The Dominance of Chitosan Hydrochloride over Modern Natural Agents or Basic Substances in Efficacy against Phytophthora infestans, and Its Safety for the Non-Target Model Species Eisenia fetida
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substances Used in the Experiment
2.1.1. BSs, LRASs Substance Approved for or Applicable in Organic Farming
2.1.2. Natural Plant Extracts
2.1.3. Botanical Pesticides
2.1.4. Reference Fungicide Mixture
2.2. Efficacy of Chitosan in Comparison with Other Eco-Friendly or BS Compounds
2.3. The Efficacy of Chitosan Compared to Other Eco-Friendly or BS Substances on Model Host Plants under Experimental Laboratory Conditions
2.4. Efficacy of Chitosan and the Effect of Repeated Application under Outdoor Conditions
2.5. Direct In Vitro Inhibitory Efficacy of Chitosan and Minimum Inhibitory Concentration
2.6. Toxicity of Chitosan against Useful Non-Target Organism Eisenia Fetida (Savigny)
2.7. Statistical Analysis
2.7.1. In Vitro Agar Dilution Experiment and MIC50 Assessment
2.7.2. In Vivo Experiments and Toxicity Test Evaluation
3. Results
3.1. Efficacy of Chitosan in Comparison with Other Eco-Friendly or BS Compounds
3.2. The Efficacy of Chitosan Compared to Other Eco-Friendly or BS Substances on Model Host Plants under Experimental Laboratory Conditions
3.3. Efficacy of Chitosan and the Effect of Repeated Application under Outdoor Conditions
3.4. Direct In Vitro Inhibitory Efficacy of Chitosan and Minimum Inhibitory Concentration
3.5. Toxicity of Chitosan against Useful Non-Target Organism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; de Paula, R.G.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal Agents in Agriculture: Friends and Foes of Public Health. Biomolecules 2019, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Marchand, P.A. Basic substances: An opportunity for approval of low-concern substances under EU pesticide regulation. Pest Manag. Sci. 2015, 71, 1197–1200. [Google Scholar] [CrossRef]
- SANCO. Review Report for the Basic Substance Chitosan Hydrochloride; SANCO/12388/2013–rev. 2. 20 March 2014; European Commission; Health and Consumers Directorate-General: Brussels, Belgium, 2014. [Google Scholar]
- Goy, R.C.; de Britto, D.; Assis, O.B.G. A Review of the Antimicrobial Activity of Chitosan. Polimeros 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R. Effectiveness of Environmentally Safe Food Additives and Food Supplements in an in Vitro Growth Inhibition of Significant Fusarium, Aspergillus and Penicillium species. Plant Prot. Sci. 2018, 54, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Zabka, M.; Pavela, R.; Travnickova, M.; Barnet, M. Calcium disodium ethylenediaminetetraacetate as a safe compound for crop protection with the potential to extend the basic substances group. Plant Prot. Sci. 2020, 56, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Akca, G.; Ozdemir, A.; Oner, Z.G.; Senel, S. Comparison of different types and sources of chitosan for the treatment of infections in the oral cavity. Res. Chem. Intermed. 2018, 44, 4811–4825. [Google Scholar] [CrossRef]
- Do, A.R.; Cho, S.J.; Cho, Y.Y.; Kwon, E.Y.; Choi, J.Y.; Lee, J.H.; Han, Y.; Kim, Y.S.; Piao, Z.; Shin, Y.C.; et al. Antiobesity Effects of Short-Chain Chitosan in Diet-Induced Obese Mice. J. Med. Food 2018, 21, 927–934. [Google Scholar] [CrossRef]
