Anaerobically-Digested Brewery Wastewater as a Nutrient Solution for Substrate-Based Food Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biomass and Yield
3.2. Plant Growth
3.3. Chlorophyll Content
3.4. Water Test
3.5. Leachate Monitoring
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- DeLind, L.B. Where have all the houses (among other things) gone? Some critical reflections on urban agriculture. Renew. Agr. Food Syst. 2014, 30, 3–7. [Google Scholar] [CrossRef]
- Mougeot, L.J.A. Agropolis: The Social, Political and Environmental Dimensions of Urban Agriculture; Mougeot, L.J.A., Ed.; Earthscan: London, UK, 2005; ISBN 1844072320. [Google Scholar]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Urban versus conventional agriculture, taxonomy of resource profiles: A review. Agron. Sustain. Dev. 2016, 36, 1–19. [Google Scholar] [CrossRef]
- Smit, J.; Nasr, J. Urban agriculture for sustainable cities: Using wastes and idle land and water bodies as resources. Environ. Urban. 1992, 4, 141–152. [Google Scholar] [CrossRef]
- Metson, G.S.; Bennett, E.M. Phosphorus cycling in Montreal’s food and urban agriculture systems. PLoS ONE 2015, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N. and Reynolds, K. Resource needs for a socially just and sustainable urban agriculture system: Lessons from New York City. Renew. Agr. Food Syst. 2014, 30, 103–114. [Google Scholar] [CrossRef]
- Kretschmer, N.; Ribbe, L.; Gaese, H. Wastewater Reuse for Agriculture. Technol. Resour. Dev. 2000, 2, 37–64. [Google Scholar]
- McClintock, N. Why farm the city? Theorizing urban agriculture through a lens of metabolic rift. Camb. J. Reg. Econ. Soc. 2010, 3, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Mohareb, E.; Heller, M.; Novak, P.; Goldstein, B.; Fonoll, X.; Raskin, L. Considerations for reducing food system energy demand while scaling up urban agriculture. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Modic, W.; Kruger, P.; Mercer, J.; Webster, T.; Swersey, C.; Skypeck, C. Brewers Association Wastewater Management Guidance Manual; Brewers Association: Boulder, CO, USA, 2015; pp. 1–31. [Google Scholar]
- Power, S.D.; Jones, C.L.W. Anaerobically digested brewery effluent as a medium for hydroponic crop production—The influence of algal ponds and pH. J. Clean. Prod. 2016, 139, 167–174. [Google Scholar] [CrossRef]
- Weber, B.; Stadlbauer, E.A. Sustainable paths for managing solid and liquid waste from distilleries and breweries. J. Clean. Prod. 2017, 149, 38–48. [Google Scholar] [CrossRef]
- Enitan, A.; Adeyemo, J.; Kumari, S. Characterization of Brewery Wastewater composition. World Acad. 2015, 9, 1043–1046. [Google Scholar]
- Lind, O. Organic Hydroponics—Efficient Hydroponic Production from Organic Waste Streams: Introductory Research Essay; 2016; Available online: http://www.3rmovement.com/wp-content/uploads/2017/04/Hydroponic-produciton-organic-Olle-Lind.pdf (accessed on 30 January 2019).
