Exploring Secondary Metabolites in Coffee and Tea Food Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction of Caffeine and Phenolic Compounds
2.3. Analysis with HPLC-MS
2.4. Chemicals
2.5. Statistical Analysis
3. Results
3.1. Caffeine Content
3.1.1. Teas
3.1.2. Coffees
3.2. Phenolic Profile
3.2.1. Tea
3.2.2. Coffee
4. Discussion
4.1. Caffeine Content
4.2. Phenolic Profile
4.3. Solvents
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Phenolic compounds: Functional properties, impact of processing and bioavailability. Phenolic Compd. Biol. Act. 2017, 8, 1–24. [Google Scholar]
- Khan, M.; Liu, H.; Wang, J.; Sun, B. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res. Int. 2020, 130, 108933. [Google Scholar] [CrossRef] [PubMed]
- Medic, A.; Solar, A.; Hudina, M.; Veberic, R. Phenolic Response to Walnut Anthracnose (Ophiognomonia leptostyla) Infection in Different Parts of Juglans regia Husks, Using HPLC-MS/MS. Agriculture 2021, 11, 659. [Google Scholar] [CrossRef]
- Mencin, M.; Abramovič, H.; Jamnik, P.; Mikulič Petkovšek, M.; Veberič, R.; Terpinc, P. Abiotic stress combinations improve the phenolics profiles and activities of extractable and bound antioxidants from germinated spelt (Triticum spelta L.) seeds. Food Chem. 2021, 344, 128704. [Google Scholar] [CrossRef]
- Zamljen, T.; Medič, A.; Veberič, R.; Hudina, M.; Štampar, F.; Slatnar, A. Apple Fruit (Malus domestica Borkh.) Metabolic Response to Infestation by Invasive Brown Marmorated Stink Bug (Halyomorpha halys Stal.). Horticulturae 2021, 7, 212. [Google Scholar] [CrossRef]
- Anaya, A.L.; Cruz-Ortega, R.; Waller, G.R. Metabolism and ecology of purine alkaloids. Front. Biosci. 2006, 11, 2354–2370. [Google Scholar] [CrossRef] [Green Version]
- Filho, O.G.; Mazzafera, P. Caffeine Does Not Protect Coffee Against the Leaf Miner Perileucoptera coffeella. J. Chem. Ecol. 2000, 26, 1447–1464. [Google Scholar] [CrossRef]
- Hollingsworth, R.G.; Armstrong, J.W.; Campbell, E. Caffeine as a repellent for slugs and snails. Nature 2002, 417, 915–916. [Google Scholar] [CrossRef]
- Mohanpuria, P.; Kumar, V.; Yadav, S.K. Tea caffeine: Metabolism, functions, and reduction strategies. Food Sci. Biotechnol. 2010, 19, 275–287. [Google Scholar] [CrossRef]
- Mostakim, M.; Khan, A.R. Effect of coffee on the growth and development of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae. Bangladesh J. Zool. 2015, 42, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-S.; Uefuji, H.; Ogita, S.; Sano, H. Transgenic tobacco plants producing caffeine: A potential new strategy for insect pest control. Transgenic Res. 2006, 15, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Peneva, A. Allelopathic Effect of Seed Extracts and Powder of Coffee (Coffea Arabica L.) on Common Cocklebur Xanthium strumarium L. Bulg. J. Agric. Sci. 2007, 13, 205. [Google Scholar]
- Smyth, D.A. Effect of methylxanthine treatment on rice seedling growth. J. Plant Growth Regul. 1992, 11, 125–128. [Google Scholar] [CrossRef]
- Mohanpuria, P.; Yadav, S.K. Retardation in seedling growth and induction of early senescence in plants upon caffeine exposure is related to its negative effect on Rubisco. Photosynthetica 2009, 47, 293–297. [Google Scholar] [CrossRef]
- Heck, C.I.; De Mejia, E.G. Yerba Mate Tea (Ilex paraguariensis): A Comprehensive Review on Chemistry, Health Implications, and Technological Considerations. J. Food Sci. 2007, 72, R138–R151. [Google Scholar] [CrossRef] [PubMed]