- Erman, A.; Veranic, P. The Use of Polymer Chitosan in Intravesical Treatment of Urinary Bladder Cancer and Infections. Polymers 2018, 10, 265. [Google Scholar] [CrossRef] [Green Version]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef] [Green Version]
- Judelson, H.S. The genetics and biology of Phytophthora infestans: Modern approaches to a historical challenge. Fungal Genet. Biol. 1997, 22, 65–76. [Google Scholar] [CrossRef]
- Turner, R.S. After the famine: Plant pathology, Phytophthora infestans, and the late blight of potatoes, 1845–1960. Hist. Stud. Phys. Biol. Sci. 2005, 35, 341–370. [Google Scholar] [CrossRef]
- Fry, W.E.; Birch, P.R.J.; Judelson, H.S.; Grunwald, N.J.; Danies, G.; Everts, K.L.; Gevens, A.J.; Gugino, B.K.; Johnson, D.A.; Johnson, S.B.; et al. Five Reasons to Consider Phytophthora infestans a Reemerging Pathogen. Phytopathology 2015, 105, 966–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olanya, O.M.; Larkin, R.P. Efficacy of essential oils and biopesticides on Phytophthora infestans suppression in laboratory and growth chamber studies. Biocontrol Sci. Techn. 2006, 16, 901–917. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R.; Slezakova, L. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Ind. Crop. Prod. 2009, 30, 250–253. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere 2013, 93, 1051–1056. [Google Scholar] [CrossRef]
- Pavela, R. Essential oils from Foeniculum vulgare Miller as a safe environmental insecticide against the aphid Myzus persicae Sulzer. Environ. Sci. Pollut. Res. 2018, 25, 10904–10910. [Google Scholar] [CrossRef]
- OECD. Guideline for Testing of Chemicals No. 207. Earthworm, Acute Toxicity Tests; OECD—Guideline for Testing Chemicals: Paris, France, 1984. [Google Scholar]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Bartolucci, F.; Canale, A.; Maggi, F. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’ to a source of effective and eco-friendly botanical insecticides. Ind. Crop. Prod. 2019, 134, 26–32. [Google Scholar] [CrossRef]
- Finney, D.J. Probit Analysis; Cambridge University Press: London, UK, 1971; p. 333. [Google Scholar]
- Grunwald, N.J.; Flier, W.G. The biology of Phytophthora infestans at its center of origin. Annu. Rev. Phytopathol. 2005, 43, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Whisson, S.C.; Boevink, P.C.; Wang, S.M.; Birch, P.R.J. The cell biology of late blight disease. Curr. Opin. Microbiol. 2016, 34, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Savory, A.I.M.; Grenville-Briggs, L.J.; Wawra, S.; van West, P.; Davidson, F.A. Auto-aggregation in zoospores of Phytophthora infestans: The cooperative roles of bioconvection and chemotaxis. J. R. Soc. Interface 2014, 11, 20140017. [Google Scholar] [CrossRef] [Green Version]
- Zabka, M.; Pavela, R.; Prokinova, E. Antifungal activity and chemical composition of twenty essential oils against significant indoor and outdoor toxigenic and aeroallergenic fungi. Chemosphere 2014, 112, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Amborabe, B.E.; Bonmort, J.; Fleurat-Lessard, P.; Roblin, G. Early events induced by chitosan on plant cells. J. Exp. Bot. 2008, 59, 2317–2324. [Google Scholar] [CrossRef] [Green Version]
