Quantitative Trait Locus Analysis in Squash (Cucurbita moschata) Based on Simple Sequence Repeat Markers and Restriction Site-Associated DNA Sequencing Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Tests
2.2. Scoring of Traits
2.3. Genotyping Analyses, Construction of a Linkage Map, and QTL Analysis
3. Results
3.1. Traits of the F2 Population Derived from a Cross between ‘TN 6’ and ‘Shishigatani’-K
3.2. Construction of a Linkage Map Based on SSR and RAD Markers Using the F2 Population
3.3. QTL Analysis of Traits in the F2 Population, and Development of CAPS and dCAPS Markers for the Genotyping of Alleles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grumet, G.; Katzir, N.; Garcia-Mas, J. Plant Genetics and Genomics: Crops and Models, Genetics and Genomics of Cucurbitaceae; Springer International Publishing AG: Cham, Switzerland, 2017; Volume 20. [Google Scholar]
- Paris, H.S.; Padley, L.D., Jr. Gene list for Cucurbita species. Cucurbit Genet. Coop. Rep. 2014, 37, 1–14. [Google Scholar]
- Pan, Y.; Wang, Y.; McGregor, C.; Liu, S.; Luan, F.; Gao, M.; Weng, Y. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. Theor. Appl. Genet. 2020, 133, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Wu, S.; Zhang, G.; Jiao, C.; Guo, S.; Ren, Y.; Zhang, J.; Zhang, H.; Gong, G.; Jia, Z.; et al. Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Mol. Plant 2017, 10, 1293–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero-Pau, J.; Blanca, J.; Bombarely, A.; Ziarsolo, P.; Esteras, C.; Martí-Gómez, C.; Ferriol, M.; Gómez, P.; Jamilena, M.; Mueller, L.; et al. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol. J. 2018, 16, 1161–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xanthopoulou, A.; Montero-Pau, J.; Mellidou, I.; Kissoudis, C.; Blanca, J.; Picó, B.; Tsaballa, A.; Tsaliki, E.; Dalakouras, A.; Paris, H.S.; et al. Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Hortic. Res. 2019, 6, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.N.; Myers, J.R. A genetic map of squash (Cucurbita sp.) with randomly amplified polymorphic DNA markers and morphological markers. J. Am. Soc. Hortic. Sci. 2002, 127, 568–575. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Pachner, M.; Kalai, K.; Lelley, T. SSR-based genetic linkage map of Cucurbita moschata and its synteny with Cucurbita pepo. Genome 2008, 51, 878–887. [Google Scholar] [CrossRef]
- Zhong, Y.J.; Zhou, Y.Y.; Li, J.X.; Yu, T.; Wu, T.Q.; Luo, J.N.; Luo, S.B.; Huang, H.X. A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.). Sci. Rep. 2017, 7, 12785. [Google Scholar] [CrossRef] [Green Version]
- Del Valle Echevarria, A.R.; Campbell, A.; Radovich, T.J.K.; Silvasy, T.; Moore, S.; Kantar, M.B. Quantitative trait loci (QTL) analysis of fruit and agronomic traits of tropical pumpkin (Cucurbita moschata) in an organic production system. Horticulturae 2020, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Hayase, H. Cucurbita, Characteristics as a Plant. In Outline of Agricultural Technology, Vegetables: Eggplant, Capsicum, and Cucurbita; Rural Culture Association Japan: Tokyo, Japan, 1990; Volume 5, pp. 3–30. [Google Scholar]
