Morphological and Physio-Biochemical Responses of Watermelon Grafted onto Rootstocks of Wild Watermelon [Citrullus colocynthis (L.) Schrad] and Commercial Interspecific Cucurbita Hybrid to Drought Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Environment
2.2. Experimental Layout and Stress Treatment
2.3. Record of Morphological Parameters
2.4. SPAD Index and Chlorophyll Fluorescence
2.5. Leaf Relative Water Content
2.6. Biochemical Analyses
2.7. Statistical Analysis
3. Results
3.1. Morphological Parameters
3.2. Physiological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devi, P.; Lukas, S.; Miles, C. Advances in watermelon grafting to increase efficiency and automation. Horticulturae 2020, 6, 88. [Google Scholar] [CrossRef]
- Lee, J.M.; Kubota, C.; Tsao, S.G.; Bie, Z.; Hoyos Echevarria, P.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- King, S.R.; Davis, A.R.; Liu, W.; Levi, A. Grafting for disease resistance. HortScience 2008, 43, 1673–1676. [Google Scholar] [CrossRef] [Green Version]
- Louws, F.J.; Rivard, C.L.; Kubota, C. Grafting fruiting vegetables to manage soilborne pathogens, foliar pathogens, arthropods and weeds. Sci. Hortic. 2010, 127, 127–146. [Google Scholar] [CrossRef]
- Naik, S.A.T.S.; Hongal, S.; Harshavardhan, M.; Chandan, K.; Kumar, A.J.S.; Kyriacou, M.C.; Rouphael, Y.; Kumar, P. Productive characteristics and fruit quality traits of cherry tomato hybrids as modulated by grafting on different Solanum spp. rootstocks under Ralstonia solanacearum infested greenhouse soil. Agronomy 2021, 11, 1311. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Colla, G.; Rea, E. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience 2008, 43, 730–736. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, D.; Rouphael, Y.; Colla, G.; Venema, J.H. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hortic. 2020, 127, 162–171. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Leonardi, C.; Bie, Z. Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. 2010, 127, 147–155. [Google Scholar] [CrossRef]
- Colla, G.; Kumar, P.; Cardarelli, M.; Rouphael, Y. Grafting an effective tool for abiotic stress alleviation in vegetables. In Horticulture for Food and Environment Security; Chadha, K.L., Singh, A.K., Singh, S.K., Dhillon, W.S., Eds.; Westville Publishing House: New Delhi, India, 2013; pp. 15–28. [Google Scholar]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Effect of nickel and grafting combination on yield, fruit quality, antioxidative enzyme activities, lipid peroxidation, and mineral composition of tomato. J. Plant Nutr. Soil Sci. 2015, 178, 848–860. [Google Scholar] [CrossRef]
- Rouphael, Y.; Venema, J.H.; Edelstein, M.; Savvas, D.; Colla, G.; Ntatsi, G.; Ben-Hur, M.; Kumar, P.; Schwarz, D. Grafting as a tool for tolerance of abiotic stress. In Vegetable Grafting: Principles and Practices; Colla, G., Pérez-Alfocea, F., Eds.; CAB International: Wallingford, UK, 2013; pp. 171–215. [Google Scholar]
- Kumar, P.; Khapte, P.S.; Saxena, A.; Singh, A.; Panwar, N.R.; Kumar, P. Intergeneric grafting for enhanced growth, yield and nutrient acquisition in greenhouse cucumber during winter. J. Environ. Biol. 2019, 40, 295–301. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Mirabelli, C.; Cardarelli, M. Nitrogen-use efficiency traits of mini-watermelon in response to grafting and nitrogen-fertilization doses. J. Plant Nutr. Soil Sci. 2011, 174, 933–941. [Google Scholar] [CrossRef]
- Khapte, P.S.; Kumar, P.; Panwar, N.R.; Burman, U.; Rouphael, Y.; Kumar, P. Combined influence of grafting and type of protected environment structure on agronomic and physiological traits of single and cluster-fruit-bearing cucumber hybrids. Agronomy 2021, 11, 1604. [Google Scholar] [CrossRef]
