An Angiosperm Species Dataset Reveals Relationships between Seed Size and Two-Dimensional Shape
Abstract
:1. Introduction
1.1. Difficulties in the Description of Seed Shape
1.1.1. Terms Used to Describe Shape
1.1.2. Shape Is Often Confused with Size
1.1.3. Variations in Width and Height Are Poor Measures of Shape
1.2. The Advantage of the Geometric Criterion J Index
1.3. Datasets on Seed Size: A Review
2. Materials and Methods
2.1. An Important Methodological Question
2.2. Dataset Construction
2.3. Weibull Equations
2.4. Statistical Analysis
3. Results
3.1. An Overview of the Dataset of Seed Shape
3.2. Relationship between Seed Size and Shape
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Stearn, W.T. Botanical Latin, 2th ed.; Timber Press: Portland, OR, USA, 2004. [Google Scholar]
- Delorit, R.J.; Gunn, C.R. Seeds of Continental United States Legumes (Fabaceae); Agronomy Publications: River Falls, WI, USA, 1986. [Google Scholar]
- Vasconcellos, J.C. Sementes Estranhas do Trigo; Federação Nacional dos Produtores de Trigo: Lisboa, Portugal, 1968. [Google Scholar]
- Rodríguez, A.F.M. Morfología de las semillas de las especies del género Trifolium de la Península Ibérica. Lazaroa 1995, 15, 131–144. [Google Scholar]
- Kissmann, K.G.; Groth, D. Plantas Infestantes e Nocivas. Tomo II. Plantas Dicotiledôneas por Ordem Alfabética de Famílias: Acanthaceae a Fabaceae, 2th ed.; BASF S.A.: São Paulo, Brazil, 1999. [Google Scholar]
- Oval—From Wolfram MathWorld. Available online: https://mathworld.wolfram.com/Oval.html (accessed on 19 August 2019).
- Ellipse—From Wolfram MathWorld. Available online: https://mathworld.wolfram.com/Ellipse.html (accessed on 19 August 2019).
- Piriform Curve—From Wolfram MathWorld. Available online: https://mathworld.wolfram.com/PiriformCurve.html (accessed on 19 August 2019).
- Heart Curve—FROM Wolfram MathWorld. Available online: https://mathworld.wolfram.com/HeartCurve.html (accessed on 19 August 2019).
- Sun, P.; Zhang, W.; Wang, Y.; He, Q.; Shu, F.; Liu, H.; Wang, J.; Wang, J.; Yuan, L.; Deng, H. OsGRF4 controls grain shape, panicle length and seed shattering in rice. J. Integr. Plant Biol. 2016, 58, 836–847. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, H.; Kan, G.; Ma, D.; Zhang, D.; Shi, G.; Hong, D.; Zhang, G.; Yu, D. Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.). Genetica 2013, 141, 247–254. [Google Scholar] [CrossRef]
- Tanabata, T.; Shibaya, T.; Hori, K.; Ebana, K.; Yano, M. SmartGrain: High-Throughput Phenotyping Software for Measuring Seed Shape through Image Analysis. Plant Physiol 2012, 160, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Bekker, R.M.; Bakker, J.P.; Grandin, U.; Kalamees, R.; Milberg, P.; Poschlod, P.; Thompson, K.; Willems, J.H. Seed size, shape and vertical distribution in the soil: Indicators of seed longevity. Funct. Ecol. 1998, 12, 834–842. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín Gómez, J.J. Seed shape description and quantification by comparison with geometric models. Horticulturae 2019, 5, 60. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín-Gómez, J.J.; Ardanuy, R.; de Diego, J.G.; Tocino, Á. Modeling the Arabidopsis seed shape by a cardioid: Efficacy of the adjustment with a scale change with factor equal to the Golden Ratio and analysis of seed shape in ethylene mutants. J. Plant Physiol. 2010, 67, 408–410. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín-Gómez, J.J.; Chan, P.K.; Gresshoff, P.M.; Tocino, Á. Seed shape in model legumes: approximation by a cardioid reveals differences in ethylene insensitive mutants of Lotus japonicus and Medicago truncatula. J. Plant Physiol. 2012, 169, 1359–1365. [Google Scholar] [CrossRef]
