Morphological and Physiological Properties of Greenhouse-Grown Cucumber Seedlings as Influenced by Supplementary Light-Emitting Diodes with Same Daily Light Integral
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Light Treatments
2.3. Growth Measurements
2.3.1. Measurements of Photosynthetic Performance
2.3.2. Measurements of Plant Morphology and Growth Parameters
2.3.3. Measurement of Root Activity
2.3.4. Stem Firmness and Cellulose Content of Cucumber Seedlings
2.3.5. Measurements of Activities of Antioxidant Enzymes
2.3.6. Supplementary Light Use Efficiency
2.4. Statistical Analysis
3. Results and Discussion
3.1. Impacts of Supplementary Light Duration and Light Intensity on Photosynthetic Characteristics of Cucumber Seedlings
3.2. Influences of Supplementary Light Duration and Light Intensity on Plant Morphology and Growth of Cucumber Seedlings
3.3. Effects of Supplementary Light Duration and Light Intensity on Stem Firmness and Cellulose Content of Cucumber Seedlings
3.4. Effects of Supplementary Light Duration and Light Intensity on Activities of Antioxidant Enzymes of Cucumber Seedlings
3.5. Supplementary Light Use Efficiency in Cucumber Seedlings Grown in a Greenhouse
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinho, P.; Jokinen, K.; Halonen, L. The influence of the LED light spectrum on the growth and nutrient uptake of hydroponically grown lettuce. Lighting Res. Technol. 2016, 0, 1–16. [Google Scholar] [CrossRef]
- Liu, M.C.; Ji, Y.H.; Wu, Z.H.; He, W.M. Current situation and development trend of vegetable seedling industry in China. China Veg. 2018, 11, 1–7. [Google Scholar]
- FAO. Crops and Livestock Products. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 7 June 2021).
- Ji, F.; Wei, S.Q.; Liu, N.; Xu, L.J.; Yang, P. Growth of cucumber seedlings in different varieties as affected by light environment. Int. J. Agric. Biol. Eng. 2020, 13, 73–78. [Google Scholar] [CrossRef]
- Yan, Z.N.; He, D.X.; Niu, G.; Zhou, Q.; Qu, Y.H. Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes. Hort. Sci. 2019, 54, 1737–1744. [Google Scholar] [CrossRef] [Green Version]
- He, D.X.; Yan, Z.N.; Sun, X.; Yang, P. Leaf development and energy yield of hydroponic sweetpotato seedlings using single-node cutting as influenced by light intensity and LED spectrum. J. Plant Physiol. 2020, 254, 153274. [Google Scholar] [CrossRef]
- Palma, C.F.F.; Castro-Alves, V.; Morales, L.O.; Rosenqvist, E.; Ottosen, C.O.; Strid, A. Spectral composition of light affects sensitivity to UV-B and photoinhibition in cucumber. Front. Plant Sci. 2021, 11, 610011. [Google Scholar] [CrossRef]
- Hernández, R.; Kubota, C. Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Sci. Hortic. 2014, 173, 92–99. [Google Scholar] [CrossRef]
- Matysiak, B. The Effect of supplementary LED lighting on the morphological and physiological traits of Miniature Rosa×Hybrida ‘Aga’ and the development of Powdery Mildew (Podosphaera pannosa) under greenhouse conditions. Plants 2021, 10, 417. [Google Scholar] [CrossRef]
- Paucek, I.; Pennisi, G.; Pistillo, A.; Appolloni, E.; Crepaldi, A.; Calegari, B.; Spinelli, F.; Cellini, A.; Gabarrell, X.; Orsini, F.; et al. Supplementary LED interlighting improves yield and precocity of greenhouse tomatoes in the Mediterranean. Agronomy 2020, 10, 1002. [Google Scholar] [CrossRef]