- Norström, A. Treatment of Domestic Wastewater Using Microbiological Processes and Hydroponics in Sweden. PhD Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2005; 62p. [Google Scholar]
- Shinohara, M.; Aoyama, C.; Fujiwara, K.; Watanabe, A.; Ohmori, H.; Uehara, Y.; Takano, M. Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Sci. Plant Nutr. 2011, 57, 190–203. [Google Scholar] [CrossRef]
- Koohakan, P.; Ikeda, H.; Jeanaksorn, T.; Tojo, M.; Kusakari, S.I.; Okada, K.; Sato, S. Evaluation of the indigenous microorganisms in soilless culture: Occurrence and quantitative characteristics in the different growing systems. Sci. Hortic. (Amsterdam) 2004, 101, 179–188. [Google Scholar] [CrossRef]
- Lang, H.J.; Elliott, G.C. Enumeration and inoculation of nitrifying bacteria in soilless potting media. J. Amer. Soc. Hort. Sci. 1997, 122, 709–714. [Google Scholar] [CrossRef]
- Montagu, K.D.; Goh, K.M. Effects of forms and rates of organic and inorganic nitrogen fertilisers on the yield and some quality indices of tomatoes (Lycopersicon esculentum Miller). N. Z. J. Crop Hortic. Sci. 1990, 18, 31–37. [Google Scholar] [CrossRef]
- Kansas State University Extension. Mustard Greens; Kansas State University: Manhattan, KS, USA, 2016. [Google Scholar]
- Parkell, N.B.; Hochmuth, R.C.; Laughlin, W.L. Leafy Greens in Hydroponics and Protected Culture for Florida; University of Florida, IFAS Extension: Gainesville, FL, USA, 2016; pp. 1–7. [Google Scholar]
- Mahlangu, R.I.S.; Maboko, M.M.; Sivakumar, D.; Soundy, P.; Jifon, J. Lettuce (Lactuca sativa L.) growth, yield and quality response to nitrogen fertilization in a non-circulating hydroponic system. J. Plant Nutr. 2016, 39, 1766–1775. [Google Scholar] [CrossRef]
- Brechner, M.; Both, A.J. Hydroponic Lettuce Handbook; Cornell University CEA Program: Ithaca, NY, USA, 1996; p. 48. [Google Scholar]
- Scuderi, D.; Restuccia, C.; Chisari, M.; Barbagallo, R.N.; Caggia, C.; Giuffrida, F. Salinity of nutrient solution influences the shelf-life of fresh-cut lettuce grown in floating system. Postharvest Biol. Technol. 2011, 59, 132–137. [Google Scholar] [CrossRef]
- Samarakoon, U.C.; Weerasinghe, P.A.; Weerakkody, W.A.P. Effect of electrical conductivity [EC] of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture. Trop. Agric. Res. 2006, 18, 13–21. [Google Scholar]
- Treadwell, D.D.; Hochmuth, G.J.; Hochmuth, R.C.; Simonne, E.H.; Davis, L.L.; Laughlin, W.L.; Li, Y.; Olczyk, T.; Sprenkel, R.K.; Osborne, L.S. Nutrient management in organic greenhouse herb production: Where are we now? Horttechnology 2007, 17, 461–466. [Google Scholar] [CrossRef]
- Saha, S.; Monroe, A.; Day, M.R. Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Ann. Agric. Sci. 2016, 61, 181–186. [Google Scholar] [CrossRef]
- RFA. Methodology Ammonia Nitrogen A303–S171; Astoria-Pacific Int.: Clackamas, OR, USA, 1986. [Google Scholar]
- RFA. Methodology Nitrate/Nitrite A303–S170; Astoria-Pacific Int.: Clackamas, OR, USA, 1985. [Google Scholar]
- RFA. Methodology Total Phosphorus A303–S050; Astoria-Pacific Int.: Clackamas, OR, USA, 1986. [Google Scholar]
- Riera-Vila, I.; Anderson, N.O.; Rogers, M. Anaerobically digested brewery wastewater as a nutrient solution for non-circulating hydroponics. Unpublished work. 2018. [Google Scholar]
- Ling, Q.; Huang, W.; Jarvis, P. Use of a SPAD-502 m to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth. Res. 2011, 107, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Spectrum technologies inc SPAD 502 plus chlorophyll meter product manual. SPAD Man. 2009, 1–23, 32.
