Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Determination of Minerals
2.3. Biochemical Composition Determination
2.4. Color Determination
2.5. Microbiological Analysis
2.6. Extraction of Phenols
2.7. Determination of Different Phenolic Classes
Determination of Total Phenols by Folin–Ciocalteau Method
2.8. Ascorbic Acid and Chlorophyll Content
2.9. Trolox Equivalent Antioxidant Capacity (TEAC)
2.10. Oxygen Radical Absorbance Capacity (ORAC)
2.11. Sensory Panel
2.12. Statistical Analysis
3. Results and Discussion
3.1. Plant Species Charahterization
3.1.1. Mineral Composition
3.1.2. Biochemical Composition
3.2. Quality Parameters Evolution Through Storage at Two Harvest Seazons
3.2.1. Color Parameters
3.2.2. Phenolics
3.2.3. Microbial Contamination
3.2.4. Sensorial Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rozema, J.; Flowers, T. Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Glenn, E.; Miyamoto, M.; Moore, D.; Brown, J.J.; Thompson, T.L.; Brown, P. Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment. J. Arid Environ. 1997, 36, 711–730. [Google Scholar] [CrossRef]
- Khanlarian, M.; Roshanfara, M.; Rashchia, F.; Motesharezadeh, B. Phyto-extraction of zinc, lead, nickel, and cadmium from zinc leach residue by a halophyte: Salicornia europaea. Ecol. Eng. 2020, 148, 105797. [Google Scholar] [CrossRef]
- Gago, C.; Sousa, A.R.; Julião, M.; Miguel, G.; Antunes, D.; Panagopoulos, T. Sustainable use of energy in the storage of halophytes used for food. Int. J. Energy Environ. Eng. 2011, 5, 592–599. [Google Scholar]
- Ventura, Y.; Wuddineh, W.A.; Myrzabayeva, M.; Alikulov, Z.; Khozin-Goldberg, I.; Shpigel, M.; Samocha, T.M.; Sagi, M. Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci. Hortic. 2011, 128, 189–196. [Google Scholar] [CrossRef]
- Ventura, Y.; Sagi, M. Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environ. Exp. Bot. 2013, 92, 144–153. [Google Scholar] [CrossRef]
- Riquelme, J.; Olaeta, J.A.; Gálvez, L.; Undurraga, P.; Fuentealba, C.; Osses, A.; Orellana, J.; José Gallardo, J.; Pedreschi, R. Nutritional and functional characterization of wild and cultivated Sarcocornia neei grown in Chile. Ciencia e Investigación Agraria 2016, 43, 283–293. [Google Scholar] [CrossRef]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; Silva, M.M.; Varela, J.; Custódio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, M.; Wang, S.; Cai, J.; Zhou, X.; Zhu, C. Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT-Food Sci. Technol. 2010, 43, 519–524. [Google Scholar] [CrossRef]
- Wang, X.; Bai, J.; Wang, W.; Zhang, G.; Yin, S.; Wang, D. A comparative metabolomics analysis of the halophyte Suaeda salsa and Salicornia europaea. Environ. Geochem. Health 2020, 1–14. [Google Scholar] [CrossRef]
- Davy, A.J.; Bishop, G.F.; Costa, C.S.B.; Salicornia, L. Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L.; S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin and S. dolichostachya Moss. J. Ecol. 2001, 89, 681–707. [Google Scholar]
- Davy, A.J.; Bishop, G.F.; Mossman, H.; Redondo-Gómez, S.; Castillo, J.M.; Castellanos, E.M.; Luque, T.; Figueroa, M.E. Biological Flora of the British Isles: Sarcocornia perennis (Miller) A.J. Scott. J. Ecol. 2006, 94, 1035–1048. [Google Scholar] [CrossRef]
