Water Use and Leaf Nutrient Status for Terraced Cherimoya Trees in a Subtropical Mediterranean Environment
Abstract
:1. Introduction
2. Materials and Methods
Experimental Area and Drainage Lysimeters
3. Results and Discussion
3.1. Crop Coefficients (Kc)
3.2. Irrigation, Fruit Yield, and Water-Use Efficiency
3.3. Leaf Mineral Content of Cherimoya Trees
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kundzewicz, Z.W.; Krysanova, V.; Benestad, R.E.; Hov, O.; Piniewski, M.; Otto, I.M. Uncertainty in climate change impacts on water resources. Environ. Sci. Policy 2018, 79, 1–8. [Google Scholar] [CrossRef]
- Brouziyne, Y.; Abouabdillah, A.; Hirich, A.; Bouabid, R.; Zaaboul, R.; Benaabidate, L. Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agric. Syst. 2018, 162, 154–163. [Google Scholar] [CrossRef]
- Tanasijevic, L.; Todorovic, M.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric. Water Manag. 2014, 144, 54–68. [Google Scholar] [CrossRef]
- García, T.I.F.; Durán, Z.V.H.; Muriel, F.J.L. Towards sustainable irrigated Mediterranean agriculture: Implications for water conservation in semi-arid environments. Water Int. 2014, 39, 635–648. [Google Scholar] [CrossRef]
- García, T.I.F.; Durán, Z.V.H. Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies and Challenges for Woody Crops, 1st ed.; Academic Press-Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–624. ISBN 9780128131640. [Google Scholar]
- Ort, D.R.; Long, S.P. Limits on yields in the corn belt. Science 2014, 344, 484–485. [Google Scholar] [CrossRef] [PubMed]
- PNR. Plan Nacional de Regadíos, Ministerio de Agricultura, Alimentación y Medio Ambiente 2015. Available online: https://www.mapama.gob.es/es/desarrollo-rural/temas/gestion-sostenible-regadios/plan-nacional-regadios/texto-completo/ (accessed on 21 January 2019).
- ESYRCE 2017. Encuesta sobre Superficies y Rendimientos de Cultivos. Available online: https://www.mapama.gob.es/es/estadistica/temas/estadisticas-agrarias/boletin2017sm_tcm30-455983.pdf (accessed on 11 February 2019).
- PPHN. Proyecto del Plan Hidrológico Nacional. Ministerio de Agricultura, Alimentación y Medio Ambiente 2015–2021. Fase de Consulta Pública Finalizada. Available online: http://www.chminosil.es/es/chms/planificacionhidrologica/plan-hidrologico-2015-2021/proyecto (accessed on 21 December 2018).
- Durán, Z.V.H.; Rodríguez, P.C.R.; Franco, T.D.; Martín, P.F.J. El Cultivo del Chirimoyo (Annona Cherimolia Mill), 1st ed.; Imprenta Hermanos Gallego: Granada, Spain, 2006; pp. 1–105. ISBN 84-607-8627-7. [Google Scholar]
- AEA, Anuario Estadístico de Agricultura 2016, Consejería de Agricultura Ganadería, Pesca y Desarrollo, Sostenible. Junta de Andalucía. Spain. Available online: https://www.juntadeandalucia.es/organismos/agriculturaganaderiapescaydesarrollosostenible/consejeria/sobre-consejeria/estadisticas/paginas/agrarias-anuario.html (accessed on 18 April 2019).