- Kumar, P.; Rouphael, Y.; Cardarelli, M.; Colla, G. Vegetable grafting as a tool to improve drought resistance and water use efficiency. Front. Plant Sci. 2017, 8, 1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaleel, C.A.; Manivannan, P.; Lakshmanan, G.M.A.; Gomathinayagam, M.; Panneerselvam, R. Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf. B Biointerfaces 2008, 61, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Water; Technical Paper of the Intergovernmental Panel on Climate Change; Kundzewicz, Z.W., Palutikof, J., Wu, S., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2008. [Google Scholar]
- Suzuki, N.; Rivero, R.M.; Shulaev, V.; Blumwald, E.; Mittler, R. Abiotic and biotic stress combinations. New Phytol. 2014, 203, 32–43. [Google Scholar] [CrossRef]
- Solomon, S.; Quin, D.; Manning, M.; Averyt, K.; Marquis, M.; Tignor, M.M. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Lonbani, M.; Arzani, A. Morpho-physiological traits associated with terminal drought stress tolerance in triticale and wheat. Agron. Res. 2011, 9, 315–329. [Google Scholar]
- Ansari, W.A.; Atri, N.; Singh, B.; Kumar, P.; Pandey, S. Morpho-physiological and biochemical responses of muskmelon genotypes to different degree of water deficit. Photosynthetica 2018, 56, 1019–1030. [Google Scholar] [CrossRef]
- Praba, M.L.; Cairns, J.E.; Babu, R.C.; Lafitte, H.R. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 2009, 195, 30–46. [Google Scholar] [CrossRef]
- Deeba, F.; Pandey, A.K.; Ranjan, S.; Mishra, A.; Singh, R.; Sharma, Y.K.; Shirke, P.A.; Pandey, V. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress. Plant Physiol. Biochem. 2012, 53, 6–18. [Google Scholar] [CrossRef]
- Şimşek, M.; Kaçıra, M.; Tonkaz, T. The effects of different drip irrigation regimes on watermelon [Citrullus lanatus (Thunb.)] yield and yield components under semi-arid climatic conditions. Aust. J. Agric. Res. 2004, 55, 1149–1157. [Google Scholar] [CrossRef]
- Özmen, S.; Kanber, R.; Sarı, N.; Ünlü, M. The effects of deficit irrigation on nitrogen consumption, yield, and quality in drip irrigated grafted and ungrafted watermelon. J. Integr. Agric. 2015, 14, 966–976. [Google Scholar] [CrossRef] [Green Version]
- Kirnak, H.; Dogan, E. Effect of seasonal water stress imposed on drip irrigated second crop watermelon grown in semi-arid climatic conditions. Irrig. Sci. 2009, 27, 155–164. [Google Scholar] [CrossRef]
- Kuscu, H.; Turhan, A.; Ozmen, N.; Aydinol, P.; Buyukcangaz, H.; Demir, A.O. Deficit irrigation effects on watermelon (Citrullus vulgaris) in a sub humid environment. J. Anim. Plant Sci. 2015, 25, 1652–1659. [Google Scholar]
- Flores, F.B.; Sanchez-Bel, P.; Estañ, M.T.; Martinez-Rodriguez, M.M.; Moyano, E.; Morales, B.; Campos, J.F.; Garcia-Abellán, J.O.; Egea, M.I.; Garcia, N.F.; et al. The effectiveness of grafting to improve tomato fruit quality. Sci. Hortic. 2010, 125, 211–217. [Google Scholar] [CrossRef]
- King, S.R.; Davis, A.R.; Zhang, X.; Crosby, K. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Sci. Hortic. 2010, 127, 106–111. [Google Scholar] [CrossRef]
- Dane, F.; Liu, J.; Zhang, C. Phylogeograghy of the bitter apple, Citrullus colocynthis. Genet. Resour. Crop Evol. 2006, 54, 327–336. [Google Scholar] [CrossRef]