- Castroviejo, S.; Laínz, M.; López González, G.; Montserrat, P.; Muñoz Garmendia, F.; Paiva, J.; Villar, L. Flora Ibérica: Plantas Vasculares de la Península Ibérica e Islas Baleares; Real Jardín Botánico CSIC: Madrid, Spain, 1990; Volume II, 897p. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Reyes, L.F.; Villarreal, J.E.; Luis, C.Z. The increase in antioxidant capacity after wounding depends on the type of fruit or vegetable tissue. Food Chem. 2007, 101, 1254–1262. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of objective color measurements. Hortscience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- NP-4405. Food Microbiology—General Rules for Microorganism Counts. Colonies Count at 30 °C; Instituto Português da Qualidade: Lisbon, Portugal, 2002. (In Portuguese) [Google Scholar]
- ISO 21527-2. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds; Part 2: Colony Count Technique in Products with Water Activity Less Than or Equal to 0.95; International Standards Organization: Geneva, Switzerland, 2008. [Google Scholar]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R.; Prenzlier, P.D.; Robards, K. Investigation of Australian olive mill waste for recovery of biophenols. J. Agric. Food Chem. 2005, 53, 9911–9920. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Charles, F.; Guillaume, C.; Gontard, N. Effect of passive and active modified atmosphere packaging on quality changes of fresh endives. Postharvest Biol. Technol. 2008, 48, 22–29. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Hiltunen, R. Fe (III) reductive and free radical scavenging properties of summer savory (Satureja hortensis L.) extract and subfractions. Food Chem. 2004, 88, 193–199. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Cao, G.H.; Prior, R.L. Measurement of oxygen radical absorbance capacity in biological samples. Oxidants and antioxidants. Method Enzymol. 1999, 299, 50–62. [Google Scholar]
- Al-Jaloud, A.A.; Al-Saiady, M.Y.; Assaeed, A.M.; Chandhry, S.A. Some halophyte plants of Saudi Arabia, their composition and relation to soil properties. Pak. J. Biol. Sci. 2001, 4, 531–534. [Google Scholar]
- Codex Stan 150-1985. Codex Standard for Food Grade Salt. 2012. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B150-1985%252FCXS_150e.pdf (accessed on 26 July 2020).
- Hupel, M.; Lecointre, C.; Meudec, A.; Poupart, N.; Gall, E.A. Comparison of photoprotective responses to UV radiation in the brown seaweed Pelvetia canaliculata and the marine angiosperm Salicornia ramosissima. J. Exp. Mar. Biol. Ecol. 2011, 401, 36–47. [Google Scholar] [CrossRef]
- Bianciotto, O.A.; Pinedo, L.B.; San Roman, N.A.; Blessio, A.Y.; Collantes, M.B. The effect of natural UV-B radiation on a perennial Salicornia salt-marsh in Bahía San Sebastian, Tierra del Fuego, Argentina: A 3-year field study. J. Photochem. Photobiol. 2003, 70, 177–185. [Google Scholar] [CrossRef]
- Burchard, P.; Bilger, W.; Weissenböck, G. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by UV-induced chlorophyll fluorescence measurements. Plant Cell Environ. 2000, 23, 1373–1380. [Google Scholar] [CrossRef]
- Harbaum, B.; Hubbermann, E.M.; Zhu, Z.; Schwarz, K. Free and bound phenolic compounds in leaves of pak choi (Brassica campestris L. ssp. chinensis var. communis) and Chinese leaf mustard (Brassica juncea Coss). Food Chem. 2008, 110, 838–846. [Google Scholar] [CrossRef]