- Ghorbanzadeh, P.; Aliniaeifard, S.; Esmaeili, M.; Mashal, M.; Azadegan, B.; Seif, M. Dependency of growth, water use efficiency, chlorophyll fluorescence, and stomatal characteristics of lettuce plants to light intensity. J. Plant Growth Regul. 2020, 39. [Google Scholar] [CrossRef]
- Zhang, M.Z.; Whitman, C.M.; Runkle, E.S. Manipulating growth, color, and taste attributes of fresh cut lettuce by greenhouse supplemental lighting. Sci. Hortic. 2019, 252, 274–282. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Paciello, P.; Santamaria, P. Supplemental LED increases tomato yield in mediterranean semi-closed greenhouse. Agronomy 2020, 10, 1353. [Google Scholar] [CrossRef]
- Lu, N.; Bernardo, E.L.; Tippayadarapanich, C.; Takagaki, M.; Kagawa, N.; Yamori, W. Growth and accumulation of secondary metabolites in perilla as affected by photosynthetic photon flux density and electrical conductivity of the nutrient solution. Front. Plant Sci. 2017, 8, 708. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.N.; He, D.X.; Niu, G.; Zhou, Q.; Qu, Y.H. Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs. Int. J. Agric. Biol. Eng. 2020, 13, 33–40. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Meinen, E.; Nijs, E.M.F.M.; Raaphorst, M.G.M. Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hortic. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Kramchote, S.; Glahan, S. Effects of LED supplementary lighting and NPK fertilization on fruit quality of melon (Cucumis melo L.) grown in plastic house. J. Hortic. Res. 2020, 28, 111–122. [Google Scholar] [CrossRef]
- Wei, H.; Zhao, J.; Hu, J.T.; Jeong, B.R. Effect of supplementary light intensity on quality of grafted tomato seedlings and expression of two photosynthetic genes and proteins. Agronomy 2019, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Lu, W.; Hu, G.; Wang, X.C.; Zhang, Y.; Sun, G.X.; Fang, Z.C. Effects of light-emitting diode supplementary lighting on the winter growth of greenhouse plants in the Yangtze River Delta of China. Bot. Stud. 2016, 57, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Wang, M.Z.; Jeong, B.R. Effect of supplementary lighting duration on growth and activity of antioxidant enzymes in grafted watermelon seedlings. Agronomy 2020, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Elkins, C.; van Iersel, M.W. Longer photoperiods with the same daily light integral increase daily electron transport through photosystem II in lettuce. Plants 2020, 9, 1172. [Google Scholar] [CrossRef] [PubMed]
- Kelly, N.; Choe, D.; Meng, Q.W.; Runkle, E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Palmer, S.; van Iersel, M.W. Increasing growth of lettuce and mizuna under sole-source LED lighting using longer photoperiods with the same daily light integral. Agronomy 2020, 10, 1659. [Google Scholar] [CrossRef]
- Tsuruyama, J.; Shibuya, T. Growth and flowering responses of seed-propagated strawberry seedlings to different photoperiods in controlled environment chambers. Hort. Technol. 2018, 28, 453–458. [Google Scholar] [CrossRef]
- Morrow, R.C. LED lighting in horticulture. Hort. Sci. 2008, 43, 1947–1950. [Google Scholar] [CrossRef] [Green Version]
- Hernández, R.; Kubota, C. Tomato seedling growth and morphological responses to supplemental LED lighting red:blue ratios under varied daily solar light integrals. Acta Hort. 2012, 956, 187–194. [Google Scholar] [CrossRef]
