Citrulline and Arginine Content of Taxa of Cucurbitaceae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm, Cultivation and Field Design
2.2. Sample Collection
Fruit Harvest and Processing
2.3. Citrulline and Arginine Extraction and Quantification
2.3.1. Extraction
2.3.2. Quantification by HPLC
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Perkins-Veazie, P.M.; Davis, A.; Collins, J.K. Watermelon: From dessert to functional food. Isr. J. Plant Sci. 2012, 60, 395–402. [Google Scholar] [CrossRef]
- Fish, W.W. A reliable methodology for quantitative extraction of fruit and vegetable physiological amino acids and their subsequent analysis with commonly available HPLC systems. Food Nutr. Sci. 2012, 3, 863–871. [Google Scholar] [CrossRef]
- Pérez-Guisado, J.; Jakeman, P.M. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J. Strength Cond. Res. 2010, 24, 1161–1168. [Google Scholar] [CrossRef]
- Tarazona-Diaz, M.P.; Alacid, F.; Carrasco, M.; Martinez, I.; Aguayo, E. Watermelon juice: Potential functional drink for sore muscle relief in athletes. J. Agric. Food Chem. 2013, 61, 7522. [Google Scholar] [CrossRef] [PubMed]
- Cutrufello, P.T.; Gadomski, S.J.; Zavorsjy, G.S. The effect of L-citrulline and watermelon juice supplementation on anaerobic and aerobic exercise performance. J. Sport Sci. 2015, 33, 1459–1466. [Google Scholar] [CrossRef] [PubMed]
- Rougé, C.; Des Robert, C.; Robins, A.; Le Bacquer, O.; Volteau, C.; De La Cochetière, M.F.; Darmaun, D. Manipulation of citrulline availability in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G1061–G1067. [Google Scholar] [CrossRef] [PubMed]
- Thibault, R.; Flet, L.; Vavasseur, F.; Lemerle, M.L.; Ferchaud-Roucher, V.; Picot, D.; Darmaun, D. Oral citrulline does not affect whole body protein metabolism in healthy human volunteers: Results of a prospective, randomized, double-blind, cross-over study. Clin. Nutr. 2011, 30, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Córdova, A.; Ferrer, M.D.; Tauler, P.; Perez, G.; Tur, J.A.; Pons, A. Effects of l-citrulline oral supplementation on polymorphonuclear neutrophils oxidative burst and nitric oxide production after exercise. Free Radic. Res. 2009, 43, 828–835. [Google Scholar] [CrossRef] [PubMed]
- Sase, A.; Dahanayaka, S.; Höger, H.; Wu, G.; Lubec, G. Changes of hippocampal beta-alanine and citrulline levels are paralleling early and late phase of retrieval in the Morris Water Maze. Behav. Brain Res. 2013, 249, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.K.; Wu, G.; Perkins-Veazie, P.M.; Spears, K.; Claypool, P.L.; Baker, R.A.; Clevidence, B.A. Watermelon consumption increases plasma arginine concentrations in adults. Nutrition 2007, 23, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Bahri, S.; Zerrouk, N.; Aussel, C.; Moinard, C.; Crenn, P.; Curis, E.; Chaumeil, J.C.; Cynober, L.; Sfar, S. Citrulline: From metabolism to therapeutic use. Nutrition 2013, 29, 479–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandel, H.; Levy, N.; Izkovitch, S.; Korman, S.H. Elevated plasma due to consumption of Citrullus vulgaris (Watermelon). J. Inherit. Metab. 2005, 28, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Oketch-Rabah, H.A.; Roe, A.L.; Gurley, B.J.; Griffiths, J.C.; Giancaspro, G.I. The importance of quality specifications in safety assessments of amino acids: The cases of L-tryptophan and L-citrulline. J. Nutr. 2016, 146, 2643s–2651s. [Google Scholar] [CrossRef] [PubMed]