- McCusker, R.R.; Goldberger, B.A.; Cone, E.J. Caffeine Content of Specialty Coffees. J. Anal. Toxicol. 2003, 27, 520–522. [Google Scholar] [CrossRef]
- Schmeda-Hirschmann, G.; Quispe, C.; González, B. Phenolic Profiling of the South American “Baylahuen” Tea (Haplopappus spp., Asteraceae) by HPLC-DAD-ESI-MS. Molecules 2015, 20, 913. [Google Scholar] [CrossRef] [Green Version]
- Kelebek, H. LC-DAD–ESI-MS/MS characterization of phenolic constituents in Turkish black tea: Effect of infusion time and temperature. Food Chem. 2016, 204, 227–238. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012; p. 98. [Google Scholar]
- Sanchez-Hernandez, J.C.; Domínguez, J. Chapter 12–Vermicompost Derived from Spent Coffee Grounds: Assessing the Potential for Enzymatic Bioremediation; Galanakis, C.E., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 369–398. ISBN 978-0-12-811290-8. [Google Scholar]
- Guo, S.; Kumar Awasthi, M.; Wang, Y.; Xu, P. Current understanding in conversion and application of tea waste biomass: A review. Bioresour. Technol. 2021, 338, 125530. [Google Scholar] [CrossRef]
- Holmberg, T.; Ideland, M. The circular economy of food waste: Transforming waste to energy through ‘make-up’ work. J. Mater. Cult. 2021, 26, 344–361. [Google Scholar] [CrossRef]
- Lakatos, E.S.; Yong, G.; Szilagyi, A.; Clinci, D.S.; Georgescu, L.; Iticescu, C.; Cioca, L.-I. Conceptualizing Core Aspects on Circular Economy in Cities. Sustainability 2021, 13, 7549. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Ballesteros, L.F.; Martins, S.; Teixeira, J.A. Extraction of antioxidant phenolic compounds from spent coffee grounds. Sep. Purif. Technol. 2011, 83, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Nour, V.; Stampar, F.; Veberic, R.; Jakopic, J. Anthocyanins profile, total phenolics and antioxidant activity of black currant ethanolic extracts as influenced by genotype and ethanol concentration. Food Chem. 2013, 141, 961–966. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zheng, W.; Galletta, G.J. Cultural system affects fruit quality and antioxidant capacity in strawberries. J. Agric. Food Chem. 2002, 50, 6534–6542. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Rescic, J.; Schmitzer, V.; Stampar, F.; Slatnar, A.; Koron, D.; Veberic, R. Changes in fruit quality parameters of four Ribes species during ripening. Food Chem. 2015, 173, 363–374. [Google Scholar] [CrossRef]
- Bobková, A.; Jakabová, S.; Belej, Ľ.; Jurčaga, L.; Čapla, J.; Bobko, M.; Demianová, A. Analysis of caffeine and chlorogenic acids content regarding the preparation method of coffee beverage. Int. J. Food Eng. 2021, 17, 403–410. [Google Scholar] [CrossRef]
- Mumin, A.; Akhter, K.F.; Abedin, Z.; Hossain, Z. Determination and characterization of caffeine in tea, coffee and soft drinks by solid phase extraction and high performance liquid chromatography (SPE–HPLC). Malays. J. Chem. 2006, 8, 45–51. [Google Scholar]
- Vignoli, J.A.; Bassoli, D.G.; Benassi, M.T. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem. 2011, 124, 863–868. [Google Scholar] [CrossRef]
- Poroch-Serițan, M.; Michitiuc, C.B.; Jarcău, M. Studies and research on caffeine content of various products. BRAIN. Broad Res. Artif. Intell. Neurosci. 2018, 9, 29–35. [Google Scholar]