- Rahimi, R.; Amin, G.; Ardekani, M.R.S. A review on Citrullus colocynthis Schrad.: From traditional Iranian medicine to modern phytotherapy. J. Altern. Complement. Med. 2012, 18, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.S.; Kumawat, R.N. Study of Seed Dormancy in Colocynth (Citrullus colocynthis L.) with After-Ripening of Fruits, Seed Extraction Procedures and Period of Seed Storage. Natl. Acad. Sci. Lett. 2013, 36, 373–378. [Google Scholar] [CrossRef]
- Si, Y.; Zhang, C.; Meng, S.; Dane, F. Gene expression changes in response to drought stress in Citrullus colocynthis. Plant Cell Rep. 2009, 28, 997–1009. [Google Scholar] [CrossRef]
- Bigdelo, M.; Hassandokht, M.R.; Rouphael, Y.; Colla, G.; Soltani, F.; Salehi, R. Evaluation of bitter apple (Citrullus colocynthis (L.) Schrad) as potential rootstock for watermelon. Aust. J. Crop Sci. 2017, 11, 727–732. [Google Scholar] [CrossRef]
- Colla, G.; Cardona Suarez, C.M.; Cardarelli, M.; Rouphael, Y. Improving nitrogen use efficiency in melon by grafting. HortScience 2010, 45, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Smart, R.; Bingham, G.E. Rapid estimates of relative water content. Plant Physiol. 1974, 53, 258–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtenhaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 603, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Kalunke, R.M.; Colla, G. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front. Plant Sci. 2015, 6, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pour-Aboughadareh, A.; Omidi, M.; Naghavi, M.R.; Etminan, A.; Mehrabi, A.A.; Poczai, P.; Bayat, H. Effect of water deficit stress on seedling biomass and physio-chemical characteristics in different species of wheat possessing the D genome. Agronomy 2019, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Solankey, S.S.; Singh, M. Breeding for drought tolerance in vegetables. Veg. Sci. 2012, 39, 1–15. [Google Scholar]
- Yuan, H.; Zhao, L.; Kong, Q.; Cheng, F.; Niu, M.; Xie, J.; Nawaz, M.A.; Bie, Z. Comprehensive mineral nutrition analysis of watermelon grafted onto two different rootstocks. Hortic. Plant J. 2016, 2, 105–113. [Google Scholar]
Treatment | Shoot | Leaf Area (cm2) | Vine Length (cm) | Internode Length (cm) | Number of Branches (n. plant−1) | |
---|---|---|---|---|---|---|
Fresh Weight (g plant−1) | Dry Weight (g plant−1) | |||||
Drought treatment (D) | ||||||
100% CC | 58.68 a | 8.17 a | 25.62 a | 109.71 a | 9.45 a | 3.49 |
50% CC | 37.60 b | 5.33 b | 17.27 b | 78.44 b | 6.18 b | 3.36 |
Graft combination (G) | ||||||
Ungrafted ‘Crimson Sweet’ | 42.94 b | 5.81 b | 20.38 | 83.75 b | 7.35 b | 3.14 |
‘Crimson Sweet’/‘Shintoza’ | 52.40 a | 7.33 a | 21.72 | 105.76 a | 7.70 ab | 3.47 |
‘Crimson Sweet’/‘Esfahan’ | 49.09 a | 7.10 a | 22.24 | 92.72 ab | 8.29 a | 3.67 |
D × G | ||||||
100% CC × Ungrafted ‘Crimson Sweet’ | 54.17 | 7.21 | 24.29 | 104.40 | 9.51 | 3.17 |
100% CC × ‘Crimson Sweet’/‘Shintoza’ | 64.93 | 9.08 | 25.80 | 116.45 | 9.40 | 3.61 |
100% CC × ‘Crimson Sweet’/‘Esfahan’ | 56.95 | 8.21 | 26.78 | 108.28 | 9.44 | 3.69 |
50% CC × Ungrafted ‘Crimson Sweet’ | 31.71 | 4.40 | 16.46 | 63.09 | 5.20 | 3.11 |
50% CC × ‘Crimson Sweet’/‘Shintoza’ | 39.87 | 5.58 | 17.64 | 95.07 | 6.19 | 3.33 |
50% CC × ‘Crimson Sweet’/‘Esfahan’ | 41.23 | 6.00 | 17.70 | 77.15 | 7.16 | 3.64 |
Significance a | ||||||
Drought treatment | ** | ** | ** | ** | ** | NS |
Graft combination | * | * | NS | * | * | NS |
D × G | NS | NS | NS | NS | NS | NS |
Treatment | Leaf Pigments (mg g−1 FW) | Chl a/b | SPAD Index | Fv/Fm | |
---|---|---|---|---|---|
Chl. | Car. | ||||
Drought treatment (D) | |||||
100% CC | 1.54 | 0.33 a | 3.26 a | 44.09 a | 0.82 a |
50% CC | 1.42 | 0.29 b | 2.81 b | 42.38 b | 0.80 b |
Graft combination (G) | |||||
Ungrafted ‘Crimson Sweet’ | 1.48 | 0.32 | 3.14 | 44.18 a | 0.807 |