- Cervantes, E.; Saadaoui, E.; Tocino, Á.; Martín Gómez, J.J. Seed shape quantification in the model legumes: Methods and applications. In The Model Legume Medicago Truncatula; de Bruijn, F., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; in press. [Google Scholar]
- Saadaoui, E.; Martín-Gómez, J.J.; Cervantes, E. Intraspecific Variability of Seed Morphology in Capparis spinosa L. Acta Biol. Cracov. Ser. Bot. 2013, 55, 99–106. [Google Scholar] [CrossRef]
- Cervantes, E.; Martín-Gómez, J.J.; Saadaoui, E. Updated Methods for Seed Shape Analysis. Scientifica (Cairo) 2016, 2016, 5691825. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Rewicz, A.; Cervantes, E. Seed Shape Variability in the Order Ranunculales. Phytotaxa 2019, in press. [Google Scholar]
- Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Cervantes, E. Seed shape quantification in the Malvaceae reveals cardioid-shaped seeds predominantly in herbs. Bot. Lith. 2019, 25, 21–31. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Gutiérrez del Pozo, D.; Cervantes, E. Seed shape quantification by a cardioid model in species of the order Caryophyllales: Relationship of seed shape with life style. 2019; in preparation. [Google Scholar]
- Cervantes, E.; Martín-Gómez, J.J. Seed shape quantification in the order Cucurbitales. Mod. Phytomorphol. 2018, 12, 1–13. [Google Scholar] [CrossRef]
- Ganhão, E.; Dias, L.S. Seed Volume Dataset—An Ongoing Inventory of Seed Size Expressed by Volume. Data 2019, 4, 61. [Google Scholar] [CrossRef]
- Sonkoly, J.; Deák, B.; Valkó, O.; Molnár, V.A.; Tóthmérész, B.; Török, P. Do large-seeded herbs have a small range size? The seed mass-distribution range trade-off hypothesis. Ecol. Evol. 2017, 7, 11204–11212. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Eastwood, R.J.; Flynn, S.; Turner, R.M.; Stuppy, W.H. Seed Information Database. (Release 7.1, May 2008). About the Seed Information Database (SID) from Kew Royal Botanic Gardens. Available online: http://data.kew.org/sid/about.html (accessed on 23 August 2019).
- Csontos, P.; Tamás, J.; Balogh, L. Thousand-seed weight records of species from the flora of Hungary, I. Monocotyledonopsida. Stud. Bot. Hung. 2003, 34, 121–126. [Google Scholar]
- Csontos, P.; Tamás, J.; Balogh, L. Thousand-seed weight records of species from the flora of Hungary, II. Dicotyledonopsida. Stud. Bot. Hung. 2007, 38, 179–189. [Google Scholar]
- Kleyer, M.; Bekker, R.M.; Knevel, I.C.; Bakker, J.P.; Thompson, K.; Sonnenschein, M.; Poschlod, P.; van Groenendael, J.M.; Klimeš, L.; Klimešová, J.; et al. The LEDA Traitbase: A database of life-history traits of Northwest European flora. J. Ecol. 2008, 96, 1266–1274. [Google Scholar] [CrossRef]
- Török, P.; Miglécz, T.; Valkó, O.; Tóth, K.; Kelemen, A.; Albert, Á.-J.; Matus, G.; Molnár, V.A.; Ruprecht, E.; Papp, L.; et al. New thousand-seed weight records of the Pannonian flora and their application in analysing social behaviour types. Acta Bot. Hung. 2013, 55, 429–472. [Google Scholar] [CrossRef] [Green Version]
- Török, P.; Tóth, E.; Tóth, K.; Valkó, O.; Deák, B.; Kelbert, B.; Bálint, P.; Radócz, S.Z.; Kelemen, A.; Sonkoly, J.; et al. New measurements of thousand-seed weights of species in the Pannonian flora. Acta Bot. Hung. 2016, 58, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Moles, A.T.; Ackerly, D.D.; Tweddle, J.C.; Dickie, J.B.; Smith, R.; Leishman, M.R.; Mayfield, M.M.; Pitman, A.; Wood, J.T.; Westoby, M. Global patterns in seed size. Glob. Ecol. Biogeogr. 2007, 16, 109–116. [Google Scholar] [CrossRef]
- World Flora Online. Available online: https://www.worldfloraonline.org/ (accessed on 19 May 2019).