- Takashima, S. Heirloom and Seasonal Vegetables in Kyoto (Kyo no Dento-yasai to Shun-yasai); Tombow Publishing: Osaka, Japan, 2003; pp. 77–81. [Google Scholar]
- Tatebe, T. A study on the inheritance of fruit shape in Cucurbita moschata (a preliminary note). J. Hort. Assoc. Jpn. 1943, 14, 256–258. [Google Scholar]
- Yasuda, S. Seed Production Science (Shushi Seisan-gaku); Yokendo: Tokyo, Japan, 1948; pp. 69–71. [Google Scholar]
- Merritt, B.J.; Culley, T.M.; Avanesyan, A.; Stokes, R.; Brzyski, J. An empirical review: Characteristics of plant microsatellite markers that confer higher levels of genetic variation. Appl. Plant Sci. 2015, 3, 1500025. [Google Scholar] [CrossRef] [PubMed]
- Andrews, K.R.; Good, J.M.; Miller, M.R.; Luikart, G.; Hohenlohe, P.A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 2016, 17, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Itle, R.A.; Kabelka, E.A. Correlation between L*a*b* color space values and carotenoid content in pumpkins and squash (Cucurbita spp.). HortScience 2009, 44, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Kubo, N.; Mimura, Y.; Matsuda, T.; Nagano, A.J.; Hirai, N.; Higashimoto, S.; Yoshida, H.; Uemura, N.; Fujii, T. Classification of tea (Camellia sinensis) landraces and cultivars in Kyoto, Japan and other regions, based on simple sequence repeat markers and restriction site-associated DNA sequencing analysis. Genet. Resour. Crop Evol. 2019, 66, 441–451. [Google Scholar] [CrossRef]
- Gong, L.; Stift, G.; Kofler, R.; Pachner, M.; Lelley, T. Microsatellites for the genus Cucurbita and an SSR-based genetic linkage map of Cucurbita pepo L. Theor. Appl. Genet. 2008, 117, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Kubo, N.; Saito, M.; Tsukazaki, H.; Kondo, T.; Matsumoto, S.; Hirai, M. Detection of quantitative trait loci controlling morphological traits in Brassica rapa L. Breed. Sci. 2010, 60, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Van Ooijen, J.W. MapQTL 6, Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species; Kyazma B.V.: Wageningen, The Netherlands, 2009. [Google Scholar]
- Brown, R.N. Traditional and Molecular Approaches to Zucchini Yellow Mosaic VIRUS Resistance in Cucurbita. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2 July 2001. [Google Scholar]
- Cardosa, A.I.I.; Della Vecchia, P.T.; Silva, N. Inheritance of immature fruit color in C. moschata. Cucurbit Genet. Coop. Rep. 1993, 16, 68–69. [Google Scholar]
- Zhou, Y.; Huang, H.; Li, J.; Luo, S.; Wu, T.; Zhong, Y. Development and amplification of SNP molecular marker linked to pericarp color in Cucurbita moschata Duch. J. Nuc. Agric. Sci. 2018, 32, 1050–1059. [Google Scholar]
