Postharvest Treatments with GRAS Salts to Control Fresh Fruit Decay
Abstract
:1. Introduction
2. Evaluation and Selection of GRAS Salts
2.1. In Vitro Antifungal Activity
2.2. Control Ability of Aqueous Solutions
2.2.1. In Vivo Primary Screenings
2.2.2. Small-Scale Trials
2.2.3. Semicommercial or Commercial Trials
2.2.4. Data Analysis
2.3. Performance of Ingredients of Edible Coatings
3. Noteworthy Research and Commercial Results Obtained with GRAS Salts
3.1. Aqueous Solutions
3.2. Edible Coatings
Funding
Acknowledgments
Conflicts of Interest
References
- Smilanick, J.L.; Brown, G.E.; Eckert, J.W. The biology and control of postharvest diseases. In Fresh Citrus Fruits, 2nd ed.; Wardowski, W.F., Miller, W.M., Hall, D.J., Grierson, W., Eds.; Florida Science Source: Longboat Key, FL, USA, 2006; pp. 339–396. ISBN 0-944961-08-8. [Google Scholar]
- Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal edible coatings for fresh citrus fruit: A review. Coatings 2015, 5, 962–986. [Google Scholar] [CrossRef]
- Louw, J.P.; Korsten, L. Pathogenic Penicillium spp. on apple and pear. Plant Dis. 2014, 98, 590–598. [Google Scholar] [CrossRef]
- Errampalli, D. Penicillium expansum (Blue mold). In Postharvest Decay. Control Strategies; Bautista-Baños, S., Ed.; Academic Press, Elsevier Inc.: London, UK, 2014; pp. 189–231. ISBN 978-0-12-411552-1. [Google Scholar]
- Zhang, M.; Xu, L.; Zhang, L.; Guo, Y.; Qi, X.; He, L. Effects of quercetin on postharvest blue mold control in kiwifruit. Sci. Hortic. 2018, 228, 18–25. [Google Scholar] [CrossRef]
- Palou, L. Penicillium digitatum, Penicillium italicum (Green mold, Blue mold). In Postharvest Decay. Control Strategies; Bautista-Baños, S., Ed.; Academic Press, Elsevier Inc.: London, UK, 2014; pp. 45–102. ISBN 978-0-12-411552-1. [Google Scholar]
- Barkai-Golan, R. Postharvest Diseases of Fruit and Vegetables. In Development and Control; Elsevier Science: Amsterdam, The Netherlands, 2001; ISBN 978-0-44-450584-2. [Google Scholar]
- Bautista-Baños, S.; Bosquez-Molina, E.; Barrera-Necha, L.L. Rhizopus stolonifer (Soft rot). In Postharvest Decay. Control Strategies; Bautista-Baños, S., Ed.; Academic Press, Elsevier Inc.: London, UK, 2014; pp. 1–44. ISBN 978-0-12-411552-1. [Google Scholar]
- Saito, S.; Xiao, C.L. Prevalence of postharvest diseases of mandarin fruit in California. Plant Health Progress 2017, 18, 204–210. [Google Scholar] [CrossRef]
- Droby, S.; Lichter, A. Post-harvest Botrytis infection: Etiology, development and management. In Botrytis: Biology, Pathology and Control; Elad, Y., Williamson, B., Tudzynski, P., Delen, N., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 349–367. ISBN 1-4020-2624-2. [Google Scholar]
- Romanazzi, G.; Feliziani, E. Botrytis cinerea (Gray mold). In Postharvest Decay. Control Strategies; Bautista-Baños, S., Ed.; Academic Press, Elsevier Inc.: London, UK, 2014; pp. 131–146. ISBN 978-0-12-411552-1. [Google Scholar]
- Prusky, D.; Freeman, S.; Dickman, M.B. (Eds.) Colletotrichum. In Host Specificity, Pathology, and Host -Pathogen Interaction; APS Press: St. Paul, MN, USA, 2000; ISBN 0-89054-258-9. [Google Scholar]
- Siddiqui, Y.; Ali, A. Colletotrichum gloeosporioides (Anthracnose). In Postharvest Decay. Control Strategies; Bautista-Baños, S., Ed.; Academic Press, Elsevier Inc.: London, UK, 2014; pp. 337–371. ISBN 978-0-12-411552-1. [Google Scholar]
- Rotem, J. The Genus Alternaria. In Biology, Epidemiology and Pathogenicity; APS Press: St. Paul, MN, USA, 1994; ISBN 0-89054-152-3. [Google Scholar]
- Zhang, J. Lasiodiplodia theobromae in citrus fruit (Diplodia stem-end rot). In Postharvest Decay. Control Strategies; Bautista-Baños, S., Ed.; Academic Press, Elsevier Inc.: London, UK, 2014; pp. 309–335. ISBN 978-0-12-411552-1. [Google Scholar]
- Troncoso-Rojas, R.; Tiznado-Hernández, M.E. Alternaria alternata (Black rot, black spot). In Postharvest Decay. Control Strategies; Bautista-Baños, S., Ed.; Academic Press, Elsevier Inc.: London, UK, 2014; pp. 147–187. ISBN 978-0-12-411552-1. [Google Scholar]