- Mitchell, C.A.; Dzakovich, M.P.; Gomez, C.; Lopez, R.; Burr, J.F.; Hernández, R.; Kubota, C.; Currey, C.J.; Meng, Q.W.; Runkle, E.S.; et al. Light-emitting diodes in horticulture. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons Inc.: London, UK, 2015; pp. 6–8. [Google Scholar]
- Piovene, C.; Orsini, F.; Bosi, S.; Sanoubar, R.; Bregola, V.; Dinelli, G.; Gianquinto, G. Optimal red:blue ratio in led lighting for nutraceutical indoor horticulture. Sci. Hortic. 2015, 193, 202–208. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A.; Siomos, A.S.; Radoglou, K.; Dangitsis, C. Optimal LED wavelength composition for the production of high-quality watermelon and interspecific squash seedlings used for grafting. Agronomy 2019, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Dyśko, J.; Kaniszewski, S. Effects of LED and HPS lighting on the growth, seedling morphology and yield of greenhouse tomatoes and cucumbers. Hortic. Sci. 2021, 48, 22–29. [Google Scholar] [CrossRef]
- Choong, T.W.; He, J.; Qin, L.; Lee, S.K. Quality of supplementary LED lighting effects on growth and photosynthesis of two different Lactuca recombinant inbred lines (RILs) grown in a tropical greenhouse. Photosynthetica 2018, 56, 1278–1286. [Google Scholar] [CrossRef]
- Hammock, H.A.; Kopsell, D.A.; Sams, C.E. Supplementary blue and red LED narrowband wavelengths improve biomass yield and nutrient uptake in hydroponically grown basil. Hort. Sci. 2020, 55, 1888–1897. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.M.; Hu, D.W.; Yu, J.; Liu, H. Effect of green, yellow and purple radiation on biomass, photosynthesis, morphology and soluble sugar content of leafy lettuce via spectral wavebands “knock out”. Sci. Hortic. 2018, 236, 10–17. [Google Scholar] [CrossRef]
- Zhang, G.; Shen, Y.Q.; Takagaki, M.; Kozai, T.; Yamori, W. Supplemental upward lighting from underneath to obtain higher marketable lettuce (Lactuca sativa) leaf fresh weight by retarding senescence of outer leaves. Front. Plant Sci. 2015, 6, 1110. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.L.; Xu, H.; Shao, L.; Li, T.L.; Wang, Y.Z.; Wang, R. Response of photosynthetic capacity of tomato leaves to different LED light wavelength. Environ. Exp. Bot. 2018, 150, 161–171. [Google Scholar] [CrossRef]
- Xu, L.J. Effects of Artificial Lighting Environment on Growth of Pepper and Cucumber Transplant. Master’s Thesis, China Agricultural University, Beijing, China, 2015; pp. 41–58. [Google Scholar]
- Han, S.Q.; Wang, X.F.; Wei, M.; Li, Y. Study of plug seedling index if sweet pepper and relationship between seedling index and characters. J. Shandong Agric. Univ. 2004, 35, 187–190. [Google Scholar]
- Li, H.S. Principle and Technology of Plant Physiological and Biochemical Experiments; Higher Education Press: Beijing, China, 2003; pp. 119–120. [Google Scholar]
- Updegraff, D.M. Semi-micro determination of cellulose in biological materials. Anal. Biochem. 1969, 32, 420–424. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase I. Occurrences in higher plants. Plant Physiol. 1977, 59, 309–414. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Method. Enzymol. 1984, 105, 121–126. [Google Scholar]