- Akashi, K.; Miyake, C.; Yokota, A. Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett. 2001, 508, 438–442. [Google Scholar] [CrossRef] [Green Version]
- Smirnoff, N.; Cumbes, Q.J. Hydroxyl redical scavenging activity of compatible solute. Phytochemistry 1989, 28, 1057–1060. [Google Scholar] [CrossRef]
- Yokota, A.; Kawasaki, S.; Iwano, M.; Nakamura, C.; Miyake, C.; Akashi, K. Citrulline and DRIP-1 Protein (ArgE homologue) in drought tolerance of wild watermelon. Ann. Bot. 2002, 89, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, S.; Miyake, C.; Kohchi, T.; Fujii, S.; Uchida, M.; Yokota, A. Response of wild watermelon to drought stress: Accumulation of an ArgE homologue and citrulline in leaves during water deficits. Plant Cell Physiol. 2000, 41, 864–873. [Google Scholar] [CrossRef] [PubMed]
- Kusvuran, S.; Dasgan, H.Y.; Abak, K. Citrulline is an important biochemical indicator in tolerance to saline and drought stresses in melon. Sci. World J. 2013, 2013, 253414. [Google Scholar] [CrossRef] [PubMed]
- Winter, G.; Todd, C.D.; Trovato, M.; Funck, D. Physiological implications of arginine metabolism in plants. Front. Plant Sci. 2015, 6, rt534. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Zhang, J.; Sun, H.; Salse, J.; Lucas, W.J.; Zhang, H.; Zheng, Y.; Mao, L.; Ren, Y.; Wang, Z.; et al. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat. Genet. 2013, 45, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, Y.; Zhang, W.; Li, S.; Gao, Y.; Ai, X.; Zhang, D.; Liu, B.; Li, Q. Metabolomics analysis reveals that elevated atmospheric CO2 alleviates drought stress in cucumber leaves. Anal. Biochem. 2018, 559, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Rimando, A.M.; Perkins-Veazie, P.M. Determination of citrulline in watermelon rind. J. Chrom. 2005, 1078, 196–200. [Google Scholar] [CrossRef]
- Davis, A.R.; Liu, W.; Perkins-Veazie, P.; Levi, A.; King, S. Watermelon quality traits as affected by ploidy. Hort. Sci. 2013, 48, 1113–1118. [Google Scholar]
- Liu, W.; King, S.R.; Zhao, S.; Cheng, Z.; Wan, X.; Yan, Z. Lycopene and citrulline contents in watermelon (Citrullus lanatus) fruit with different ploidy and changes during fruit development. Acta Hort. 2010, 871, 543–547. [Google Scholar]
- Davis, A.R.; Fish, W.W.; Levi, A.; King, S.; Wehner, T.; Perkins-Veazie, P. L-Citrulline levels in watermelon cultivars from three locations. Cucurbit Genet. Coop. Rep. 2010, 33, 36–39. [Google Scholar]
- Akashi, K.; Mifune, Y.; Morita, K.; Ishitsuka, S.; Tsujimoto, H.; Ishihara, T. Spatial accumulation pattern of citrulline and other nutrients in immature and mature watermelon fruits. J. Sci. Food Agric. 2017, 97, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Fish, W.W. The expression of citrulline and other members of the arginine metabolic family in developing watermelon fruit. Int. J. Agric. Inn. Res. 2014, 2, 665–672. [Google Scholar]