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar]
- Dubey, S.D. Normal and Weibull distributions. Nav. Res. Logist. Q. 1967, 14, 69–79. [Google Scholar] [CrossRef]
- Bonner, F.T.; Dell, T.R. The Weibull function: A new method of comparing seed vigor. J. Seed. Technol. 1976, 1, 96–103. [Google Scholar]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Martín-Gómez, J.J.; Rewicz, A.; Goriewa-Duba, K.; Wiwart, M.; Tocino, Á.; Cervantes, E. Morphological Description and Classification of Wheat Kernels Based on Geometric Models. Agronomy 2019, 9, 399. [Google Scholar] [CrossRef]
- Thompson, K.; Band, S.R.; Hodgson, J.G. Seed shape and size predict persistence in soil. Funct. Ecol. 1993, 7, 236–241. [Google Scholar] [CrossRef]
- Limpert, E.; Stahel, W.A.; Abbt, M. Log-normal distributions across the sciences: Keys and clues. BioScience 2001, 51, 341–352. [Google Scholar] [CrossRef]
- Saadaoui, E.; Martín-Gómez, J.J.; Ben Yahia, K.; Cervantes, E. Seed Diversity and Germination in Spontaneous and Cultivated Populations of Nerium oleander var. Villa Romaine Grown in Tunisia. Not. Bot. Hort. Agrob. 2019, 47. in press. [Google Scholar]
- Wang, W.; Chen, Q.; Chen, K. Seed bank characteristics of the Nymphoides peltata population in Lake Taihu. Sci. Rep. 2015, 5, 13261. [Google Scholar] [CrossRef]
- Maier, A.; Emig, W.; Leins, P. Dispersal Patterns of some Phyteuma Species (Campanulaceae). Plant Biol. 1999, 1, 408–417. [Google Scholar] [CrossRef]
- Thompson, D. On Growth and Form; Cambridge University Press: London, UK, 1917; 1116p. [Google Scholar]
Shape | Number of Species | Mean Volume | Standard Deviation | Standard Error | Minimum Volume (mm) | Maximum Volume (mm) | Volume Range (mm) |
---|---|---|---|---|---|---|---|
Cardioid | 60 | 2.4 | 4.3 | 0.5 | 4.72 × 10−4 | 19.6 | 19.6 |
Ellipse | 24 | 139.2 | 334.1 | 68.2 | 7.15 × 10−3 | 1434.5 | 1434.5 |
Oval | 19 | 63.8 | 154.7 | 35.5 | 2.13 × 10−2 | 651.4 | 651.5 |
Model | N | 1 | 2 |
---|---|---|---|
Cardioid | 60 | 2.4 | |
Oval | 19 | 63.8 | 63.8 |
Ellipse | 24 | 139.2 | |
Significance | 0.431 | 0.283 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cervantes, E.; Martín Gómez, J.J.; Gutiérrez del Pozo, D.; Silva Dias, L. An Angiosperm Species Dataset Reveals Relationships between Seed Size and Two-Dimensional Shape. Horticulturae 2019, 5, 71. https://doi.org/10.3390/horticulturae5040071
Cervantes E, Martín Gómez JJ, Gutiérrez del Pozo D, Silva Dias L. An Angiosperm Species Dataset Reveals Relationships between Seed Size and Two-Dimensional Shape. Horticulturae. 2019; 5(4):71. https://doi.org/10.3390/horticulturae5040071
Chicago/Turabian StyleCervantes, Emilio, José Javier Martín Gómez, Diego Gutiérrez del Pozo, and Luís Silva Dias. 2019. "An Angiosperm Species Dataset Reveals Relationships between Seed Size and Two-Dimensional Shape" Horticulturae 5, no. 4: 71. https://doi.org/10.3390/horticulturae5040071
APA StyleCervantes, E., Martín Gómez, J. J., Gutiérrez del Pozo, D., & Silva Dias, L. (2019). An Angiosperm Species Dataset Reveals Relationships between Seed Size and Two-Dimensional Shape. Horticulturae, 5(4), 71. https://doi.org/10.3390/horticulturae5040071