- Inoue, T.; Kubo, N.; Kondo, T.; Hirai, M. Detection of quantitative trait loci for heading traits in Brassica rapa using different heading types of Chinese cabbage. J. Hortic. Sci. Biotechnol. 2015, 90, 311–317. [Google Scholar] [CrossRef]
- Esteras, C.; Gómez, P.; Monforte, A.J.; Blanca, J.; Vicente-Dólera, N.; Roig, C.; Nuez, F.; Picó, B. High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom. 2012, 13, 80. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Xu, S.; Wu, X.; Tao, Y.; Wang, B.; Wang, S.; Qin, D.; Lu, Z.; Li, G. Population genomic analyses from low-coverage RAD-Seq data: A case study on the non-model cucurbit bottle gourd. Plant J. 2014, 77, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Montero-Pau, J.; Blanca, J.; Esteras, C.; Martínez-Pérez, E.M.; Gómez, P.; Monforte, A.J.; Cañizares, J.; Picó, B. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC Genom. 2017, 18, 94. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Van Eck, J.; Cong, B.; Tanksley, S.D. A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl. Acad. Sci. USA 2002, 99, 13302–13306. [Google Scholar] [CrossRef] [Green Version]
M Flwr | F Flwr | Rib | Wart | Fw | H | Up | Mid | Low | Up/Mid | Low/Mid | L* | a* | b* | C* | hue | Brix | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M flwr | |||||||||||||||||
F flwr | 0.3323 | ||||||||||||||||
Rib | 0.1034 | 0.0770 | |||||||||||||||
Wart | −0.2359 | 0.1257 | 0.4140 | ||||||||||||||
Fw | −0.0915 | 0.1763 | 0.0019 | −0.2632 | |||||||||||||
H | −0.0053 | −0.2309 | −0.0660 | 0.2628 | 0.7171 | ||||||||||||
Up | −0.0155 | −0.0519 | −0.1242 | 0.0858 | 0.2428 | −0.0490 | |||||||||||
Mid | 0.0075 | −0.1373 | 0.1242 | −0.0309 | 0.0895 | −0.2405 | 0.7576 | ||||||||||
Low | 0.1033 | 0.1466 | −0.0042 | 0.1254 | 0.2132 | 0.0515 | −0.0614 | 0.5475 | |||||||||
Up/Mid | 0.0503 | 0.0410 | 0.1766 | −0.0589 | −0.0400 | 0.0047 | 0.9544 | −0.7712 | −0.0226 | ||||||||
Low/Mid | 0.0170 | −0.2510 | −0.0609 | 0.0439 | 0.1732 | −0.2347 | −0.0599 | −0.5611 | 0.8608 | 0.0327 | |||||||
L* | 0.3315 | −0.2338 | −0.1551 | 0.3412 | 0.0543 | −0.0343 | −0.0582 | 0.0766 | −0.1288 | 0.0400 | −0.0373 | ||||||
a* | −0.1102 | −0.3193 | 0.0714 | 0.1075 | 0.3050 | −0.3831 | −0.0423 | −0.1577 | 0.1216 | 0.0249 | −0.1610 | 0.0439 | |||||
b* | −0.1113 | −0.2916 | 0.0406 | 0.0169 | 0.1500 | −0.3085 | 0.0840 | −0.2851 | 0.2434 | −0.0620 | −0.2400 | 0.0754 | −0.8784 | ||||
C* | 0.1181 | 0.2947 | −0.0450 | −0.0225 | −0.1602 | 0.3149 | −0.0732 | 0.2760 | −0.2386 | 0.0532 | 0.2350 | −0.0823 | 0.8965 | 0.9991 | |||
hue | 0.0004 | −0.0651 | 0.0817 | 0.1816 | 0.3644 | −0.2298 | −0.2209 | 0.1893 | −0.2132 | 0.1429 | 0.1287 | 0.0081 | −0.4389 | 0.0332 | 0.0049 | ||
Brix | −0.0559 | 0.1992 | 0.0706 | 0.0336 | −0.0493 | 0.0962 | −0.1888 | 0.2024 | −0.0226 | 0.1759 | 0.0204 | −0.0328 | 0.0853 | 0.1961 | −0.1878 | −0.1839 |
Trait 1 | LG 2 | Map Position in cM (peak) 3 | LOD 4 | α (%) 5 | Additive Effect 4 | Dominance Effect 4 |
---|---|---|---|---|---|---|
L* | 2b | 5.7–13.6 (7.6) | 13.2 | 47.3 | −3.75 | −1.23 |