- Martini, C.; Mari, M. Monilinia fructicola, Monilinia laxa (Monilinia rot, brown rot). In Postharvest Decay. Control Strategies; Bautista-Baños, S., Ed.; Academic Press, Elsevier Inc.: London, UK, 2014; pp. 233–265. ISBN 978-0-12-411552-1. [Google Scholar]
- Zhu, X.; Niu, C.; Chen, X.; Guo, L. Monilinia species associated with brown rot of cultivated apple and pear fruit in China. Plant Dis. 2016, 100, 2240–2250. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Droby, S. Alternatives to conventional fungicides for the control of citrus postharvest green and blue moulds. Stewart Postharv. Rev. 2008, 4, 1–16. [Google Scholar] [CrossRef]
- Wisniewski, M.; Droby, S.; Norelli, J.; Liu, J.; Schena, L. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biol. Technol. 2016, 122, 3–10. [Google Scholar] [CrossRef]
- Palou, L. Control integrado no contaminante de enfermedades de poscosecha (CINCEP): Nuevo paradigma para el sector español de los cítricos. Levante Agrícola 2011, 406, 173–183. [Google Scholar]
- Palou, L.; Ali, A.; Fallik, E.; Romanazzi, G. GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biol. Technol. 2016, 122, 41–52. [Google Scholar] [CrossRef]
- Palmer, C.L.; Horst, R.K.; Langhans, R.W. Use of bicarbonates to inhibit in vitro colony growth of Botrytis cinerea. Plant Dis. 1997, 81, 1432–1438. [Google Scholar] [CrossRef]
- Smilanick, J.L.; Margosan, D.A.; Mlikota-Gabler, F.; Usall, J.; Michael, I.F. Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy. Plant Dis. 1999, 83, 139–145. [Google Scholar] [CrossRef]
- Alaoui, F.T.; Askarne, L.; Boubaker, H.; Boudyach, E.H.; Aoumar, A.A.B. Control of gray mold disease of tomato by postharvest application of organic acids and salts. Plant Pathol. J. 2017, 16, 62–72. [Google Scholar] [CrossRef]
- Palou, L.; Usall, J.; Smilanick, J.L.; Aguilar, M.J.; Viñas, I. Evaluation of food additives and low-toxicity compounds as alternative chemicals for the control of Penicillium digitatum and Penicillium italicum on citrus fruit. Pest Manag. Sci. 2002, 58, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Hwang, L.; Klotz, L.J. The toxic effect of certain chemical solutions on spores of Penicillium italicum and P. digitatum. Hilgardia 1938, 12, 1–38. [Google Scholar] [CrossRef]
- Palou, L.; Marcilla, A.; Rojas-Argudo, C.; Alonso, M.; Jacas, J.A.; del Río, M.A. Effects of X-ray irradiation and sodium carbonate treatments on postharvest Penicillium decay and quality attributes of clementine mandarins. Postharvest Biol. Technol. 2007, 46, 252–261. [Google Scholar] [CrossRef]
- Moscoso-Ramírez, P.A.; Montesinos-Herrero, C.; Palou, L. Characterization of postharvest treatments with sodium methylparaben to control citrus green and blue molds. Postharvest Biol. Technol. 2013, 77, 128–137. [Google Scholar] [CrossRef]
- Moscoso-Ramírez, P.A.; Palou, L. Preventive and curative activity of postharvest potassium silicate treatments to control green and blue molds on orange fruit. Eur. J. Plant Pathol. 2014, 138, 721–732. [Google Scholar] [CrossRef]
- Eckert, J.W.; Brown, G.E. Evaluation of postharvest fungicide treatments for citrus fruits. In Methods for Evaluating Pesticides for Control of Plant Pathogens; Hickey, K.D., Ed.; APS Press: St. Paul, MN, USA, 1986; pp. 92–97. ISBN 0-89054-071-3. [Google Scholar]
- Smilanick, J.L.; Michael, I.F.; Mansour, M.F.; Mackey, B.E.; Margosan, D.A.; Flores, D.; Weist, C.F. Improved control of green mold of citrus with imazalil in warm water compared with its use in wax. Plant Dis. 1997, 81, 1299–1304. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Usall, J.; Viñas, I. Control of postharvest blue and green molds of oranges by hot water, sodium carbonate, and sodium bicarbonate. Plant Dis. 2001, 85, 371–376. [Google Scholar] [CrossRef]
- Montesinos-Herrero, C.; del Río, M.A.; Pastor, C.; Brunetti, O.; Palou, L. Evaluation of brief potassium sorbate dips to control postharvest penicillium decay on major citrus species and cultivars. Postharvest Biol. Technol. 2009, 52, 117–125. [Google Scholar] [CrossRef]