- El Hadrami, A.; Adam, L.R.; El Hadrami, I.; Daayf, F. Chitosan in Plant Protection. Mar. Drugs 2010, 8, 968–987. [Google Scholar] [CrossRef]
- Lee, C.G.; Koo, J.C.; Park, J.K. Antifungal Effect of Chitosan as Ca2+ Channel Blocker. Plant Pathol. J. 2016, 32, 242–250. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.M.; Mackrill, J.J. Calcium Signaling in Oomycetes: An Evolutionary Perspective. Front. Physiol. 2016, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Meijer, H.J.G.; Schoina, C.; Wang, S.T.; Bouwmeester, K.; Hua, C.L.; Govers, F. Phytophthora infestans small phospholipase D-like proteins elicit plant cell death and promote virulence. Mol. Plant Pathol. 2019, 20, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Wu, S.G.; Chen, L.P.; Wu, C.X.; Yu, R.X.; Wang, Q.; Zhao, X.P. Toxicity assessment of 45 pesticides to the epigeic earthworm Eisenia fetida. Chemosphere 2012, 88, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.K.; Zhou, Z.Q.; Zhu, W.T. Evaluating the effects of the tebuconazole on the earthworm, Eisenia fetida by H-1 NMR-Based untargeted metabolomics and mRNA assay. Ecotox. Environ. Safe 2020, 194, 110370. [Google Scholar] [CrossRef] [PubMed]
- Sehnem, N.T.; Souza-Cruz, P.; Peralba, M.D.R.; Ayub, M.A.Z. Biodegradation of tebuconazole by bacteria isolated from contaminated soils. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2010, 45, 67–72. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program. NTP Technical Report on the Toxicity Study of Chitosan (CASRN 9012-76-4) Administered in Feed to Sprague Dawley [Crl: CD (SD)] Rats. 2017. Available online: https://ntp.niehs.nih.gov/ntp/htdocs/st_rpts/tox093_508.pdf?utm_source=direct&utm_medium=prod&utm_campaign=ntpgolinks&utm_term=tox093 (accessed on 1 December 2017).
- Kean, T.; Thanou, M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 2010, 62, 3–11. [Google Scholar] [CrossRef]
- Safety Data Sheet. Available online: https://www.nwmissouri.edu/naturalsciences/sds/c/Chitosan.pdf (accessed on 1 January 2014).
- Rizzo, L.; Di Gennaro, A.; Gallo, M.; Belgiorno, V. Coagulation/chlorination of surface water: A comparison between chitosan and metal salts. Sep. Purif. Technol. 2008, 62, 79–85. [Google Scholar] [CrossRef]
- Bullock, G.; Blazer, V.; Tsukuda, S.; Summerfelt, S. Toxicity of acidified chitosan for cultured rainbow trout (Oncorhynchus mykiss). Aquaculture 2000, 185, 273–280. [Google Scholar] [CrossRef] [Green Version]
Treatment and Concentration (%) | Inhibitory Effect (%) * | % of Infected Disk Area ± SD |
---|---|---|
Chitosan (1%) | 86.84 | 11.2 ± 8.8 a |
Chitosan (0.8%) | 84.49 | 13.2 ± 9.7 a |
Chitosan (0.4%) | 83.78 | 13.8 ± 10.6 a |
Chitosan (0.2%) | 76.26 | 20.2 ± 11.2 a |
Chitosan (0.1%) | 57.81 | 35.9 ± 20.1 b |
Sodium Bicarbonate (1%) | 41.36 | 49.9 ± 30.1 c |
EDTA (1%) | 8.11 | 78.2 ± 20.2 d |
Rock Effect (1%) | 6.35 | 79.7 ± 17.1 d |
Rock Effect New (1%) | 1.76 | 83.6 ± 14.3 d |
Humulus lupulus water extract (1%) | 5.76 | 80.2 ± 19.3 d |
Reynoutria japonica water extract (1%) | 0.94 | 84.3 ± 15.9 d |
Lecithin | −1.18 | 86.1 ± 15.5 d |
Talc (1%) | −3.17 | 87.8 ± 12.1 d |
