Variation in Cadmium Accumulation among Potato Cultivars Grown on Different Agricultural Sites: A Potential Tool for Reducing Cadmium in Tubers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growing Sites and Cultivars
2.2. Samples Collection and Analysis
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cavanagh, J.-E.; Yi, Z.; Gray, C.W.; Munir, K.; Lehto, N.; Robinson, B.H. Cadmium uptake by onions, lettuce and spinach in New Zealand: Implications for management to meet regulatory limits. Sci. Total Environ. 2019, 668, 780–789. [Google Scholar] [CrossRef]
- Fan, J.L.; Ziadi, N.; Bélanger, G.; Parent, L.É.; Cambouris, A.; Hu, Z.Y. Cadmium accumulation in potato tubers produced in Quebec. Can. J. Soil Sci. 2009, 89, 435–443. [Google Scholar] [CrossRef]
- Gray, C.W.; Yi, Z.; Lehto, N.J.; Robinson, B.H.; Munir, K.; Cavanagh, J.A.E. Effect of cultivar type and soil properties on cadmium concentrations in potatoes. New Zeal. J. Crop Hortic. Sci. 2019, 47, 182–197. [Google Scholar] [CrossRef]
- Loganathan, P.; Hedley, M.J.; Grace, N.D.; Lee, J.; Cronin, S.J.; Bolan, N.S.; Zanders, J.M. Fertiliser contaminants in New Zealand grazed pasture with special reference to cadmium and fluorine: A review. Aust. J. Soil Res. 2003, 41, 501–532. [Google Scholar] [CrossRef]
- Stolt, P.; Asp, H.; Hultin, S. Genetic variation in wheat cadmium accumulation on soils with different cadmium concentrations. J. Agron. Crop Sci. 2006, 192, 201–208. [Google Scholar] [CrossRef]
- Al Mamun, S.; Lehto, N.J.; Cavanagh, J.; McDowell, R.; Aktar, M.; Benyas, E.; Robinson, B.H. Effects of Lime and Organic Amendments Derived from Varied Source Materials on Cadmium Uptake by Potato. J. Environ. Qual. 2017, 46, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Oborn, I.; Jansson, G.; Johnsson, L. A field study on the influence of soil pH on trace element levels in spring wheat (Triticum aestivum), potatoes (Solanum tuberosum) and carrots (Daucus carota). Water Air Soil Pollut. 1995, 85, 835–840. [Google Scholar] [CrossRef]
- Tack, F.M.G. Trace Elements in Potato. Potato Res. 2014, 57, 311–325. [Google Scholar] [CrossRef]
- Ozturk, E.; Atsan, E.; Polat, T.; Kara, K. Variation in heavy metal concentrations of potato (Solanum tuberosum L.) cultivars. J. Anim. Plant. Sci. 2011, 21, 235–239. [Google Scholar]
- Clarke, J.M.; Norvell, W.A.; Clarke, F.R.; Buckley, W.T. Concentration of cadmium and other elements in the grain of near-isogenic durum lines. Can. J. Plant. Sci. 2002, 82, 27–33. [Google Scholar] [CrossRef]
- Dunbar, K.R.; McLaughlin, M.J.; Reid, R.J. The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L.). J. Exp. Bot. 2003, 54, 349–354. [Google Scholar] [CrossRef]
- Harris, N.S.; Taylor, G.J. Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant. Biol. 2013, 13, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrier, F.; Yan, B.; Candaudap, F.; Pokrovsky, O.S.; Gourdain, E.; Meleard, B.; Bussière, S.; Coriou, C.; Robert, T.; Nguyen, C.; et al. Variability in grain cadmium concentration among durum wheat cultivars: Impact of aboveground biomass partitioning. Plant. Soil 2016, 404, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Mengist, M.F.; Milbourne, D.; Griffin, D.; McLaughlin, M.J.; Creedon, J.; Jones, P.W.; Alves, S. Cadmium uptake and partitioning in potato (Solanum tuberosum L.) cultivars with different tuber-Cd concentration. Environ. Sci. Pollut. Res. 2017, 24, 27384–27391. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Ma, Y.; Li, Y.; Li, X.; Liu, C.; Du, X.; Shi, G. Comparative transcriptome analysis revealed key factors for differential cadmium transport and retention in roots of two contrasting peanut cultivars. BMC Genom. 2018, 19, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sui, F.-Q.; Chang, J.-D.; Tang, Z.; Liu, W.-J.; Huang, X.-Y.; Zhao, F.-J. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize. Plant. Soil 2018, 433, 377–389. [Google Scholar] [CrossRef]
- Yan, H.; Xu, W.; Xie, J.; Gao, Y.; Wu, L.; Sun, L.; Feng, L.; Chen, X.; Zhang, T.; Dai, C.; et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Potatonewstoday May 2020—Potato News Today. Available online: https://www.potatonewstoday.com/2020/05/ (accessed on 4 November 2020).