- Higuchi, H.; Utsunomiya, N.; Sakuratani, T. Effects of temperature on growth, dry matter production and CO2 assimilation in cherimoya (Annona cherimola Mill.) and sugar apple (Annona squamosa L.) seedlings. Sci. Hortic. 1998, 73, 89–97. [Google Scholar] [CrossRef]
- Higuchi, H.; Tetsuo, S.; Utsunomiya, N. Photosynthesis, leaf morphology, and shoot growth as affected by temperatures in cherimoya (Annona cherimola Mill.) trees. Sci. Hortic. 1999, 80, 91–104. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Environmental Impact of Organic Farming. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier BV: Amsterdam, The Netherlands, 2016; Chapter 3; Volume 139, pp. 99–285. [Google Scholar]
- Guthman, J. Agrarian Dreams: The Paradox of Organic Farming in California; Volume 11 California Studies in Critical Human Geography; University of California Press: Berkeley, CA, USA, 2004; p. 328. ISBN 9780520277465. [Google Scholar]
- MAPA. Métodos Oficiales de Análisis de Suelos y Aguas Para Riego; Tomo III Secretaria General Técnica del Ministerio de Agricultura Pesca y Alimentación: Madrid, Spain, 1994; pp. 205–285. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements, Irrigation and Drain; Paper no. 56; FAO: Rome, Italy, 1998; pp. 15–79. ISBN 9251042195, 9789251042199. [Google Scholar]
- Hillel, D. Environmental Soil Physics; Academic Press: New York, NY, USA, 1998; pp. 588–603. ISBN 978-0-12-348525-0. [Google Scholar]
- Kuo, S.F.; Ho, S.S.; Liu, C.W. Estimation irrigation water requirements with derived crop coefficients for upland and paddy crops in Chianan Irrigation Association, Taiwan. Agric. Water Manag. 2006, 82, 433–451. [Google Scholar] [CrossRef]
- SCS. National Engineering Handbook. Section 4: Hydrology; Soil Conservation Service, USDA: Washington, DC, USA, 1972; pp. 1–55.
- Fares, A.; Alva, A.K. Estimation of citrus evapotranspiration by soil water mass balance. Soil Sci. 1999, 164, 302–310. [Google Scholar] [CrossRef]
- De Medeiros, G.A.; Arruda, F.B.; Sakai, E.; Fujiwara, M. The influence of crop canopy on evapotranspiration and crop coefficient of bean (Phaseolus vulgaris L.). Agric. Water Manag. 2001, 49, 211–224. [Google Scholar] [CrossRef]
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Guerra, E.; Ventura, F.; Snyder, R.L. Crop coefficients: A literature review. J. Irrig. Drain Eng. 2015, 142, 06015006. [Google Scholar] [CrossRef]
- Adiscott, T.M. Potassium and the distribution of calcium and magnesium in potato plants. J. Sci. Food Agric. 1974, 25, 1173–1183. [Google Scholar] [CrossRef]
- Leopold, A.C.; Kriedemann, P. Plant Growth and Development, 2nd ed.; McGraw-Hill: New York, NY, USA, 1975; pp. 1–75. ISBN 978-0070994317. [Google Scholar]
- Durán, Z.V.H.; Martínez, R.A.; Aguilar, R.J. Nutrient losses by runoff and sediment from the taluses of orchard terraces. Water Air Soil Pollut. 2004, 153, 355–373. [Google Scholar] [CrossRef]
- Ge, S.; Zhu, Z.; Jiang, Y. Long-term impact of fertilization on soil pH and fertility in an apple production system. J. Soil Sci. Plant Nutr. 2018, 18, 282–293. [Google Scholar] [CrossRef]
- George, A.P.; Nissen, R.J.; Brown, B.I. The custard apple. Queensland Agric. J. 1987, 113, 287–297. [Google Scholar]
- Navia, V.M.G.; Valenzuela, J.B. Sintomatologia de deficiências en chirimoya (Annona cherimola Mill.) cv. Bronceada. Agric. Téc. 1978, 38, 9–14. [Google Scholar]
- Silva, H.; Silva, A.Q.; Cavalcante, A.T.; Malavolta, E. Composição mineral das folhas de algumas fruteiras do Nordeste. In Anais do VII Congresso Brasileiro de Fruticultura; Sociedade Brasileira de Fruticultura: Florianópolis, Brasil, 1984; pp. 320–325. [Google Scholar]