- Rostagno, M.A.; Manchón, N.; D’Arrigo, M.; Guillamón, E.; Villares, A.; García-Lafuente, A.; Ramos, A.; Martínez, J.A. Fast and simultaneous determination of phenolic compounds and caffeine in teas, mate, instant coffee, soft drink and energetic drink by high-performance liquid chromatography using a fused-core column. Anal. Chim. Acta 2011, 685, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.-S.; Kim, H.-T.; Jeong, I.-H.; Hong, S.-R.; Oh, M.-S.; Yoon, M.-H.; Shim, J.-H.; Jeong, J.H.; Abd El-Aty, A.M. Contents of chlorogenic acids and caffeine in various coffee-related products. J. Adv. Res. 2019, 17, 85–94. [Google Scholar] [CrossRef]
- Desbrow, B.; Hall, S.; Irwin, C. Caffeine content of Nespresso® pod coffee. Nutr. Health 2018, 25, 3–7. [Google Scholar] [CrossRef] [PubMed]
- da Silveira, J.S.; Mertz, C.; Morel, G.; Lacour, S.; Belleville, M.-P.; Durand, N.; Dornier, M. Alcoholic fermentation as a potential tool for coffee pulp detoxification and reuse: Analysis of phenolic composition and caffeine content by HPLC-DAD-MS/MS. Food Chem. 2020, 319, 126600. [Google Scholar] [CrossRef] [PubMed]
- Faria, C.B.; Prado, J.M.; Rostagno, M.A.; Schmidt, F.L.; Meireles, M.A.A. Chapter 8 Simultaneous Determination of Caffeine and Phenolic Compounds in Tea and Coffee. In Caffeine: Chemistry; The Royal Society of Chemistry: London, UK, 2012; pp. 130–153. ISBN 978-1-84973-367-0. [Google Scholar]
- Musilová, A.; Kubíčková, A. Effect of brewing conditions on caffeine content in tea infusions simulating home-made cup of tea. Mon. Für Chem.–Chem. Mon. 2018, 149, 1561–1566. [Google Scholar] [CrossRef]
- Tfouni, S.A.V.; Camara, M.M.; Kamikata, K.; Gomes, F.M.L.; Furlani, R.P.Z. Caffeine in teas: Levels, transference to infusion and estimated intake. Food Sci. Technol. 2018, 38, 661–666. [Google Scholar] [CrossRef] [Green Version]
- Bi, W.; Zhou, J.; Row, K.H. Decaffeination of coffee bean waste by solid-liquid extraction. Korean J. Chem. Eng. 2011, 28, 221–224. [Google Scholar] [CrossRef]
- Hardgrove, S.J.; Livesley, S.J. Applying spent coffee grounds directly to urban agriculture soils greatly reduces plant growth. Urban For. Urban Green. 2016, 18, 1–8. [Google Scholar] [CrossRef]
- Nuhu, A.A. Bioactive Micronutrients in Coffee: Recent Analytical Approaches for Characterization and Quantification. ISRN Nutr. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Hoelzl, C.; Knasmüller, S.; Wagner, K.-H.; Elbling, L.; Huber, W.; Kager, N.; Ferk, F.; Ehrlich, V.; Nersesyan, A.; Neubauer, O.; et al. Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol. Nutr. Food Res. 2010, 54, 1722–1733. [Google Scholar] [CrossRef] [PubMed]
- Urushisaki, T.; Takemura, T.; Tazawa, S.; Fukuoka, M.; Hosokawa-Muto, J.; Araki, Y.; Kuwata, K. Caffeoylquinic Acids Are Major Constituents with Potent Anti-Influenza Effects in Brazilian Green Propolis Water Extract. Evid.–Based Complement. Altern. Med. 2011, 2011, 254914. [Google Scholar] [CrossRef] [Green Version]