- Liu, W.K.; Yang, Q.C.; du Lian, F.; Cheng, R.F.; Zhou, W.L. Nutrient supplementation increased growth and nitrate concentration of lettuce cultivated hydroponically with biogas slurry. Acta Agric. Scand. Sect. B Soil Plant. Sci. 2011, 61, 391–394. [Google Scholar] [CrossRef]
- Resh, H.M. Hydroponic Food Production, 7th ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Trejo-tellez, L.; Gomez-Merino, F. Nutrient Solutions for Hydroponic Systems- A standard methodology for plant biological researchers. Toshiki Asao IntechOpen 2012. [Google Scholar] [CrossRef]
- Savvas, D.; Passam, H.C.; Olympios, C.; Nasi, E.; Moustaka, E.; Mantzos, N.; Barouchas, P. Effects of ammonium nitrogen on lettuce grown on pumice in a closed hydroponic system. HortScience 2006, 41, 1667–1673. [Google Scholar] [CrossRef]
- Guo, S.; Brück, H.; Sattelmacher, B. Effects of supplied nitrogen form on growth and water uptake of French bean (Phaseolus vulgaris L.) plants: Nitrogen form and water uptake. Plant. Soil. 2002, 239, 267–275. [Google Scholar] [CrossRef]
- Dos Santos, J.D.; Lopes da Silva, A.L.; da Luz Costa, J.; Scheidt, G.N.; Novak, A.C.; Sydney, E.B.; Soccol, C.R. Development of a vinasse nutritive solution for hydroponics. J. Environ. Manag. 2013, 114, 8–12. [Google Scholar] [CrossRef]
- Kawamura-Aoyama, C.; Fujiwara, K.; Shinohara, M.; Takano, M. Study on the hydroponic culture of lettuce with microbially degraded solid food waste as a nitrate source. Jpn. Agric. Res. Q. 2014, 48, 71–76. [Google Scholar] [CrossRef]
- Eregno, F.E.; Moges, M.E.; Heistad, A. Treated greywater reuse for hydroponic lettuce production in a green wall system: Quantitative health risk assessment. Water 2017, 9, 454. [Google Scholar] [CrossRef]
- da Silva Cuba Carvalho, R.; Bastos, R.G.; Souza, C.F. Influence of the use of wastewater on nutrient absorption and production of lettuce grown in a hydroponic system. Agric. Water Manag. 2018, 203, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Silber, A.; Bar-Tal, A. Nutrition of Substrate-Grown Plants, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2008; ISBN 9780444529756. [Google Scholar]
- Ikeda, H.; Tan, X. Urea as an organic nitrogen source for hydroponically grown tomatoes in comparison with inorganic nitrogen sources. Soil Sci. Plant. Nutr. 1998, 44, 609–615. [Google Scholar] [CrossRef]
- Hashida, S.-N.; Johkan, M.; Kitazaki, K.; Shoji, K.; Goto, F.; Yoshihara, T. Management of nitrogen fertilizer application, rather than functional gene abundance, governs nitrous oxide fluxes in hydroponics with rockwool. Plant. Soil. 2014, 374, 715–725. [Google Scholar] [CrossRef]
- Russell, C.A.; Fillery, I.R.P.; Bootsma, N.; McInnes, K.J. Effect of temperature and nitrogen source on nitrification in a sandy soil. Commun. Soil Sci. Plant. Anal. 2002, 33, 1975–1989. [Google Scholar] [CrossRef]
- Bar-Yosef, B. Fertigation Management and Crops Response to Solution Recycling in Semi-Closed Greenhouses, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2008; ISBN 9780444529756. [Google Scholar]
- Bugbee, B. Nutrient management in recirculating hydroponic culture. Acta Hortic. 2004, 648, 99–112. [Google Scholar] [CrossRef]
- Wortman, S.E.; Douglass, M.S.; Kindhart, J.D. Cultivar, growing media, and nutrient source influence strawberry yield in a vertical, hydroponic, high tunnel system. Horttechnology 2016, 26, 466–473. [Google Scholar]
- Tyson, R.V.; Simonne, E.H.; Treadwell, D.D.; Davis, M.; White, J.M. Effect of water pH on yield and nutritional status of greenhouse cucumber grown in recirculating hydroponics. J. Plant. Nutr. 2008, 31, 2018–2030. [Google Scholar] [CrossRef]
- Manzocco, L.; Foschia, M.; Tomasi, N.; Maifreni, M.; Dalla Costa, L.; Marino, M.; Cortella, G.; Cesco, S. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb’s lettuce (Valerianella locusta L. Laterr). J. Sci. Food Agric. 2011, 91, 1373–1380. [Google Scholar] [CrossRef]
- Petersen, K.K.; Willumsen, J.; Kaack, K. Composition and taste of tomatoes as affected by increased salinity and different salinity sources. J. Hortic. Sci. Biotechnol. 1998, 73, 205–215. [Google Scholar] [CrossRef]
- Riera-Vila, I.; Anderson, N.O.; Rogers, M. Wastewater test of 4 local breweries. Unpublished work.