b* | 2b | 5.7–13.6 (7.6) | 7.8 | 34.4 | 3.39 | 3.06 |
C* | 2b | 5.7–11.6 (6.7) | 6.2 | 28.8 | 3.39 | 3.02 |
Low/Mid | 4a | 4.0–7.9 (6.0) | 4.9 | 22.9 | −0.13 | −0.01 |
Low | 4a | 14.8–21.8 (17.8) | 4.4 | 20.6 | −3.24 | −4.10 |
Wart | 4a | 46.2–46.5 (46.2) | 6.8 | 31.0 | −0.44 | −0.34 |
Brix | 6b | 0.0–3.9 (3.9) | 4.8 | 23.1 | 1.57 | −0.26 |
F flwr | 7 | 74.0–80.6 (78.6) | 4.8 | 23.0 | 3.14 | 2.71 |
Up/Mid | 8b | 2.2–2.4 (2.4) | 4.8 | 17.4 | −0.08 | −0.01 |
Up | 20 | 31.9–35.9 (33.9) | 4.2 | 16.0 | −3.70 | 6.28 |
Fw | 20 | 34.9–45.0 (43.0) | 5.5 | 25.0 | −0.39 | 0.35 |
H | 20 | 35.9–44.0 (39.9) | 4.4 | 16.8 | −1.42 | 1.34 |
Marker Name 1 | Primer Sequence (5′-to-3′) 2 | LG 3 | Trait Near the Marker | Restriction Enzyme | Expected Size (bp) 4 |
---|---|---|---|---|---|
CAPS and dCAPS markers converted from restriction site-associated DNA (RAD) markers in this study | |||||
020880Chr02-CAPS | Forward: CCCGTCTTAGTAGTAGTAACAGAAA | 2b | L*, b*, C* | Tsp509I | ‘TN 6’: 11 + 19 + 37 + 150 |
Reverse: CTCAAGTATTGATTTCGAATAGGTCC | ‘Shishigatani’-K: 11 + 19 + 37 + 47 + 103 | ||||
021081Chr02-dCAPS | Forward: CAGGTAATAGCCATTGATGAATTTC | 2b | L*, b*, C* | EcoRV | ‘TN 6’: 24 + 108 |
Reverse: GAAAGCAGCAGCATCTTTCTGgAT | ‘Shishigatani’-K: 132 | ||||
023266Chr03-CAPS | Forward: CAGAAGTAGATGAAAAGTAGAACGACG | 3 | Mottled skin | MboI | ‘TN 6’: 235 |
Reverse: GTTCGAATTCAACCCTGGTTCTTTTG | ‘Shishigatani’-K: 47 + 50 + 138 | ||||
025799Chr04-dCAPS | Forward: CCTCTCCAACTAATGTGAGATagTAC | 4a | Low/Mid | ScaI | ‘TN 6’: 24 + 126 |
Reverse: GTGTAATAAAGCAGGTGCAGTAACAT | ‘Shishigatani’-K: 150 | ||||
026418Chr04-dCAPS | Forward: GTTAAACTCAAAGGATAAGTATGGGT | 4a | Low | SmaI | ‘TN 6’: 27 + 103 |
Reverse: AGAAAGTCTACTTGTAGCTATTTTCcC | ‘Shishigatani’-K: 130 | ||||
027253Chr04-dCAPS | Forward: CAATGATATCTTAGATCTTCATTTTGCAtT | 4a | Low | MseI | ‘TN 6’: 14 + 28 + 29 + 82 |
Reverse: CCTGTCAACATTTAAATTCACAGATAT | ‘Shishigatani’-K: 14 + 28 + 111 | ||||
027595Chr04-CAPS | Forward: GCATTACTTGAATAAAATCAATGTTAGAC | 4a | Low | NlaIII | ‘TN 6’: 39 + 95 |
Reverse: CATGAACCTATACTTCAAGACAAGTTAC | ‘Shishigatani’-K: 134 | ||||
027863Chr04-dCAPS | Forward: GGAGATCCGCTGAAATCGcC | 4a | Low | NaeI | ‘TN 6’: 19 + 129 |
Reverse: CGTCGACGATCTTTGGAGAATTC | ‘Shishigatani’-K: 148 | ||||
033391Chr04-dCAPS | Forward: ATTGAACAAGCCTCATCAATCGTTtcTA | 4a | Wart | XbaI | ‘TN 6’: 152 |
Reverse: GCAAATGCATTTTGGAATTTCGTATTAAG | ‘Shishigatani’-K: 25 + 127 | ||||
034024Chr04-CAPS | Forward: TGGTTTAGGATCAAGCCACTAGA | 4a | Wart | RsaI | ‘TN 6’: 160 |
Reverse: AACACCACCCTTAAATTTGAAGCAC | ‘Shishigatani’-K: 65 + 95 | ||||
041970Chr06-CAPS | Forward: TAGAATAAGGAGATTCGAAATCCAG | 6b | Brix | SspI | ‘TN 6’: 142 |
Reverse: GAAGGAATTCCCATGGGAATCAATG | ‘Shishigatani’-K: 47 + 95 | ||||
045451Chr07-CAPS | Forward: CATTGGGAATTCAGATTTAGATCTG | 7 | F flwr | TaqI | ‘TN 6’: 22 + 183 |
Reverse: GAATTCATCGCTAAGCTTCTCGA | ‘Shishigatani’-K: 22 + 63 + 120 | ||||
045491Chr07-CAPS | Forward: CAATCGAATTTTGCAGGCAAAACAAGT | 7 | F flwr | XbaI | ‘TN 6’: 86 + 188 |