- Villarino, M.; Sandín-España, P.; Melgarejo, P.; De Cal, A. High Chlorogenic and Neochlorogenic Acid Levels in Immature Peaches Reduce Monilinia laxa Infection by Interfering with Fungal Melanin Biosynthesis. J. Agric. Food Chem. 2011, 59, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Perrone, D.; Farah, A.; Donangelo, C.M.; de Paulis, T.; Martin, P.R. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem. 2008, 106, 859–867. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Kim, H.-T.; Jeong, I.-H.; Hong, S.-R.; Oh, M.-S.; Park, K.-H.; Shim, J.-H.; Abd El-Aty, A.M. Determination of chlorogenic acids and caffeine in homemade brewed coffee prepared under various conditions. J. Chromatogr. B 2017, 1064, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Koch, W.; Zagórska, J.; Marzec, Z.; Kukula-Koch, W. Applications of Tea (Camellia sinensis) and Its Active Constituents in Cosmetics. Molecules 2019, 24, 4277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceylan, M.M.; Bulut, M.; Alwazeer, D. Improvement of pasting and textural properties of sunn-damaged wheat flour using tea waste extracts. J. Food Process. Preserv. 2021, 45, e15728. [Google Scholar] [CrossRef]
- Li, S.; Lo, C.-Y.; Pan, M.-H.; Lai, C.-S.; Ho, C.-T. Black tea: Chemical analysis and stability. Food Funct. 2013, 4, 10–18. [Google Scholar] [CrossRef]
- Rad, A.H.; Fathipour, R.B.; Azizi, A.; Bidgoli, F.K. Application of Tea Extract in Food Industry. Curr. Nutr. Food Sci. 2020, 16, 998–1004. [Google Scholar] [CrossRef]
- Bhandari, K.; De, B.; Goswami, T.K. Evidence based seasonal variances in catechin and caffeine content of tea. SN Appl. Sci. 2019, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, H.; Ahmad, N. Tea polyphenols: Prevention of cancer and optimizing health. Am. J. Clin. Nutr. 2000, 71, 1698S–1702S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Lu, J.; Shang, S. Effect of Gibberellins on Chemical Composition and Quality of Tea (Camellia sinensis L). J. Sci. Food Agric. 1996, 72, 411–414. [Google Scholar] [CrossRef]
- Shalmashi, A.; Golmohammad, F. Solubility of caffeine in water, ethyl acetate, ethanol, carbon tetrachloride, methanol, chloroform, dichloromethane, and acetone between 298 and 323 K. Lat. Am. Appl. Res. 2010, 40, 283. [Google Scholar]
- Ramírez, I.; Dorta, F.; Espinoza, V.; Jiménez, E.; Mercado, A.; Peña-Cortés, H. Effects of Foliar and Root Applications of Methanol on the Growth of Arabidopsis, Tobacco, and Tomato Plants. J. Plant Growth Regul. 2006, 25, 30–44. [Google Scholar] [CrossRef]
- Pasrija, D.; Anandharamakrishnan, C. Techniques for Extraction of Green Tea Polyphenols: A Review. Food Bioprocess Technol. 2015, 8, 935–950. [Google Scholar] [CrossRef]
[M − H]− (m/z) | MS2 (m/z) | MS3 (m/z) | Green Tea | Black Tea | Mate Tea | |
---|---|---|---|---|---|---|
FLAVANOLS | ||||||
Procyanidin dimer 1 | 577 | 451,425,407,289 | X | |||
Procyanidin dimer 2 | 577 | 451,425,407,289 | X | |||
Procyanidin dimer 3 | 577 | 451,425,407,289 | X | |||
Epigallocatechin 1 | 305 | 261,221,219,179 | X | X | ||
Epigallocatechin 2 | 305 | 261,221,219,179 | X | |||
Catechin | 289 | 245 | X | |||
Gallocatechin | 305 | 261,221,219,179 | X | X | ||
Gallocatechin gallate | 457 | 331,305,169 | X | |||
Epigallocatechin gallate 1 | 457 | 331,305,169 | X | X | ||
Epigallocatechin gallate 2 | 457 | 331,305,169 | X | |||
Epigallocatechin gallate 3 | 457 | 331,305,169 | X | |||
Epigallocatechin gallate 4 | 457 | 331,305,169 | X | |||
Epicatechin | 289 | 245 | X | |||
Epicatechin gallate 1 | 441 | 289,169,331 | X | X | ||
Epicatechin gallate 2 | 441 | 289,169,331 | X | X | ||
Epicatechin gallate 3 | 441 | 289,169,331 | X | |||
Theaflavine | 563 | 545,519,425,407,241 | X | X | ||
Theaflavine-3,3-digallate | 867 | 697,715,527,483,389 | X | |||