- Blakemore, L. Methods for Chemical Analysis of Soils; [Rev. ed.]; NZ Soil Bureau Dept. of Scientific and Industrial Research: Lower Hutt, New Zealand, 1987.
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 539–579. [Google Scholar]
- Chubaka, C.E.; Whiley, H.; Edwards, J.W.; Ross, K.E. Lead, zinc, copper, and cadmium content of water from South Australian rainwater tanks. Int. J. Environ. Res. Public Health 2018, 15, 1551. [Google Scholar] [CrossRef] [Green Version]
- Allen, S.; Grimshaw, H.M.; Parkinson, J.A.; Quarmby, C. Chemical Analysis of Ecological Materials; Blackwell: Oxford, UK, 1974. [Google Scholar]
- Eriksson, J.E. The influence of pH, soil type and time on adsorbtion and uptake by plants of Cd added to the soil. Water. Air. Soil Pollut. 1989, 48, 317–335. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Agricultural Problems Related to Excessive Trace Metal Contents of Soils. In Heavy Metals; Springer: Berlin/Heidelberg, Germany, 1995; pp. 3–18. [Google Scholar]
- Al Naggar, Y.; Naiem, E.; Mona, M.; Giesy, J.P.; Seif, A. Metals in agricultural soils and plants in Egypt. Toxicol. Environ. Chem. 2014, 96, 730–742. [Google Scholar] [CrossRef]
- Nassef, M.; EI-Tahawy, M.S.; Hannigan, R.; EL Sayed, K.A. Determination of Some Heavy Metals In The Environment of SADAT Industrial City. In Proceedings of the Second Environmental Physics Conference (EPC-2006), Alexandria, Egypt, 18–22 February 2007. [Google Scholar]
- Abou-Shanab, R.A.; Ghozlan, H.A.; Ghanem, K.M.; Moawad, H.A. Heavy Metals in Soils and Plants from Various Metal.-Contaminated Sites in Egypt. Terr. Aquat. Environ. Toxicol. 2007, 1, 7–12. [Google Scholar]
- Liu, K.; Lv, J.; He, W.; Zhang, H.; Cao, Y.; Dai, Y. Major factors influencing cadmium uptake from the soil into wheat plants. Ecotoxicol. Environ. Saf. 2015, 113, 207–213. [Google Scholar] [CrossRef]
- Sary Hassan, M.B.; Ibrahim Ali, A.A. The Combined Use of Beneficial Soil Microorganisms Enhanced the Growth and Efficiently Reduced Lead Content in Leaves of Lettuce (Lactuca sativa L.) Plant under Lead Stress. Alexandria J. Agric. Sci. 2019, 64, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Brengi, S.H.; Abouelsaad, I.A. The Role of Different Nitrogen Sources Combined with Foliar Applications of Molybdenum, Selenium or Sucrose in Improving Growth and Quality of Edible Parts of Spinach (Spinacia oleracea L.). Alexandria Sci. Exch. J. 2019, 40, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Jönsson, E.H.L.; Asp, H. Influence of nitrogen supply on cadmium accumulation in potato tubers. J. Plant Nutr. 2011, 34, 345–360. [Google Scholar] [CrossRef]
- Chang, C.Y.; Yu, H.Y.; Chen, J.J.; Li, F.B.; Zhang, H.H.; Liu, C.P. Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ. Monit. Assess. 2014, 186, 1547–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, G.J.; Deacon, C.M.; Mestrot, A.; Feldmann, J.; Jenkins, P.; Baskaran, C.; Meharg, A.A. Cadmium and lead in vegetable and fruit produce selected from specific regional areas of the UK. Sci. Total Environ. 2015, 533, 520–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