- Pérez-Gago, M.B.; Palou, L. Antimicrobial packaging for fresh and fresh-cut fruits and vegetables. In Fresh-Cut Fruits and Vegetables: Technology, Physiology, and Safety; Pareek, S., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 403–452. ISBN 978-1-49-872994-9. [Google Scholar]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 872–900. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H. Edible films and coatings: A review. In Innovations in Food Packaging; Han, J.H., Ed.; Academic Press, Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 213–255. ISBN 978-0-12-394601-0. [Google Scholar]
- Valencia-Chamorro, S.A.; Palou, L.; del Rio, M.A.; Pérez-Gago, M.B. Inhibition of Penicillium digitatum and Penicillium italicum by hydroxypropyl methylcellulose-lipid edible composite films containing food additives with antifungal properties. J. Agric. Food Chem. 2008, 56, 11270–11278. [Google Scholar] [CrossRef] [PubMed]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Curative and preventive activity of hydroxypropyl methylcellulose-lipid edible composite coating antifungal food additives to control citrus postharvest green and blue molds. J. Agric. Food Chem. 2009, 57, 2770–2777. [Google Scholar] [CrossRef] [PubMed]
- Gunaydin, S.; Karaca, H.; Palou, L.; de la Fuente, B.; Pérez-Gago, M.B. Effect of hydroxypropyl methylcellulose-beeswax composite edible coatings formulated with or without antifungal agents on physicochemical properties of plums during cold storage. J. Food Qual. 2017, 8573549. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Pérez-Gago, M.B.; del Río, M.A.; Palou, L. Effect of antifungal hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings on penicillium decay development and postharvest quality of cold-stored ‘Ortanique’ mandarins. J. Food Sci. 2010, 75, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, C.; Pérez-Gago, M.B.; Monteiro, A.R.; Palou, L. Antifungal activity of food additives in vitro and as ingredients of hydroxypropyl methylcellulose-lipid edible coatings against Botrytis cinerea and Alternaria alternata on cherry tomato fruit. Int. J. Food Microbiol. 2013, 166, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Karaca, H.; Pérez-Gago, M.B.; Taberner, V.; Palou, L. Evaluating food additives as antifungal agents against Monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums. Int. J. Food Microbiol. 2014, 179, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Salem, E.A.; Youssef, K.; Sanzani, S.M. Evaluation of alternative means to control postharvest Rhizopus rot of peaches. Sci. Hortic. 2016, 198, 86–90. [Google Scholar] [CrossRef]
- Venditti, T.; Ladu, G.; Cubaiu, L.; Myronycheva, O.; D’hallewin, G. Repeated treatments with acetic acid vapors during storage preserve table grapes fruit quality. Postharvest Biol. Technol. 2017, 125, 91–98. [Google Scholar] [CrossRef]
- Vilaplana, R.; Alba, P.; Valencia-Chamorro, S. Sodium bicarbonate salts for the control of postharvest black rot disease in yellow pitahaya (Selenicereus megalanthus). Crop Prot. 2018, 114, 90–96. [Google Scholar] [CrossRef]
- Venditti, T.; D’hallewin, G.; Ladu, G.; Petretto, G.L.; Pintore, G.; Labavitch, J.M. Effect of NaHCO3 treatments on the activity of cell-wall-degrading enzymes produced by Penicillium digitatum during the pathogenesis process on grapefruit. J. Sci. Food Agric. 2018, 98, 4928–4936. [Google Scholar] [CrossRef] [PubMed]
- Palou, L.; Moscoso-Ramírez, P.A.; Montesinos-Herrero, C. Assessment of optimal postharvest treatment conditions to control green mold of oranges with sodium benzoate. Acta Hortic. 2018, 1194, 221–226. [Google Scholar] [CrossRef]
- Barger, W.R. Sodium bi-carbonate as citrus fruit disinfectant. Calif. Citrogr. 1928, 13, 172–174. [Google Scholar]
- Smilanick, J.L.; Mackey, B.E.; Reese, R.; Usall, J.; Margosan, D.A. Influence of concentration of soda ash, temperature, and immersion period on the control of postharvest green mold on oranges. Plant Dis. 1997, 81, 379–382. [Google Scholar] [CrossRef]
- Palou, L.; Usall, J.; Muñoz, J.A.; Smilanick, J.L.; Viñas, I. Hot water, sodium carbonate, and sodium bicarbonate for the control of postharvest green and blue molds of clementine mandarins. Postharvest Biol. Technol. 2002, 24, 93–96. [Google Scholar] [CrossRef]