- Joshi, V.; Fernie, A.R. Citrulline metabolism in plants. Amino Acids 2017, 49, 1543–1559. [Google Scholar] [CrossRef] [PubMed]
- Hartman, J.L.; (North Carolina State University, Raleigh, NC, USA); Perkins-Veazie, P.; (Plants for Human Health Institute, Kannapolis, NC, USA). Personal communication, 2018.
- Soterious, G.A.; Kyriacou, M.C.; Siomos, A.S.; Gerasopoulos, D. Evolution of watermelon fruit physiological and phytochemical composition during ripening as affected by grafting. Food Chem. 2014, 165, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Perkins-Veazie, P.; Ma, G.; Dean, L.; Hassell, R. Comparison of Free Citrulline and Arginine in Watermelon Seeds and Flesh; American Society of Horticultural Science: New Orlean, LA, USA, 5 August 2015. [Google Scholar]
- Pettipher, G.L. Analysis of cocoa pulp and the formulation of a standardized artificial cocoa pulp medium. J. Sci. Food Agric. 1986, 37, 297–309. [Google Scholar] [CrossRef]
- Zhang, J.; Du, G.; Chen, J.; Fang, F. Characterization of a Bacillus amyloliquefaciens strain for reduction of citrulline accumulation during soy sauce fermentation. Biotechnol. Lett. 2016, 38, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.C. (Ed.) Vegetable Crop Guidelines for the Southeastern U.S. 2004–2005; North Carolina Vegetable Growers Assn., Helena Chemical Co.: Memphis, TN, USA, 2004. [Google Scholar]
- Jayaprakasha, G.K.; Chidambara, M.K.N.; Patil, B.S. Rapid HPLC-UV method for quantification of L-citrulline in watermelon and its potential role on smooth muscle relaxation markers. Food Chem. 2011, 127, 240–248. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Hu, H.T.; Goertzen, L.R.; McElroy, J.S.; Dane, F. Analysis of the Citrullus colocynthis transcriptome during water deficit stress. PLoS ONE 2014, 9, e104657. [Google Scholar] [CrossRef] [PubMed]
- Wehner, T.C.; Naegele, R.P.; Perkins-Veazie, P. Heritability and Genetic Variance Components Associated with Citrulline, Arginine, and Lycopene Content in Diverse Watermelon Cultigens. HortScience 2017, 52, 936–940. [Google Scholar] [CrossRef]
Taxon/Market Type | Cucurbit | Seed Source | Blending y |
---|---|---|---|
Citrullus lanatus | |||
Watermelon | ‘Dixielee’ | Syngenta | M1 |
‘Crimson Sweet’ | Syngenta | M1 | |
Cucumis melo | |||
Casaba | ‘Golden Beauty’ | NC BL z | M2 |
Honeydew | ‘Dulce Nectar’ | Park Seeds | M2 |
‘Snow Mass’ | Park Seeds | M2 | |
Muskmelon | ‘Aphrodite’ | Syngenta | M2 |
‘Athena’ | Syngenta | M2 | |
Pickling Melon | Green-Striped | Kitazawa Seed | M3 |
Sprite Melon (Makuwa group) | White-skinned | NC BL | M2 |
Yellow-skinned | NC BL | M2 | |
Cucumis metuliferus | |||
Horned melon (flesh, rind) | Kitazawa Seed | M4, M5 | |
Cucumis sativus | |||
Pickling | ‘Expedition’ | Seminis | M3 |
‘Vlaspik’ | Seminis | M3 | |
Slicer | ‘Dasher II’ | Seminis | M3 |
‘Intimidator’ | Seminis | M3 | |
Cucurbita pepo | |||
Squash, straightneck | ‘Enterprise’ | Park Seeds | M4 |
‘Goldstar’ | Park Seeds | M4 | |
Squash, Zucchini | ‘Payload’ | Stoke Seeds | M3 |
‘Payroll’ | Stoke Seeds | M3 | |
Melothria scabra | |||
Mouse Melon | - | Park Seeds | M4 x |
Momordica charantia | |||
Indian bitter gourd (unripe) Indian bitter gourd (ripe, arils) Indian bitter gourd (ripe, mesocarp) | Kitazawa Seed | M4 | |
M6 | |||