First Season | ||||
Parameter | Field Site | |||
A | B | C | D | |
Total soil Cd (ppm) | 18 c | 21 b | 12 d | 25 a |
Irrigation water Cd (ppm) | 0.110 a | 0.092 b | 0.087 b | 0.107 a |
Organic matter (%) | 0.79 | 0.72 | 0.77 | 0.83 |
pH | 8.16 | 8.12 | 8.27 | 8.23 |
E.C. (dS cm−1) | 2.12 | 2.2 | 1.99 | 2.14 |
Sand (%) | 88.3 | 85.3 | 85.7 | 86.3 |
Silt (%) | 7.7 | 10.3 | 11.3 | 11 |
Clay (%) | 4 | 4.2 | 3 | 2.7 |
Soil texture | Sandy | Sandy | Sandy | Sandy |
Second Season | ||||
Parameter | Field Site | |||
A | B | C | D | |
Total soil Cd (ppm) | 19.70 c | 20.43 b | 13.18 d | 23.45 a |
Irrigation water Cd (ppm) | 0.10 a | 0.88 b | 0.85 b | 0.11 a |
Organic matter (%) | 0.87 | 0.91 | 0.8 | 0.8 |
pH | 8.1 | 8.17 | 8.22 | 8.19 |
E.C. (dS cm−1) | 1.98 | 2.1 | 1.91 | 1.89 |
Sand (%) | 86.8 | 86.1 | 85.2 | 86 |
Silt (%) | 10.1 | 9.98 | 11.5 | 11.5 |
Clay (%) | 3.1 | 3.9 | 3.3 | 2.5 |
Soil texture | Sandy | Sandy | Sandy | Sandy |
Peeled Tubers (mg Kg−1) | Peel (mg Kg−1) | Unpeeled Tubers (mg Kg−1) | Stem (mg Kg−1) | Leaves (mg Kg−1) | ||
---|---|---|---|---|---|---|
Cultivars | Spounta | 0.19 A | 0.31 A | 0.23 A | 1.99 A | 10.60 A |
Hermes | 0.15 B | 0.23 B | 0.19 B | 1.81 B | 9.46 B | |
Suntana | 0.11 C | 0.17 C | 0.14 C | 1.61 C | 8.37 C | |
Sites | A | 0.13 B | 0.22 B | 0.17 B | 1.91 A | 9.54 A |
B | 0.17 A | 0.27 A | 0.22 A | 1.93 A | 10.00 A | |
C | 0.10 C | 0.16 C | 0.13 C | 1.53 B | 8.06 B | |
D | 0.17 A | 0.26 A | 0.22 A | 1.82 A | 10.32 A | |
Spounta | A | 0.15 bc | 0.25 bc | 0.20 bc | 2.06 ab | 9.60 b |
B | 0.21 a | 0.33 a | 0.27 a | 2.15 a | 12.00 a | |
C | 0.11 cde | 0.18 d | 0.15 cde | 1.51 de | 7.98 cd | |
D | 0.21 a | 0.34 a | 0.27 a | 2.20 a | 12.83 a | |
Hermes | A | 0.14 cd | 0.20 cd | 0.17 cd | 1.80 bc | 9.87 b |
B | 0.19 ab | 0.30 ab | 0.25 ab | 1.87 bc | 9.28 bc | |
C | 0.11 cde | 0.17 d | 0.14 de | 1.75 cd | 9.06 bc | |
D | 0.18 ab | 0.27 ab | 0.23 ab | 1.80 bc | 9.64 b | |
Suntana | A | 0.12 cde | 0.19 cd | 0.15 cde | 1.87 bc | 9.13 bc |
B | 0.11 cde | 0.18 d | 0.15 cde | 1.77 cd | 8.71 bc | |
C | 0.08 e | 0.13 d | 0.11 e | 1.34 e | 7.14 d | |
D | 0.12 cde | 0.19 cd | 0.16 cd | 1.44 e | 8.49 bcd |
Peeled Tubers (mg Kg−1) | Peel (mg Kg−1) | Unpeeled Tubers (mg Kg−1) | Stem (mg Kg−1) | Leaves (mg Kg−1) | ||
---|---|---|---|---|---|---|
Cultivars | Spounta | 0.17 A | 0.27 A | 0.22 A | 1.98 A | 10.90 A |
Hermes | 0.16 A | 0.24 B | 0.20 B | 1.82 B | 10.08 B | |
Suntana | 0.12 B | 0.18 C | 0.15 C | 1.64 C | 8.45 C | |
Sites | A | 0.14 B | 0.21 B | 0.18 B | 1.93 A | 10.21 A |
B | 0.18 A | 0.28 A | 0.23 A | 1.92 A | 10.29 A | |
C | 0.11 C | 0.17 C | 0.14 C | 1.57 C | 8.25 B | |
D | 0.16 A | 0.27 A | 0.21 A | 1.82 B | 10.48 A | |