- Starzynska, A.; Leja, M.; Mareczek, A. Physiological changes in the antioxidant system of broccoli flower buds senescing during short-term storage, related to temperature and packaging. Plant Sci. 2003, 165, 1387–1395. [Google Scholar] [CrossRef]
- DuPont, M.S.; Mondin, Z.; Williamson, G.; Proce, K.R. Effect of variety, processing, and storage on the flavonoid glycoside content and composition of lettuce and endive. J. Agric. Food Chem. 2000, 48, 3957–3964. [Google Scholar] [CrossRef]
- Cordenunsi, B.R.; Genovese, M.I.; Nascimento, J.R.O.; Hassimoto, N.M.A.; Santos, R.J.; Lajolo, F.M. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Jacxsens, L.; Devlieghere, F.; Ragaert, P.; Vanneste, E.; Debevere, J. Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce. Int. J. Food Microbiol. 2003, 83, 263–280. [Google Scholar] [CrossRef]
Element | Units (DW) | Sarcocornia | Salicornia | Significance Level z |
---|---|---|---|---|
Sodium (Na) | g·100 g−1 | 16.00 ± 0.12 | 17.44 ± 0.24 | n s. |
Potassium (K) | g·100 g−1 | 1.11 ± 0.024 | 1.06 ± 0.051 | n s. |
Magnesium(Mg) | mg·100 g−1 | 498.70 ± 0.09 | 499.01 ± 0.62 | n s. |
Calcium (Ca) | mg·100 g−1 | 310.11 ± 0.65 | 271.43 ± 7.36 | 0.006 |
Phosphorus (p) | mg·100 g−1 | 220.01 ± 2.06 | 230.91 ± 3.81 | n s. |
Iron (Fe) | mg·100 g−1 | 35.11 ± 2.49 | 19.67 ± 2.09 | 0.001 |
Zinc (Zn) | mg·100 g−1 | 2.12 ± 0.16 | 3.39 ± 0.52 | 0.005 |
Copper (Cu) | mg·100 g−1 | 1.17 ± 0.10 | 1.31 ± 0.15 | n s. |
Lead (Pb) | mg·100 g-1 | 0.10 ± 0.03 | 0.09 ± 0.02 | n s. |
Cadmium (Cd) | mg·100 g-1 | 0.04 ± 0.01 | 0.05 ± 0.02 | n s. |
Biochemical Composition | Units (FW) | Sarcocornia | Salicornia | Significance Level z |
---|---|---|---|---|
Chlorophyll | mg·100 g−1 | 24.96 ± 4.11 | 27.63 ± 4.48 | n.s. |
β-carotene | mg·100 g−1 | 5.00 ± 0.50 | 6.53 ± 0.68 | 0.018 |
Ascorbic acid | mg·100 g−1 | 6.80 ± 0.70 | 8.60 ± 1.04 | n.s. |
Crude protein | g·100 g−1 | 1.28 ± 0.06 | 1.44 ± 0.08 | 0.038 |
Sarcocornia | Salicornia | |||
---|---|---|---|---|
Parameters | May | July | May | July |
At harvest | ||||
Color L * | 31.0 ± 0.4 bBz | 30.0 ± 1.5 bA | 37.4 ± 1.6 aB | 32.9 ± 2.2 bA |
Hue * | 117.1 ± 1.8 bA | 123.2 ± 1.0 aA | 116.0 ± 0.2 bA | 123.2 ± 0.9 aA |
Chroma * | 20.6 ± 0.7 bA | 17.3 ± 1.0 cdA | 25.3 ± 0.6 aA | 19.3 ± 1.6 bcA |
After 14 days | ||||
Color L * | 34.9 ± 2.1 aA | 30.83 ± 1.1 bA | 33.60 ± 1.3 aA | 30.44 ± 0.8 bA |
Hue * | 119.2 ± 1.9 aA | 118.93 ± 1.9 aB | 118.8 ± 0.5 aA | 120.56 ± 0.7 aB |
Chroma * | 21.2 ± 0.6 aA | 19.15 ± 1.2 bA | 21.66 ± 0.3 aB | 18.56 ± 0.4 bA |
Sarcocornia | Salicornia | ||||
---|---|---|---|---|---|
Parameters | Units (DW) | May | July | May | July |
At harvest | |||||
Phenolics (λ = 280 nm) | mg·100 g−1 | 1319.0 ± 61.0 bB z | 1060.2 ± 26.9 cB | 1514.7 ± 95.9 aA | 904.2 ± 46.0 dA |
Flavonoids (λ = 360 nm) | mg·100 g−1 | 305.0 ± 20.8 cB | 211.3 ± 11.3 dB | 513.6 ± 43.0 bA | 658.4 ± 22.5 aA |
Hydroxycinnamic acid derivatives (λ = 320 nm) | mg·100 g−1 | 366.7 ± 71.8 bB | 120.4 ± 8.7 dB | 531.4 ± 65.4 aA | 221.1 ± 12.3 cA |
Phenolics (Folin–Ciocalteau) | mg GAE·100 g−1 | 3274.4 ± 501.3 bA | 2558.6 ± 434.5 bcB | 2457.1 ± 137.0 cB | 4107.7 ± 56.2 aA |
TEAC | mM Trolox·100 g−1 | 0.99 ± 0.06 bB | 0.44 ± 0.01 cB | 1.90 ± 0.13 aA | 0.37 ± 0.01 dB |
