32.0 a | 167.7 a | 7.7 ab | 20.8 a | |
Variety | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Treatment | <0.0001 | <0.0001 | NS | NS | |
Variety × Treatment | 0.0444 | <0.0001 | 0.003 | 0.0154 |
Variety | Treatment | Height (cm) | Shoot FW (g) | Shoot DW (g) | SPAD |
---|---|---|---|---|---|
Leaf lettuce ‘Tropicana’ | RO2 | 25.1 a z | 81.0 a | 6.4 a | 31.8 a |
Tap2 | 24.9 a | 75.2 a | 5.6 a | 31.4 a | |
Tap2 + NaCl | 12.7 b | 7.8 b | 0.1 b | 25.0 b | |
Pac Choi ‘Mei Qing Choi’ | RO2 | 24.6 a | 90.1 a | 6.6 a | 38.6 a |
Tap2 | 26.5 a | 97.8 a | 6.7 a | 38.6 a | |
Tap2 + NaCl | 21.0 b | 57.6 b | 3.1 a | 36.8 a | |
Pac Choi ‘Rosie’ | RO2 | 29.0 b | 49.4 b | 3.1 a | 36.4 a |
Tap2 | 31.5 a | 60.3 a | 3.4 a | 34.3 ab | |
Tap2 + NaCl | 23.0 c | 32.1 c | 1.2 b | 33.4 b | |
Pac Choi ‘Tokyo Bekana’ | RO2 | 33.1 a | 161.8 a | 10.4 a | 16.2 a |
Tap2 | 36.1 a | 166.8 a | 12.2 a | 15.5 a | |
Tap2 + NaCl | 28.0 b | 76.8 b | 7.5 a | 17.5 a | |
Variety | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Treatment | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Variety × Treatment | <0.0001 | <0.0001 | NS | <0.0001 |
Variety | Treatment | Mineral Nutrition (mg per g of Sap) z | ||||||
---|---|---|---|---|---|---|---|---|
NO3 | P | K+ | Ca2+ | Mg2+ | SO42− | Na+ | ||
Leaf lettuce ‘Tropicana’ | CNS17 | 4050 a y | 544 a | 3550 a | 125 b | 155 a | 375 a | 42 b |
RO | 2300 b | 399 b | 2075 a | 180 a | 225 a | 275 a | 86 b | |
Tap | 2525 b | 245 c | 2350 a | 158 ab | 163 a | 200 a | 325 a | |
Pac Choi ‘Mei Qing Choi’ | CNS17 | 5475 a | 289 a | 3175 a | 393 a | 250 a | 1250 a | 47 b |
RO | 4750 a | 226 a | 2725 a | 548 a | 325 a | 1300 a | 102 b | |
Tap | 4625 a | 183 a | 2500 a | 483 a | 300 a | 1563 a | 540 a | |
Pac Choi ‘Rosie’ | CNS17 | 7025 a | 291 a | 3750 a | 410 a | 375 a | 1075 a | 58 b |
RO | 5750 a | 245 a | 2850 ab | 578a | 450 a | 1150 a | 93 b | |
Tap | 5500 a | 223 a | 2600 b | 463 a | 463 a | 1250 a | 778 a | |
Pac Choi ‘Tokyo Bekana’ | CNS17 | 7500 a | 282 a | 3675 a | 510 a | 288 a | 800 a | 62 b |
RO | 5300 a | 317 a | 2625 a | 638 a | 263 a | 625 a | 140 b | |
Tap | 6400 a | 220 a | 2850 a | 688 a | 263 a | 600 a | 793 a | |
Variety | <0.0001 | <0.0001 | NS | <0.0001 | 0.0172 | <0.0001 | 0.0004 | |
Treatment | 0.0058 | 0.0001 | <0.0001 | 0.004 | NS | NS | <0.0001 | |
Variety × Treatment | NS | 0.0152 | NS | NS | NS | NS | 0.0005 |
Variety | Treatment | Mineral Nutrition (mg per g Dry Tissue) z | ||||||
---|---|---|---|---|---|---|---|---|
Na+ | Cl− | P | K+ | Ca2+ | Mg2+ | SO42− | ||
Leaf lettuce ‘Tropicana’ | RO2 | 1.8 b y | 9.2 b | 11.0 a | 92.1 a | 14.7 a | 6.0 a | 3.2 a |
Tap2 | 11.5 a | 27.8 a | 11.5 a | 120.4 a | 13.0 a | 4.8 a | 3.2 a | |
Tap2 + NaCl | 16.0 a | - | 11.2 a | 70.6 a | 13.4 a | 4.3 a | 4.9 a | |
Pac Choi ‘Mei Qing Choi’ | RO2 | 1.2 b | 1.6 b | 8.3 a | 118.9 a | 40.9 a | 5.5 a | 12.6 a |
Tap2 | 14.3 a | 11.5 a | 8.4 a | 109.2 a | 37.3 a | 4.7 a | 12.0 a | |
Tap2 + NaCl | 17.3 a | 15.1 a | 7.5 a | 113.0 a | 31.9 a | 3.9 a | 15.2 a | |
Pac Choi ‘Rosie’ | RO2 | 1.5 b | 1.2 b | 7.0 a | 90.2 a | 41.3 a | 6.5 a | 7.6 a |
Tap2 | 15.0 a | 12.9 a | 6.4 a | 70.6a | 38.6 a | 5.6 a | 8.0 a | |
Tap2 + NaCl | 19.0 a | 16.4 a | 7.5 a | 72.7 a | 32.7 a | 4.6 a | 9.2 a | |
Pac Choi ‘Tokyo Bekana’ | RO2 | 1.6 c | 1.4 b | 8.3 a | 72.1 a | 49.4 a | 6.2 a | 7.0 a |
Tap2 | 12.0 b | 9.1 a | 7.7 a | 65.3 a | 49.2 a | 5.8 a | 7.6 a | |
Tap2 + NaCl | 20.2 a | 13.0 a | 8.1 a | 84.9 a | 40.1 b | 4.5 b | 7.9 a | |
Variety | NS | NS | <0.0001 | 0.0011 | <0.0001 | NS | <0.0001 | |
Treatment | <0.0001 | <0.0001 | NS | NS | 0.0056 | 0.0007 | 0.0005 | |
Variety × Treatment | NS | 0.0182 | NS | NS | NS | NS | NS |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, G.; Sun, Y.; Masabni, J.G. Impact of Low and Moderate Salinity Water on Plant Performance of Leafy Vegetables in a Recirculating NFT System. Horticulturae 2018, 4, 6. https://doi.org/10.3390/horticulturae4010006
Niu G, Sun Y, Masabni JG. Impact of Low and Moderate Salinity Water on Plant Performance of Leafy Vegetables in a Recirculating NFT System. Horticulturae. 2018; 4(1):6. https://doi.org/10.3390/horticulturae4010006
Chicago/Turabian StyleNiu, Genhua, Youping Sun, and Joseph G. Masabni. 2018. "Impact of Low and Moderate Salinity Water on Plant Performance of Leafy Vegetables in a Recirculating NFT System" Horticulturae 4, no. 1: 6. https://doi.org/10.3390/horticulturae4010006
APA StyleNiu, G., Sun, Y., & Masabni, J. G. (2018). Impact of Low and Moderate Salinity Water on Plant Performance of Leafy Vegetables in a Recirculating NFT System. Horticulturae, 4(1), 6. https://doi.org/10.3390/horticulturae4010006