- Trimmer, J.T.; Guest, J.S. Recirculation of human-derived nutrients from cities to agriculture across six continents. Nat. Sustain. 2018, 1, 427–435. [Google Scholar] [CrossRef]
- Jaiswal, D.; Elliott, H.A. Long-term phosphorus fertility in wastewater-irrigated cropland. J. Environ. Qual. 2011, 40, 214–223. [Google Scholar] [CrossRef]
- Elliott, H.A.; Jaiswal, D. Phosphorus management for sustainable agricultural irrigation of reclaimed water. J. Environ. Eng. 2011, 138, 367–374. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Leakey, A.D.; Nösberger, J.; Ort, D.R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 2006, 312, 1918–1921. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. 2014: Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the 5th Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 485–533. [Google Scholar]
Application Rate | N | P2O5 | K2O |
---|---|---|---|
(kg·ha−1) | |||
Conventional inorganic | 190 | 174 | 160 |
Organic manure | |||
3.5 t Poultry | 100 | 124 | 112 |
2.8 t Sheep | 66 | 32 | 35 |
2.5 t Cattle | 30 | 24 | 14 |
Total | 196 | 179 | 161 |
Production System | Irrigation | Fruit | WUE | |||
---|---|---|---|---|---|---|
Yield | FW Z | L | W | |||
(mm) | (kg·tree−1) | (g) | (mm) | (mm) | (kg·ha−1 mm−1) | |
Conventional | 397.0 | 47.1 | 398.8 ± 86 | 86.6 ± 15.5 | 91.6 ± 10.4 | 33.2 |
Organic | 412.4 | 44.1 | 390.5 ± 90 | 84.7 ± 17.1 | 87.2 ± 11.8 | 29.9 |
System | N | P | K | Ca | Mg | Fe | Zn | Mn | Cu | B |
---|---|---|---|---|---|---|---|---|---|---|
(%) | (kg·mg−1) | |||||||||
Conventional | 3.06a | 0.16a | 1.82a | 0.81a | 0.74a | 185a | 25a | 85a | 16a | 150a |
Organic | 2.98a | 0.14a | 1.75a | 0.93a | 0.78a | 180a | 21b | 97a | 19b | 145a |
Season | ||||||||||
1 | 2.85a | 0.13a | 1.69a | 0.79a | 0.70a | 186a | 23a | 84a | 16a | 156a |
2 | 2.97a | 0.17b | 1.78b | 0.95b | 0.74a | 189a | 24a | 90a | 19a | 158a |
ANOVA | ||||||||||
System | ns | ns | ns | ns | ns | ns | ** | ns | ** | ns |
Season | ns | ** | ** | ** | ns | ns | ns | ns | ns | ns |
Interaction | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Zuazo, V.H.; Franco Tarifa, D.; García-Tejero, I.F.; Gutiérrez Gordillo, S.; Cermeño Sacristan, P.; Pertiñez Roldan, J.J. Water Use and Leaf Nutrient Status for Terraced Cherimoya Trees in a Subtropical Mediterranean Environment. Horticulturae 2019, 5, 46. https://doi.org/10.3390/horticulturae5020046
Durán-Zuazo VH, Franco Tarifa D, García-Tejero IF, Gutiérrez Gordillo S, Cermeño Sacristan P, Pertiñez Roldan JJ. Water Use and Leaf Nutrient Status for Terraced Cherimoya Trees in a Subtropical Mediterranean Environment. Horticulturae. 2019; 5(2):46. https://doi.org/10.3390/horticulturae5020046
Chicago/Turabian StyleDurán-Zuazo, Victor Hugo, Dionisio Franco Tarifa, Iván Francisco García-Tejero, Saray Gutiérrez Gordillo, Pedro Cermeño Sacristan, and Juan José Pertiñez Roldan. 2019. "Water Use and Leaf Nutrient Status for Terraced Cherimoya Trees in a Subtropical Mediterranean Environment" Horticulturae 5, no. 2: 46. https://doi.org/10.3390/horticulturae5020046
APA StyleDurán-Zuazo, V. H., Franco Tarifa, D., García-Tejero, I. F., Gutiérrez Gordillo, S., Cermeño Sacristan, P., & Pertiñez Roldan, J. J. (2019). Water Use and Leaf Nutrient Status for Terraced Cherimoya Trees in a Subtropical Mediterranean Environment. Horticulturae, 5(2), 46. https://doi.org/10.3390/horticulturae5020046