- Weaver, G.; van Iersel, M.W. Longer photoperiods with adaptive lighting control can improve growth of greenhouse-grown ‘Little Gem’ lettuce (Lactuca sativa). Hort. Sci. 2020, 55, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Elkins, C.; van Iersel, M.W. Longer photoperiods with the same daily light integral improve growth of Rudbeckia seedlings in a greenhouse. Hort. Sci. 2020, 55, 1676–1682. [Google Scholar] [CrossRef]
- Langton, F.A.; Adams, S.R.; Cockshull, K.E. Effects of photoperiod on leaf greenness of four bedding plant species. J. Hort. Sci. Biotechnol. 2003, 78, 400–404. [Google Scholar] [CrossRef]
- Ni, Y.W.; Lin, K.H.; Chen, K.H.; Wu, C.W.; Chang, Y.S. Flavonoid compounds and photosynthesis in Passiflora plant leaves under varying light intensities. Plants. 2020, 9, 633. [Google Scholar] [CrossRef]
- Colonna, E.; Rouphael, Y.; Barbieri, G.; Pascale, S.D. Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem. 2016, 199, 702–710. [Google Scholar] [CrossRef]
- Fu, Y.M.; Li, H.Y.; Yu, J.; Liu, H.; Cao, Z.Y.; Manukovskyd, N.S.; Liu, H. Interaction effects of light intensity and nitrogen concentration ongrowth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. Var. youmaicai). Sci. Hortic. 2017, 214, 51–57. [Google Scholar] [CrossRef]
- Zheng, J.F.; He, D.X.; Ji, F. Effects of light intensity and photoperiod on runner plant propagation of hydroponic strawberry transplants under LED lighting. Int. J. Agric. Biol. Eng. 2019, 12, 26–31. [Google Scholar] [CrossRef]
- Zheng, J.F.; Ji, F.; He, D.X.; Niu, G. Effect of light intensity on rooting and growth of hydroponic strawberry runner plants in a LED plant factory. Agronomy 2019, 9, 875. [Google Scholar] [CrossRef] [Green Version]
- Zhen, S.Y.; van Iersel, M.W. Photochemical acclimation of three contrasting species to different light levels: Implications for optimizing supplemental lighting. J. Am. Soc. Hort. Sci. 2017, 142, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.J.; Niu, G.; Gu, M.M.; Masabni, J.G. Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. Hort. Sci. 2018, 53, 496–503. [Google Scholar] [CrossRef]
- Park, Y.; Runkle, E.S. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environ. Exp. Bot. 2017, 136, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Song, J.L.; Huang, H.; Song, S.W.; Zhang, Y.T.; Su, W.; Liu, H.C. Effects of photoperiod interacted with nutrient solution concentration on nutritional quality and antioxidant and mineral content in lettuce. Agronomy 2020, 10, 920. [Google Scholar] [CrossRef]
- Fan, X.X.; Xu, Z.G.; Liu, X.Y.; Tang, C.M.; Wang, L.W.; Han, X.L. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Sci. Hortic. 2013, 153, 50–55. [Google Scholar] [CrossRef]
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F.M. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Kwon, S.J.; Kim, H.R.; Roy, S.K.; Kim, H.J.; Boo, H.O.; Woo, S.H.; Kim, H.H. Effects of temperature, light intensity and DIF on growth characteristics in Platycodon grandiflorum. J. Crop Sci. Biotech. 2019, 22, 379–386. [Google Scholar] [CrossRef]