- Raviv, M.; Lieth, J.H.; Bar-Tal, A.; Silber, A. Growing Plants in Soilless Culture: Operational Conclusions, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2008; ISBN 9780444529756. [Google Scholar]
- Simate, G.S.; Cluett, J.; Iyuke, S.E.; Musapatika, E.T.; Ndlovu, S.; Walubita, L.F.; Alvarez, A.E. The treatment of brewery wastewater for reuse: State of the art. Desalination 2011, 273, 235–247. [Google Scholar] [CrossRef]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Testing the environmental performance of urban agriculture as a food supply in northern climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, N.; Gosselin, A. Effect of carbon dioxide enrichment and light. Horttechnology 1998, 8, 524–528. [Google Scholar] [CrossRef]
- NiChualain, D.; Prasad, M. Evaluation of three methods for determination of stability of composted material destined for use as a component of growing media. Acta Hortic. 2009, 819, 303–310. [Google Scholar] [CrossRef]
Fertility Treatment | Total Dry Weight Per Plant (g) | ||
---|---|---|---|
Mustard Greens | Lettuce | Basil | |
No fertilizer | 0.19 ± 0.04 b | 0.19 ± 0.03 b | 0.46 ± 0.02 c |
Inorganic fertilizer | 0.58 ± 0.02 a | 2.83 ± 0.11 a | 3.57 ± 0.09 a |
Raw wastewater | 0.29 ± 0.08 b | 0.46 ± 0.09 b | 0.73 ± 0.13 c |
Digested wastewater | 0.56 ± 0.04 a | 2.09 ± 0.46 a | 1.95 ± 0.36 b |
ANOVA | F(3,16) = 16.33 p < 0.01 | F(3,16) = 27.51 p < 0.01 | F(3,16) = 50.71 p < 0.01 |
Fertility Treatment | Chlorophyll Content, SPAD Units | ||
---|---|---|---|
Mustard Greens | Lettuce | Basil | |
No fertilizer | 22.23 ab | 13.33 c | 17.79 c |
Inorganic fertilizer | 21.01 a | 20.76 a | 25.93 a |
Raw wastewater | 20.40 b | 17.21 b | 21.50 b |
Digested wastewater | 24.13 a | 20.42 a | 26.22 a |
ANOVA | |||
F(3,133) = 8.32 p < 0.001 | F(3,116) = 22.72 p < 0.001 | F(3,116) = 43.85 p < 0.001 |
Fertility Treatment | pH | EC | Ammonium-N | Nitrate/Nitrite-N | Total Phosphorus |
---|---|---|---|---|---|
Digested wastewater | 8.40 | 1.87 | 171.50 | <0.1 | 22.00 |
Raw wastewater | 4.40 | 0.84 | 7.23 | <0.1 | 79.88 |
Inorganic fertilizer | 6.10 | 1.72 | 0 | 150 | 52 |
No fertilizer 1 | 7.90 | 0.24 | - | - | - |
Fertility Treatment | Leachate Characteristics | ||
---|---|---|---|
Nitrate-N (ppm) | EC (DS/cm) | pH | |
No fertilizer | 340 b | 0.51 b | 6.52 b |
Inorganic fertilizer | 604 a | 0.90 a | 6.36 bc |
Raw wastewater | 440 ab | 0.65 ab | 6.85 a |
Digested wastewater | 653 a | 0.97 a | 6.22 c |
ANOVA | |||
F(3,248) = 5.343 p < 0.01 | F(3,248) = 5.283 p < 0.01 | F(3,248) = 35.93 p < 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riera-Vila, I.; Anderson, N.O.; Flavin Hodge, C.; Rogers, M. Anaerobically-Digested Brewery Wastewater as a Nutrient Solution for Substrate-Based Food Production. Horticulturae 2019, 5, 43. https://doi.org/10.3390/horticulturae5020043
Riera-Vila I, Anderson NO, Flavin Hodge C, Rogers M. Anaerobically-Digested Brewery Wastewater as a Nutrient Solution for Substrate-Based Food Production. Horticulturae. 2019; 5(2):43. https://doi.org/10.3390/horticulturae5020043
Chicago/Turabian StyleRiera-Vila, Ignasi, Neil O. Anderson, Claire Flavin Hodge, and Mary Rogers. 2019. "Anaerobically-Digested Brewery Wastewater as a Nutrient Solution for Substrate-Based Food Production" Horticulturae 5, no. 2: 43. https://doi.org/10.3390/horticulturae5020043
APA StyleRiera-Vila, I., Anderson, N. O., Flavin Hodge, C., & Rogers, M. (2019). Anaerobically-Digested Brewery Wastewater as a Nutrient Solution for Substrate-Based Food Production. Horticulturae, 5(2), 43. https://doi.org/10.3390/horticulturae5020043