- Fallik, E. Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biol. Technol. 2004, 32, 125–134. [Google Scholar] [CrossRef]
- Fallik, E. Hot water treatments of fruits and vegetables for postharvest storage. Hortic. Revs. 2010, 38, 191–212. [Google Scholar] [CrossRef]
- Fallanaj, F.; Ippolito, A.; Ligorio, A.; Garganese, F.; Zavanella, C.; Sanzani, S.M. Electrolyzed sodium bicarbonate inhibits Penicillium digitatum and induces defence responses against green mould in citrus fruit. Postharvest Biol. Technol. 2016, 115, 18–29. [Google Scholar] [CrossRef]
- Hall, D.J. Comparative activity of selected food preservatives as citrus postharvest fungicides. Proc. Fla. State Hort. Soc. 1988, 101, 184–187. [Google Scholar]
- Smilanick, J.L.; Mansour, M.F.; Mlikota-Gabler, F.; Sorenson, D. Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharvest Biol. Technol. 2008, 47, 226–238. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Crisosto, C.H. Evaluation of food additives as alternative or complementary chemicals to conventional fungicides for the control of major postharvest diseases of stone fruit. J. Food Prot. 2009, 72, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Edible composite coatings formulated with antifungal GRAS compounds: A novel approach for postharvest preservation of fresh citrus fruit. Acta Hortic. 2014, 1053, 143–149. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Palou, L.; Del Río, M.A.; Pérez-Gago, M.B. Performance of hydroxypropyl methylcellulose (HPMC)-lipid edible composite coatings containing food additives with antifungal properties during cold storage of ‘Clemenules’ mandarins. LWT Food Sci. Technol. 2011, 44, 2342–2348. [Google Scholar] [CrossRef]
- Fagundes, C.; Palou, L.; Monteiro, A.R.; Pérez-Gago, M.B. Effect of antifungal hydroxypropyl methylcellulose-beeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biol. Technol. 2014, 92, 1–8. [Google Scholar] [CrossRef]
- Fagundes, C.; Palou, L.; Monteiro, A.R.; Pérez-Gago, M.B. Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain postharvest quality of cold-stored cherry tomatoes. Sci. Hortic. 2015, 193, 249–257. [Google Scholar] [CrossRef]
- Youssef, K.; Ligorio, A.; Nigro, F.; Ippolito, A. Activity of salts incorporated in wax in controlling postharvest diseases of citrus fruit. Postharvest Biol. Technol. 2012, 65, 39–43. [Google Scholar] [CrossRef]
GRAS Salt | Inhibition of Monilinia fructicola (%) 1 | ||
---|---|---|---|
Salt Concentration (%, w/v) | |||
0.2 | 1.0 | 2.0 | |
Ammonium carbonate | 100.00 iA | 100.00 eA | 100.00 cA |
Ammonium bicarbonate | 100.00 iA | 100.00 eA | 100.00 cA |
Potassium carbonate | 81.76 gA | 100.00 eB | 100.00 cB |
Potassium bicarbonate | 89.22 hA | 98.01 dB | 100.00 cC |
Potassium silicate | 11.08 bA | 100.00 eB | 100.00 cB |
Potassium sorbate | 49.42 efA | 100.00 eB | 100.00 cB |
Sodium carbonate | 96.37 hiA | 100.00 eB | 100.00 cB |
Sodium bicarbonate | 100.00 iA | 100.00 eA | 100.00 cA |
Sodium acetate | 22.64 cA | 62.21 bB | 93.98 bC |
Sodium diacetate | 35.83 dA | 100.00 eB | 100.00 cB |
Sodium benzoate | 42.34 deA | 91.92 cB | 99.67 cC |
Sodium formate | 0.00 aA | 60.44 aB | 92.50 aC |
Sodium propionate | 54.37 fA | 100.00 eB | 100.00 cB |
Sodium methylparaben 2 | 24.85 cA | 100.00 eB | 100.00 cB |
Sodium ethylparaben 2 | 27.80 cA | 100.00 eB | 100.00 cB |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palou, L. Postharvest Treatments with GRAS Salts to Control Fresh Fruit Decay. Horticulturae 2018, 4, 46. https://doi.org/10.3390/horticulturae4040046
Palou L. Postharvest Treatments with GRAS Salts to Control Fresh Fruit Decay. Horticulturae. 2018; 4(4):46. https://doi.org/10.3390/horticulturae4040046
Chicago/Turabian StylePalou, Lluís. 2018. "Postharvest Treatments with GRAS Salts to Control Fresh Fruit Decay" Horticulturae 4, no. 4: 46. https://doi.org/10.3390/horticulturae4040046
APA StylePalou, L. (2018). Postharvest Treatments with GRAS Salts to Control Fresh Fruit Decay. Horticulturae, 4(4), 46. https://doi.org/10.3390/horticulturae4040046