- Sevillano, I.; Short, I.; Grant, J.; O’Reilly, C. Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings. For. Ecol. Manag. 2016, 374, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhou, L.; Wu, S.; Liu, L.; Huang, M.; Lin, S.; Ding, G. Effects of led light on Acacia melanoxylon bud proliferation in vitro and root growth ex vitro. Open Life Sci. 2019, 14, 349–357. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, Y.; Yang, M. Effects of composite led light on root growth and antioxidant capacity of Cunninghamia lanceolata tissue culture seedlings. Sci. Rep. 2019, 9, 9766. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.G.; Deng, Y.C.; Hussain, S.; Zou, J.L.; Yuan, J.; Luo, L.; Yang, C.Y.; Yuan, X.Q.; Yang, W.Y. Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) men.]. Field Crop. Res. 2016, 196, 261–267. [Google Scholar] [CrossRef]
- Hu, H.Z.; Zhang, R.; Feng, S.Q.; Wang, Y.M.; Wang, Y.T.; Fan, C.F.; Li, Y.; Liu, Z.Y.; Schneider, R.; Xia, T.; et al. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnol. J. 2018, 16, 976–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.Y.; Wang, Z.G.; Zhao, J.H.; Sun, J.H.; Bao, X.G.; Christie, P.; Zhang, F.S.; Li, L. Contribution of interspecific interactions and phosphorus application to sustainable and productive intercropping systems. Field Crops Res. 2013, 154, 53–64. [Google Scholar] [CrossRef]
- Shu, S.; Tang, Y.; Yuan, Y.; Sun, J.; Zhong, M.; Guo, S. The role of 24-epibrassinolide in the regulation of photosynthetic characteristics and nitrogen metabolism of tomato seedlings under a combined low temperature and weak light stress. Plant Physiol. Biochem. 2016, 107, 344–353. [Google Scholar] [CrossRef]
- Aumonde, T.Z.; Pedó, T.; Borella, J. Seed vigor, antioxidant metabolism and initial growth characteristics of red rice seedlings under different light intensities. Acta Bot. Bras. 2013, 27, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.L.; Jia, X.F.; Yu, B. Exogenous hydrogen peroxide influences antioxidant enzyme activity and lipid peroxidation in cucumber leaves at low light. Sci. Hortic. 2011, 129, 656–662. [Google Scholar] [CrossRef]
- Gong, J.; Liu, M.; Xu, S. Effects of light deficiency on the accumulation of saikosaponins and the ecophysiological characteristics of wild Bupleurum chinense DC. in China. Ind. Crop Prod. 2017, 99, 179–188. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Dong, H.; Song, S.W.; Su, W.; Liu, H.C. Morphological and physiological responses of cucumber seedlings to supplemental LED light under extremely low irradiance. Agronomy 2020, 10, 1698. [Google Scholar] [CrossRef]
- Zrig, A.; Tounekti, T.; AbdElgawad, H.; Hamouda, F.; Khemira, H. Influence of light intensity and salinity on growth and antioxidant machinery of Thymus vulgaris L. Indian J. Exp. Biol. 2020, 58, 323–335. [Google Scholar]
- Altaf, M.A.; Shahid, R.; Ren, M.X.; Altaf, M.M.; Khan, L.U.; Shahid, S.; Jahan, M.S. Melatonin alleviates salt damage in tomato seedling: A root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis. Sci. Hortic. 2021, 285, 110145. [Google Scholar] [CrossRef]
- Tian, S.; Guo, R.; Zou, X.; Zhang, X.; Yu, X.; Zhan, Y.; Ci, D.; Wang, M.; Wang, Y.; Si, T. Priming with the green leaf volatile (Z)-3-Hexeny-1-yl acetate enhances salinity stress tolerance in peanut (Arachis hypogaea L.) seedlings. Front. Plant Sci. 2019, 10, 785. [Google Scholar] [CrossRef]