M4 |
Source | df z | SSC | Arginine | F Values Citrulline | Cit±Arg y |
---|---|---|---|---|---|
Location | 1 | 14.94 * | 204.15 | 3.4162 | 154.75 |
Rep(Loc) | 4 | 2 | 160.63 | 111.78 | 531.45 |
Cultigen | 23 | 69.93 * | 3400.69 * | 8048.00 * | 19,736.20 * |
Loc x Clt | 20 | 0.95 | 240.71 | 431.66 * | 425.26 |
Error | 60 | 0.84 | 142.38 | 111.68 | 390.12 |
Taxon/Market Type | Cucurbit | DP(ct.) z | pH | SSC | Arginine | Citrulline | Cit+Arg y |
---|---|---|---|---|---|---|---|
(mean) | (°Brix) | g(kg)−1 | g(kg)−1 | g(kg)−1 | |||
Citrullus lanatus | |||||||
Red-flesh seeded | ‘Crimson Sweet’ | 2(6) | 5.68 | 10.6 ± 0.2 | 1.47 ± 0.1 | 2.85 ± 0.3 | 4.33 ± 0.2 |
‘Dixielee’ | 3(9) | 5.69 | 11.2 ± 0.6 | 1.32 ± 0.1 | 2.37 ± 0.5 | 3.70 ± 0.4 | |
Cucumis melo | |||||||
Casaba | NC BL | 2 (20) | 6.05 | 11.0 ± 0.6 | 0.18 ± 0.05 | 0.863 ± 0.04 | 1.04 ± 0.09 |
Honeydew | ‘Dulce Nectar’ | 6 (17) | 6.26 | 11.5 ± 1.3 | 0.16 ± 0.01 | 0.163 ± 0.01 | 0.42 ± 0.09 |
‘Snow Mass’ | 5 (14) | 6.41 | 12.9 ± 2.3 | 0.17 ± 0.05 | 0.177 ± 0.05 | 0.46 ± 0.1 | |
Muskmelon | ‘Aphrodite’ | 5 (15) | 6.39 | 11.5 ± 1.3 | 0.12 ± 0.02 | 0.340 ± 0.07 | 0.47 ± 0.08 |
‘Athena’ | 6 (18) | 6.36 | 7.2 ± 1.5 | 0.13 ± 0.02 | 0.410 ± 0.07 | 0.55 ± 0.09 | |
Pickling Melon | Green-Striped | 5(14) | 4.58 | 3.4 ± 0.5 | 0.10 ± 0.03 | 0.167 ± 0.06 | 0.37 ± 0.24 |
Sprite Melon | White-skinned | 2 (20) | 6.26 | 10.7 ± 0.4 | 0.096 ± 0.00 | 0.354 ± 0.18 | 0.45 ± 0.2 |
Yellow-skinned | 2 (20) | 6.4 | 9.7 ± 0.4 | 0.094 ± 0.01 | 0.407 ± 0.2 | 0.50 ± 0.2 | |
Cucumis metuliferus | |||||||
Horned melon, Rind | 3 (9) | 5.06 | 4.4 ± 0.05 | 0.412 ± 0.02 | 0.493 ± 0.3 | 0.90 ± 0.5 | |
Horned melon, Flesh | 3 (9) | 4.34 | 7.3 ± 1.2 | 0.390 ± 0.01 | 0.090 ± 0.05 | 0.48 ± 0.2 | |
Cucumis sativus | |||||||
Pickling | ‘Expedition’ | 6 (18) | 5.88 | 2.9 ± 0.3 | 0.200 ± 0.05 | 0.211 ± 0.09 | 0.46 ± 0.2 |
‘Vlaspik’ | 6 (18) | 5.9 | 3.0 ± 0.2 | 0.173 ± 0.03 | 0.232 ± 0.08 | 0.41 ± 0.11 | |
Slicer | ‘Dasher II’ | 6 (15) | 5.73 | 3.2 ± 0.4 | 0.263 ± 0.06 | 0.291 ± 0.1 | 0.56 ± 0.2 |
‘Intimidator’ | 5 (13) | 5.86 | 3.4 ± 0.3 | 0.298 ± 0.07 | 0.228 ± 0.06 | 0.53 ± 0.1 | |
Cucurbita pepo | |||||||
Squash, Straightneck | ‘Enterprise’ | 6 (16) | 6.27 | 4.3 ± 0.4 | 0.240 ± 0.04 | 0.071 ± 0.05 | 0.31 ± 0.08 |
‘Goldstar’ | 6 (18) | 6.28 | 4.5 ± 0.2 | 0.252 ± 0.04 | 0.056 ± 0.05 | 0.27 ± 0.09 | |
Squash, Zucchini | ‘Payload’ | 6 (11) | 6.37 | 3.1 ± 0.4 | 0.347 ± 0.31 | 0.085 ± 0.06 | 0.20 ± 0.08 |
‘Payroll’ | 6 (17) | 6.26 | 2.9 ± 0.5 | 0.157 ± 0.08 | 0.042 ± 0.03 | 0.43 ± 0.4 | |
Melothria scabra | |||||||
Mouse Melon | Mouse Melon | 4 (120) | 4.46 | 3.1 ± 0.1 | 0.346 ± 0.08 | 0.663 ± 0.2 | 1.0 ± 0.3 |
Momordica charantia | |||||||
Bitter gourd, Indian (unripe) Bitter gourd, Indian (ripe, mesocarp) Bitter gourd, Indian (ripe, arils) | 6 (18) | 4.88 | 2.0 ± 0.3 | 0.279 ± 0.02 | 0.114 ± 0.1 | 0.39 ± 0.3 | |
5 (15) | 5.98 | 3.2 ± 0.2 | 0.170 ± 0.01 | 0.051 ± 0.02 | 0.22 ± 0.2 | ||
5 (15) | 6.02 | 16.6 ± 2.3 | 0.680 ± 0.02 | 0.030 ± 0.02 | 0.71 ± 0.2 |
Citrulline | Arginine | Citrulline + Arginine | ||||||
---|---|---|---|---|---|---|---|---|
Cultigen | LS Mean | Group | Cultigen | LS Mean | Group | Cultigen | LS Mean | Group |