Reverse: GTAGTTCAGGTTGCTCTAATCAATTTC | ‘Shishigatani’-K: 274 | ||||
045492Chr07-CAPS | Forward: GATAGGAAACGATATCAGTATTGAGATC | 7 | F flwr | MboI | ‘TN 6’: 24 + 52 + 130 |
Reverse: GAGTTTATGTTCAAGTCGGTGATATTAG | ‘Shishigatani’-K: 24 + 182 | ||||
047940Chr08-dCAPS | Forward: GAACATCTCATACTGGTTGAAGAG | 8b | Up/Mid | XbaI | ‘TN 6’: 138 |
Reverse: TTTGGAAATGTTTTCCCACCTTTATCtA | ‘Shishigatani’-K: 29 + 109 | ||||
048046Chr08-dCAPS | Forward: AGATCTTCATTGAATTATTACAATGGTTgA | 8b | Up/Mid | HinfI | ‘TN 6’: 166 |
Reverse: GCCATTCTATTTTTAATCTGTTGATTTGA | ‘Shishigatani’-K: 29 + 137 | ||||
048147Chr08-dCAPS | Forward: TCACCGCTGGTAGATATTGTCA | 8b | Up/Mid | MunI | ‘TN 6’: 174 |
Reverse: TGAAGACGTGCATGTAATCCCaATT | ‘Shishigatani’-K: 25 + 149 | ||||
103408Chr20-CAPS | Forward: TTCAAGCCCATTGCTAGCAGATA | 20 | Up, Fw, H | XbaI | ‘TN 6’: 49 + 101 |
Reverse: TGGGAACGTCATTTGTATTTATACTG | ‘Shishigatani’-K: 150 | ||||
Simple sequence repeat (SSR) marker developed in this study | |||||
CmoChr03-SSR1 | Forward: GGAATACTGTAAGAAGATATGCCGA | 3 | Mottled skin | − | ‘TN 6’: ca. 110 |
Reverse: CCCATTAAGAATACAATAGAACCTTG | ‘Shishigatani’-K: ca. 120 | ||||
dCAPS markers (Zhou et al. 2018) modified in this study | |||||
R1_47757-dCAPS | Forward: AAATAAGGTTGTCGAATTATCcTGcA | 3 | Mottled skin | PstI | ‘TN 6’: 26 + 168 |
Reverse: TCCTGAAGTGGACAACGAACTA | ‘Shishigatani’-K: 194 | ||||
R2_63809-dCAPS | Forward: TTCCAACAATTTCCCTCTACTGC | 3 | Mottled skin | XbaI | ‘TN 6’: 223 |
Reverse: TTGCTATTTTCTTGCATTCGATATCtcT | ‘Shishigatani’-K: 30 + 193 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashimoto, T.; Kubo, N.; Nishimura, K.; Nagano, A.J.; Sasaki, A.; Nakamura, Y.; Mimura, Y. Quantitative Trait Locus Analysis in Squash (Cucurbita moschata) Based on Simple Sequence Repeat Markers and Restriction Site-Associated DNA Sequencing Analysis. Horticulturae 2020, 6, 71. https://doi.org/10.3390/horticulturae6040071
Hashimoto T, Kubo N, Nishimura K, Nagano AJ, Sasaki A, Nakamura Y, Mimura Y. Quantitative Trait Locus Analysis in Squash (Cucurbita moschata) Based on Simple Sequence Repeat Markers and Restriction Site-Associated DNA Sequencing Analysis. Horticulturae. 2020; 6(4):71. https://doi.org/10.3390/horticulturae6040071
Chicago/Turabian StyleHashimoto, Takuma, Nakao Kubo, Kanako Nishimura, Atsushi J. Nagano, Azusa Sasaki, Yasushi Nakamura, and Yutaka Mimura. 2020. "Quantitative Trait Locus Analysis in Squash (Cucurbita moschata) Based on Simple Sequence Repeat Markers and Restriction Site-Associated DNA Sequencing Analysis" Horticulturae 6, no. 4: 71. https://doi.org/10.3390/horticulturae6040071
APA StyleHashimoto, T., Kubo, N., Nishimura, K., Nagano, A. J., Sasaki, A., Nakamura, Y., & Mimura, Y. (2020). Quantitative Trait Locus Analysis in Squash (Cucurbita moschata) Based on Simple Sequence Repeat Markers and Restriction Site-Associated DNA Sequencing Analysis. Horticulturae, 6(4), 71. https://doi.org/10.3390/horticulturae6040071