- Lu, T.; Meng, Z.; Zhang, G.; Qi, M.; Sun, Z.; Liu, Y.; Li, T. Sub-high Temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front. Plant Sci. 2017, 8, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, S.; Hwang, H.; Chun, C.; Jang, Y.; Lee, H.J.; Wi, S.H.; Yeo, K.H.; Yu, I.; Kwack, Y. Evaluation of air temperature, photoperiod and light intensity conditions to produce cucumber scions and rootstocks in a plant factory with artificial lighting. Horticulturae 2021, 7, 102. [Google Scholar] [CrossRef]
Supplementary Light Duration (h·d−1) | Chlorophyll Content (SPAD) | Net Photosynthetic Rate (μmol·m−2·s−1) | Transpiration Rate (mmol·m−2·s−1) | Substomatal CO2 Concentration (μmol·mol−1) | Stomatal Conductance (mmol·m−2·s−1) | |||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 44.6 ± 2.7 | c z | 3.5 ± 0.4 | d | 0.39 ± 0.01 | c | 187 ± 18 | c | 27.9 ± 0.8 | c |
6 | 49.6 ± 5.8 | b | 6.0 ± 0.6 | c | 0.68 ± 0.06 | b | 220 ± 12 | b | 58.4 ± 1.7 | b |
8 | 52.7 ± 1.2 | ab | 6.8 ± 0.3 | b | 1.14 ± 0.18 | a | 267 ± 24 | a | 97.4 ± 17.6 | a |
10 | 53.6 ± 3.0 | ab | 7.9 ± 0.4 | a | 1.05 ± 0.14 | a | 238 ± 13 | ab | 89.8 ± 12.7 | a |
12 | 56.1 ± 0.9 | a | 6.8 ± 0.4 | b | 0.76 ± 0.09 | b | 193 ± 17 | bc | 58.1 ± 9.1 | b |
Supplementary Light Duration (h d−1) | Leaf Length (cm) | Leaf Width (cm) | Shoot Fresh Weight (g plant−1) | Root Fresh Weight (g plant−1) | Shoot Dry Weight (g plant−1) | Root Dry Weight (g plant−1) | Seedling Quality Index | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 5.9 ± 0.4 | c z | 5.4 ± 0.5 | d | 0.96 ± 0.05 | c | 0.040 ± 0.004 | e | 0.073 ± 0.008 | d | 0.002 ± 0.001 | d | 0.011 ± 0.001 | e |
6 | 7.6 ± 0.1 | b | 7.3 ± 0.6 | c | 2.97 ± 0.18 | b | 0.312 ± 0.031 | d | 0.271 ± 0.016 | c | 0.018 ± 0.002 | c | 0.027 ± 0.002 | d |
8 | 7.7 ± 0.5 | b | 8.1 ± 0.3 | b | 3.22 ± 0.25 | b | 0.645 ± 0.049 | c | 0.315 ± 0.004 | ab | 0.046 ± 0.005 | b | 0.061 ± 0.004 | c |
10 | 9.0 ± 0.1 | a | 9.2 ± 0.3 | a | 4.53 ± 0.26 | a | 1.191 ± 0.131 | a | 0.336 ± 0.032 | a | 0.064 ± 0.004 | a | 0.091 ± 0.005 | a |
12 | 8.1 ± 0.4 | b | 8.0 ± 0.4 | b | 4.09 ± 0.44 | a | 0.769 ± 0.037 | b | 0.298 ± 0.011 | b | 0.048 ± 0.002 | b | 0.070 ± 0.002 | b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Wang, L.; Wang, Y.; Chu, Y.; Lin, D.; Yang, Y. Morphological and Physiological Properties of Greenhouse-Grown Cucumber Seedlings as Influenced by Supplementary Light-Emitting Diodes with Same Daily Light Integral. Horticulturae 2021, 7, 361. https://doi.org/10.3390/horticulturae7100361
Yan Z, Wang L, Wang Y, Chu Y, Lin D, Yang Y. Morphological and Physiological Properties of Greenhouse-Grown Cucumber Seedlings as Influenced by Supplementary Light-Emitting Diodes with Same Daily Light Integral. Horticulturae. 2021; 7(10):361. https://doi.org/10.3390/horticulturae7100361
Chicago/Turabian StyleYan, Zhengnan, Long Wang, Yifei Wang, Yangyang Chu, Duo Lin, and Yanjie Yang. 2021. "Morphological and Physiological Properties of Greenhouse-Grown Cucumber Seedlings as Influenced by Supplementary Light-Emitting Diodes with Same Daily Light Integral" Horticulturae 7, no. 10: 361. https://doi.org/10.3390/horticulturae7100361
APA StyleYan, Z., Wang, L., Wang, Y., Chu, Y., Lin, D., & Yang, Y. (2021). Morphological and Physiological Properties of Greenhouse-Grown Cucumber Seedlings as Influenced by Supplementary Light-Emitting Diodes with Same Daily Light Integral. Horticulturae, 7(10), 361. https://doi.org/10.3390/horticulturae7100361