‘Crimson Sweet’/‘Shintoza’ | 1.57 | 0.31 | 2.83 | 42.37 b | 0.808 |
‘Crimson Sweet’/‘Esfahan’ | 1.39 | 0.30 | 3.13 | 43.15 ab | 0.818 |
D × G | |||||
100% CC × Ungrafted ‘Crimson Sweet’ | 1.55 | 0.34 | 3.22 | 45.24 | 0.81 |
100% CC × ‘Crimson Sweet’/‘Shintoza’ | 1.59 | 0.33 | 3.22 | 43.22 | 0.82 |
100% CC × ‘Crimson Sweet’/‘Esfahan’ | 1.48 | 0.33 | 3.32 | 43.83 | 0.83 |
50% CC × Ungrafted ‘Crimson Sweet’ | 1.40 | 0.30 | 3.05 | 43.12 | 0.80 |
50% CC × ‘Crimson Sweet’/‘Shintoza’ | 1.56 | 0.29 | 2.43 | 41.53 | 0.80 |
50% CC × ‘Crimson Sweet’/‘Esfahan’ | 1.29 | 0.27 | 2.94 | 42.48 | 0.81 |
Significance a | |||||
Drought treatment | NS | ** | ** | ** | ** |
Graft combination | NS | NS | NS | * | NS |
D × G | NS | NS | NS | NS | NS |
Treatment | Antioxidant Enzymes (mmol mg protein−1 min−1) | MDA (nmol g−1 FW) | EL (%) | RWC (%) | |
---|---|---|---|---|---|
CAT | GPX | ||||
Drought treatment (D) | |||||
100% CC | 82.67 b | 1.56 b | 5.91 b | 70.96 b | 82.67 b |
50% CC | 137.36 a | 3.06 a | 8.25 a | 81.34 a | 137.36 a |
Graft combination (G) | |||||
Ungrafted ‘Crimson Sweet’ | 102.43 | 2.08 b | 7.21 a | 78.35 a | 102.43 |
‘Crimson Sweet’/‘Shintoza’ | 119.96 | 2.20 ab | 7.23 a | 77.72 a | 119.96 |
‘Crimson Sweet’/‘Esfahan’ | 107.66 | 2.63 a | 6.81 b | 72.38 b | 107.66 |
D × G | |||||
100% CC × Ungrafted ‘Crimson Sweet’ | 66.98 | 1.38 | 6.18 c | 73.53 c | 66.98 |
100% CC × ‘Crimson Sweet’/‘Shintoza’ | 88.84 | 1.47 | 5.61 c | 71.14 d | 88.84 |
100% CC × ‘Crimson Sweet’/‘Esfahan’ | 92.19 | 1.81 | 5.95 dc | 68.19 e | 92.19 |
50% CC × Ungrafted ‘Crimson Sweet’ | 137.88 | 2.79 | 8.24 ab | 83.16 a | 137.88 |
50% CC × ‘Crimson Sweet’/‘Shintoza’ | 151.08 | 2.94 | 8.84 a | 84.30 a | 151.08 |
50% CC × ‘Crimson Sweet’/‘Esfahan’ | 123.14 | 3.44 | 7.68 b | 76.56 b | 123.14 |
Significance a | |||||
Drought treatment | ** | ** | ** | ** | ** |
Graft combination | NS | * | ** | ** | * |
D × G | NS | NS | * | * | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bikdeloo, M.; Colla, G.; Rouphael, Y.; Hassandokht, M.R.; Soltani, F.; Salehi, R.; Kumar, P.; Cardarelli, M. Morphological and Physio-Biochemical Responses of Watermelon Grafted onto Rootstocks of Wild Watermelon [Citrullus colocynthis (L.) Schrad] and Commercial Interspecific Cucurbita Hybrid to Drought Stress. Horticulturae 2021, 7, 359. https://doi.org/10.3390/horticulturae7100359
Bikdeloo M, Colla G, Rouphael Y, Hassandokht MR, Soltani F, Salehi R, Kumar P, Cardarelli M. Morphological and Physio-Biochemical Responses of Watermelon Grafted onto Rootstocks of Wild Watermelon [Citrullus colocynthis (L.) Schrad] and Commercial Interspecific Cucurbita Hybrid to Drought Stress. Horticulturae. 2021; 7(10):359. https://doi.org/10.3390/horticulturae7100359
Chicago/Turabian StyleBikdeloo, Mahdi, Giuseppe Colla, Youssef Rouphael, Mohammad Reza Hassandokht, Forouzandeh Soltani, Reza Salehi, Pradeep Kumar, and Mariateresa Cardarelli. 2021. "Morphological and Physio-Biochemical Responses of Watermelon Grafted onto Rootstocks of Wild Watermelon [Citrullus colocynthis (L.) Schrad] and Commercial Interspecific Cucurbita Hybrid to Drought Stress" Horticulturae 7, no. 10: 359. https://doi.org/10.3390/horticulturae7100359
APA StyleBikdeloo, M., Colla, G., Rouphael, Y., Hassandokht, M. R., Soltani, F., Salehi, R., Kumar, P., & Cardarelli, M. (2021). Morphological and Physio-Biochemical Responses of Watermelon Grafted onto Rootstocks of Wild Watermelon [Citrullus colocynthis (L.) Schrad] and Commercial Interspecific Cucurbita Hybrid to Drought Stress. Horticulturae, 7(10), 359. https://doi.org/10.3390/horticulturae7100359