ORAC | mM Trolox·100 g−1 | 6.89 ± 0.73 bB | 3.23 ± 0.18 cB | 15.97 ± 0.23 aA | 2.74 ± 0.05 dA |
After 14 days | |||||
Phenolics (λ = 280 nm) | mg·100 g−1 | 1509.2 ± 63.3 aA | 1475.6 ± 113 abA | 1341.7 ± 56.7 bA | 771.5 ± 52.5 cA |
Flavonoids (λ = 360 nm) | mg·100 g−1 | 512.7 ± 17.1 aA | 479.2 ± 55.3 abA | 472.2 ± 16.5 bA | 231.6 ± 20.6 cB |
Hydroxycinnamic acid derivatives (λ = 320 nm) | mg·100 g−1 | 537.6 ± 26.6 aA | 417.5 ± 51.3 bA | 373.0 ± 18.0 bB | 211.7 ± 15.4 cA |
Phenolics (Folin–Ciocalteau) | mg GAE·100 g−1 | 3384.2 ± 49.0 bA | 3561.8 ± 25.0 bA | 5074.1 ± 288.2 aA | 3299.5 ± 44.1 bB |
TEAC | mM Trolox·100 g−1 | 2.54 ± 0.40 aA | 0.75 ± 0.08 cA | 0.93 ± 0.07 bB | 0.77 ± 0.08 cA |
ORAC | mM Trolox·100 g −1 | 8.84 ± 1.15 abA | 9.06 ± 0.43 aA | 9.55 ± 0.29 aB | 2.84 ± 0.41 cA |
Sarcocornia | Salicornia | ||||
---|---|---|---|---|---|
Parameters | Units (DW) | May | July | May | July |
At harvest | |||||
Yeast and Molds Psycrotrophic Bacteria | Log10(CFU·g−1) Log10(CFU·g−1) | 2.74 ± 0.07 bA z ND | 0.67 ± 0.40 cB ND B | 2.82 ± 0.12 bA ND | 3.21 ± 0.09 aA ND B |
After 14 days | |||||
Yeast and Molds Psycrotrophic Bacteria | Log10(CFU·g−1) Log10(CFU·g−1) | 2.30 ± 0.17 dA ND | 2.64 ± 0.12 cA 3.96 ± 0.13 aA | 3.92 ± 0.14 aA ND | 3.58 ± 0.07 bA 4.29 ± 0.31 A |
Sarcocornia | Salicornia | ||||
---|---|---|---|---|---|
Parameters | Days | May | July | May | July |
Appearance | 0 14 | 3.55 abA z 3.25 bA | 3.70 aA 3.75 aA | 3.62 aA 3.61 aA | 3.25 bA 3.47 abA |
Color | 0 14 | 3.53 aA 3.28 abA | 3.80 aA 3.50 aA | 3.82 aA 3.55 aA | 3.00 bA 2.92 bA |
Saltiness | 0 14 | 3.45 aA 3.00 abA | 3.33 aA 3.50 aA | 3.27 abA 3.00 abA | 3.45 aA 2.92 bA |
Texture | 0 14 | 3.25 abA 3.12 abA | 3.27 aA 3.25 abA | 3.30 aA 3.44 aA | 3.45 aA 3.00 bA |
Succulence | 0 14 | 3.25 aA 3.47 aA | 3.53 aA 3.67 aA | 3.48 aA 3.28 aA | 3.35 aA 3.33 aA |
Aroma | 0 14 | 3.15 aA 3.18 aA | 3.13 aA 3.25 aA | 3.13 aA 3.00 aA | 3.20 aA 3.00 aA |
Taste | 0 14 | 3.10 bA 3.29 abA | 3.40 aA 3.15 abA | 3.30 aA 3.44 aA | 3.35 aA 3.50 aA |
Overall liking | 0 14 | 3.33 abA 3.23 abA | 3.45 aA 3.44 aA | 3.42 aA 3.33 abA | 3.29 abA 3.16 bA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, M.D.; Gago, C.; Guerreiro, A.; Sousa, A.R.; Julião, M.; Miguel, M.G.; Faleiro, M.L.; Panagopoulos, T. Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads. Horticulturae 2021, 7, 6. https://doi.org/10.3390/horticulturae7010006
Antunes MD, Gago C, Guerreiro A, Sousa AR, Julião M, Miguel MG, Faleiro ML, Panagopoulos T. Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads. Horticulturae. 2021; 7(1):6. https://doi.org/10.3390/horticulturae7010006
Chicago/Turabian StyleAntunes, Maria Dulce, Custódia Gago, Adriana Guerreiro, Ana Rita Sousa, Miriam Julião, Maria Graça Miguel, Maria Leonor Faleiro, and Thomas Panagopoulos. 2021. "Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads" Horticulturae 7, no. 1: 6. https://doi.org/10.3390/horticulturae7010006
APA StyleAntunes, M. D., Gago, C., Guerreiro, A., Sousa, A. R., Julião, M., Miguel, M. G., Faleiro, M. L., & Panagopoulos, T. (2021). Nutritional Characterization and Storage Ability of Salicornia ramosissima and Sarcocornia perennis for Fresh Vegetable Salads. Horticulturae, 7(1), 6. https://doi.org/10.3390/horticulturae7010006