Crimson Sweet watermelon | 2.85 | A | Crimson Sweet | 1.47 | A | Crimson Sweet | 4.33 | A |
Dixielee watermelon | 2.36 | A | Dixielee | 1.32 | A | Dixielee | 3.69 | A |
Casaba-type melon | 0.86 | B | Bitter Gourd Ripe Aril | 0.66 | B | Casaba-type | 1.04 | B |
Mouse Melon | 0.64 | BC | Horned Melon Rind | 0.39 | BC | Mouse Melon | 0.99 | B |
Horned Melon Rind | 0.45 | BCD | Horned Melon Flesh | 0.38 | BC | Horned Melon Rind | 0.85 | BC |
Athena muskmelon | 0.40 | BCD | Mouse Melon | 0.34 | BC | Bitter Gourd Ripe Aril | 0.69 | BCD |
Sprite Melon, yellow | 0.39 | BCDE | Payroll | 0.30 | C | Dasher II | 0.54 | BCDE |
Sprite Melon, white | 0.34 | BCDEF | Intimidator | 0.30 | C | Athena | 0.54 | BCDE |
Aphrodite muskmelon | 0.33 | BCDEF | Dasher II | 0.26 | C | Intimidator | 0.52 | BCDEF |
Dasher II cucumber | 0.28 | CDEF | Bitter Gourd Unripe | 0.26 | C | Sprite Melon, Yellow | 0.49 | BCDEF |
Snow Mass honeydew | 0.27 | CDEF | Goldstar | 0.24 | C | Horned Melon Flesh | 0.47 | BCDEF |
Dulce Nectar honeydew | 0.25 | DEF | Enterprise | 0.24 | C | Aphrodite | 0.47 | BCDEF |
Pickling Melon | 0.23 | DEFG | Expedition | 0.21 | C | Snow Mass | 0.45 | BCDEF |
Expedition cucumber | 0.23 | DEFG | Casaba-type | 0.18 | C | Sprite Melon, White | 0.44 | BCDEF |
Intimidator cucumber | 0.23 | DEFG | Snow Mass | 0.17 | C | Expedition | 0.44 | BCDEF |
Vlaspik cucumber | 0.23 | EFGH | Vlaspik | 0.17 | C | Dulce Nectar | 0.41 | BCDEF |
Bitter Gourd Unripe | 0.09 | EFGH | Dulce Nectar | 0.16 | C | Vlaspik | 0.40 | BCDEF |
Horned Melon Flesh | 0.09 | EFGH | Bitter Gourd Ripe Rind | 0.15 | C | Payroll | 0.38 | BCDEF |
Payroll zucchini | 0.07 | FGH | Payload | 0.15 | C | Bitter Gourd Unripe | 0.36 | CDEF |
Enterprise straightneck | 0.06 | FGH | Athena | 0.13 | C | Pickling Melon | 0.34 | CDEF |
Bitter Gourd Ripe Rind | 0.05 | GH | Aphrodite | 0.13 | C | Enterprise | 0.31 | DEF |
Payload zucchini | 0.04 | H | Pickling Melon | 0.10 | C | Goldstar | 0.29 | EF |
Goldstar straightneck | 0.04 | H | Sprite Melon, White | 0.10 | C | Bitter Gourd Ripe Rind | 0.21 | EF |
Bitter Gourd Ripe Aril | 0.03 | H | Sprite Melon, Yellow | 0.09 | C | Payload | 0.20 | F |
Trait | Cit+Arg z | Citrulline | Arginine | Flesh pH |
---|---|---|---|---|
Citrulline | 0.67 * | - | ||
Arginine | 0.01 | 0.17 * | - | |
Flesh pH | 0.34 | 0.11 | −0.22 | - |
SSC y | −0.56 * | −0.22 * | 0.1 | −0.29 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartman, J.L.; Wehner, T.C.; Ma, G.; Perkins-Veazie, P. Citrulline and Arginine Content of Taxa of Cucurbitaceae. Horticulturae 2019, 5, 22. https://doi.org/10.3390/horticulturae5010022
Hartman JL, Wehner TC, Ma G, Perkins-Veazie P. Citrulline and Arginine Content of Taxa of Cucurbitaceae. Horticulturae. 2019; 5(1):22. https://doi.org/10.3390/horticulturae5010022
Chicago/Turabian StyleHartman, Jordan L., Todd C. Wehner, Guoying Ma, and Penelope Perkins-Veazie. 2019. "Citrulline and Arginine Content of Taxa of Cucurbitaceae" Horticulturae 5, no. 1: 22. https://doi.org/10.3390/horticulturae5010022
APA StyleHartman, J. L., Wehner, T. C., Ma, G., & Perkins-Veazie, P. (2019). Citrulline and Arginine Content of Taxa of Cucurbitaceae. Horticulturae, 5(1), 22. https://doi.org/10.3390/horticulturae5010022