Spounta | A | 0.16 b | 0.24 cd | 0.20 b | 2.08 a | 9.90 cd |
B | 0.20 a | 0.35 a | 0.28 a | 2.14 a | 12.40 a | |
C | 0.10 cd | 0.17 ef | 0.14 cd | 1.51 c | 8.36 f | |
D | 0.20 a | 0.33 a | 0.26 a | 2.18 a | 12.93 a | |
Hermes | A | 0.13 c | 0.20 de | 0.16 c | 1.84 b | 11.39 b |
B | 0.19 a | 0.31 ab | 0.25 a | 1.84 b | 9.47 cde | |
C | 0.13 c | 0.18 ef | 0.15 c | 1.79 b | 9.32 de | |
D | 0.17 b | 0.27 bc | 0.22 b | 1.80 b | 10.15 c | |
Suntana | A | 0.13 c | 0.20 de | 0.17 c | 1.88 b | 9.34 de |
B | 0.13 c | 0.19 e | 0.16 c | 1.78 b | 8.98 ef | |
C | 0.09 d | 0.14 f | 0.12 d | 1.41 c | 7.07 g | |
D | 0.13 c | 0.20 de | 0.16 c | 1.47 c | 8.35 f |
Cd Source | Plant Organs | Coefficient | |||||
---|---|---|---|---|---|---|---|
Season 1 | Season 2 | ||||||
Spounta | Hermes | Suntana | Spounta | Hermes | Suntana | ||
Soil | Peeled tuber | 0.857 ** | 0.869 ** | 0.418 NS | 0.916 ** | 0.560 NS | 0.576 * |
Peel | 0.870 ** | 0.842 ** | 0.441 NS | 0.841 ** | 0.712 ** | 0.718 ** | |
Unpeeled tuber | 0.858 ** | 0.863 ** | 0.450 NS | 0.885 ** | 0.678 ** | 0.731 ** | |
Stem | 0.908 ** | 0.926 NS | 0.255 NS | 0.944 ** | 0.062 NS | 0.285 NS | |
Leaves | 0.707 NS | 1.086 NS | 6.833 ** | 0.910 ** | 0.332 NS | 0.661 ** | |
Water | Peeled tuber | 0.256 NS | 0.181 NS | 0.256 NS | −0.301 NS | 0.193 NS | −0.379 NS |
Peel | 0.288 NS | 0.151 NS | 0.303 NS | −0.136 NS | 0.106 NS | 0.661 ** | |
Unpeeled tuber | 0.281 NS | 0.184 NS | 0.297 NS | −0.217 NS | 0.161 NS | −0.639 * | |
Stem | 0.563 NS | −0.015 NS | 0.288 NS | −0.524 NS | 0.015 NS | −0.165 NS | |
Leaves | 0.430 NS | 0.265 NS | 0.590 * | −0.240 NS | −0.799 ** | −0.447 NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brengi, S.H.; El-Gindy, A.-G.M.; El-Sharkawy, I.; Abouelsaad, I.A. Variation in Cadmium Accumulation among Potato Cultivars Grown on Different Agricultural Sites: A Potential Tool for Reducing Cadmium in Tubers. Horticulturae 2021, 7, 377. https://doi.org/10.3390/horticulturae7100377
Brengi SH, El-Gindy A-GM, El-Sharkawy I, Abouelsaad IA. Variation in Cadmium Accumulation among Potato Cultivars Grown on Different Agricultural Sites: A Potential Tool for Reducing Cadmium in Tubers. Horticulturae. 2021; 7(10):377. https://doi.org/10.3390/horticulturae7100377
Chicago/Turabian StyleBrengi, Sary H., Abdel-Ghany M. El-Gindy, Islam El-Sharkawy, and Ibrahim A. Abouelsaad. 2021. "Variation in Cadmium Accumulation among Potato Cultivars Grown on Different Agricultural Sites: A Potential Tool for Reducing Cadmium in Tubers" Horticulturae 7, no. 10: 377. https://doi.org/10.3390/horticulturae7100377
APA StyleBrengi, S. H., El-Gindy, A. -G. M., El-Sharkawy, I., & Abouelsaad, I. A. (2021). Variation in Cadmium Accumulation among Potato Cultivars Grown on Different Agricultural Sites: A Potential Tool for Reducing Cadmium in Tubers. Horticulturae, 7(10), 377. https://doi.org/10.3390/horticulturae7100377