Control | 85.1 ± 11.4 d | |
ANOVA (Df; F; P) | 13, 1246; 222.36;p < 0.0001 |
Treatment and Concentration (%) | Inhibitory Effect (%) * | % of Infected Leaf Area ± SD |
---|---|---|
Chitosan (0.4%) | 84.72 | 23.3 ± 7.2 a |
Sodium bicarbonate (1%) | 15.63 | 82.1 ± 13.0 b |
Rock Effect (1%) | 6.23 | 90.8 ± 8.2 b,c |
EDTA (1%) | 3.88 | 92.1 ± 6.9 b,c |
Talc (1%) | 2.94 | 92.9 ± 7.8 b,c |
Reynoutria japonica water extract (1%) | 2.47 | 93.3 ± 7.5 c |
Humuluslupulus water extract (1%) | 0.47 | 95.0 ± 11.5 c |
Rock Effect New (1%) | 0.00 | 95.4 ± 6.5 c |
Lecithin (1%) | −1.06 | 96.3 ± 4.1 c |
Control | 95.4 ± 6.2 c | |
ANOVA (Df; F; P) | 9, 110; 86.819; p < 0.0001 |
Chitosan (0.4%) | Inhibitory Effect (%) * | % of Infected Leaf Area ± SD |
---|---|---|
1 treatment | 37.25 | 48.0 ± 20.8 b |
2 treatments | 52.94 | 36.0 ± 12.3 b |
3 treatments | 90.46 | 7.3 ± 14.4 a |
4 treatments | 99.35 | 0.5 ± 2.8 a |
Control | 76.5 ± 10.0 c | |
ANOVA (Df; F; P) | 4, 45; 84.309; p < 0.0001 |
Compound | Inhibition (%) | S.D. | MIC50 a (mg/mL) | CI 95 b | Chi-Square c |
---|---|---|---|---|---|
Chitosan | 99.04 | ±0.05 | 0.293 | 0.238–0.356 | 5.405 |
Teb/Flp | 97.28 | ±0.47 | 0.258 | 0.204–0.311 | 6.194 |
Treatment and Concentration (g/kg) | 7th Day * (Mortality % ± SD) | 14th Day * (Mortality % ± SD) |
---|---|---|
Chitosan 1.5 | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Chitosan 1.2 | 0.0 ± 0.0a | 0.0 ± 0.0 a |
Chitosan 1.0 | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Chitosan 0.8 | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Chitosan 0.6 | 0.0 ± 0.0 a | 0.0 ±0.0 a |
Teb/Flp 0.56 | 66.7 ± 23.6 b | 100.0 ± 0.0 c |
Teb/Flp 0.48 | 16.7 ± 12.5 a | 73.3 ± 23.6 c |
Teb/Flp 0.40 | 13.3 ± 12.5 a | 40.0 ± 8.2 b |
Teb/Flp 0.32 | 0.0 ± 0.0 a | 13.3 ± 9.4 a,b |
Teb/Flp 0.24 | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
Control | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
ANOVA (Df; F; P) | 10, 22; 10.282; p < 0.0001 | 10, 22; 38.625; p < 0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žabka, M.; Pavela, R. The Dominance of Chitosan Hydrochloride over Modern Natural Agents or Basic Substances in Efficacy against Phytophthora infestans, and Its Safety for the Non-Target Model Species Eisenia fetida. Horticulturae 2021, 7, 366. https://doi.org/10.3390/horticulturae7100366
Žabka M, Pavela R. The Dominance of Chitosan Hydrochloride over Modern Natural Agents or Basic Substances in Efficacy against Phytophthora infestans, and Its Safety for the Non-Target Model Species Eisenia fetida. Horticulturae. 2021; 7(10):366. https://doi.org/10.3390/horticulturae7100366
Chicago/Turabian StyleŽabka, Martin, and Roman Pavela. 2021. "The Dominance of Chitosan Hydrochloride over Modern Natural Agents or Basic Substances in Efficacy against Phytophthora infestans, and Its Safety for the Non-Target Model Species Eisenia fetida" Horticulturae 7, no. 10: 366. https://doi.org/10.3390/horticulturae7100366
APA StyleŽabka, M., & Pavela, R. (2021). The Dominance of Chitosan Hydrochloride over Modern Natural Agents or Basic Substances in Efficacy against Phytophthora infestans, and Its Safety for the Non-Target Model Species Eisenia fetida. Horticulturae, 7(10), 366. https://doi.org/10.3390/horticulturae7100366