Theaflavine-3-gallate | 715 | 527,545,577,507 | X | |||
FLAVONOLS | X | |||||
Myricetin hexoside 1 | 479 | 317 | X | X | ||
Myricetin hexoside 2 | 479 | 317 | X | X | ||
Quercetin hexoside rhamnoside hexoside | 771 | 463 | 301 | X | ||
Quercetin rhamnoside hexoside | 609 | 463 | 301 | X | X | |
Quercetin rhamnosyl hexoside dirhamnoside | 901 | 755 | 609,301 | X | ||
Kaempferol rhamnosyl hexoside dirhamnoside | 885 | 739 | 431,285 | X | ||
Kaempferol acetylhexoside | 489 | 285 | X | |||
Quercetin-3-rutinoside | 609 | 301 | X | X | X | |
Quercetin-3-galactoside | 463 | 301 | X | X | ||
Quercetin-3-glucoside | 463 | 301 | X | X | X | |
Kaempferol-3-galactoside | 447 | 285 | X | |||
Kaempferol-3-glucoside | 447 | 285 | X | |||
Kaempferol-3-rutinoside | 593 | 285 | X | X | X | |
Kaempferol hexoside rhamnoside | 593 | 431 | 285 | X | ||
Isorhamnetin-3-rutinoside | 623 | 315 | X | |||
PHENOLIC ACIDS | X | |||||
3-p-Coumaroylquinic acid | 337 | 163 | X | X | X | |
4-p-Coumaroylquinic acid | 337 | 173,163,191 | X | X | ||
5-p-Coumaroylquinic acid | 337 | 191,173,163 | X | |||
3-feruloylquinic acid | 367 | 193,134 | X | |||
4-feruloylquinic acid | 367 | 173,191 | X | |||
3-Caffeoylquinic acid 1 | 353 | 179,191,173 | X | X | X | |
3-Caffeoylquinic acid 2 | 353 | 179,191,173 | X | |||
4-Caffeoylquinic acid | 353 | 173,179 | X | X | X | |
5-Caffeoylquinic acid 1 | 353 | 191,179 | X | X | X | |
5-Caffeoylquinic acid 2 | 353 | 191,179 | X | X | ||
5-Galloylquinic acid | 343 | 191,169,125 | X | |||
Gallic acid | 169 | 125 | X | |||
Dicaffeoylquinic acid 1 | 515 | 353 | 179,191 | X | ||
Dicaffeoylquinic acid 2 | 515 | 353 | 173,179 | X | ||
Dicaffeoylquinic acid 3 | 515 | 353 | 179,191 | X | ||
Dicaffeoylquinic acid 4 | 515 | 353 | 191,179 | X |
[M − H]− (m/z) | MS2 (m/z) | MS3 (m/z) | Instant Coffee | Ground Coffee | Intense Coffee | |
---|---|---|---|---|---|---|
PHENOLIC ACIDS | ||||||
3-p-Coumaroylquinic acid | 337 | 163 | X | X | X | |
4-p-Coumaroylquinic acid | 337 | 173,163,191 | X | X | X | |
5-p-Coumaroylquinic acid | 337 | 191,173,163 | ||||
3-feruloylquinic acid | 367 | 193,134 | X | X | X | |
4-feruloylquinic acid | 367 | 173,191 | X | X | X | |
5-feruloylquinic acid | 367 | 191 | X | X | X | |
3-Caffeoylquinic acid 1 | 353 | 179,191,173 | X | X | X | |
3-Caffeoylquinic acid 2 | 353 | 179,191,173 | X | X | X | |
4-Caffeoylquinic acid | 353 | 173,179 | X | X | X | |
5-Caffeoylquinic acid 1 | 353 | 191,179 | X | X | X | |
5-Caffeoylquinic acid 2 | 353 | 191,179 | X | |||
5-Galloylquinic acid | 343 | 191,169,125 | ||||
Gallic acid | 169 | 125 | ||||
Dicaffeoylquinic acid 1 | 515 | 353 | 179,191 | X | X | |
Dicaffeoylquinic acid 2 | 515 | 353 | 173,179 | X | X | X |
Dicaffeoylquinic acid 3 | 515 | 353 | 179,191 | X | X | X |
Dicaffeoylquinic acid 4 | 515 | 353 | 191,179 | X | X | X |
Dicaffeoylquinic acid lactone | 335 | 161,137,179 | X | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grohar, M.C.; Gacnik, B.; Mikulic Petkovsek, M.; Hudina, M.; Veberic, R. Exploring Secondary Metabolites in Coffee and Tea Food Wastes. Horticulturae 2021, 7, 443. https://doi.org/10.3390/horticulturae7110443
Grohar MC, Gacnik B, Mikulic Petkovsek M, Hudina M, Veberic R. Exploring Secondary Metabolites in Coffee and Tea Food Wastes. Horticulturae. 2021; 7(11):443. https://doi.org/10.3390/horticulturae7110443
Chicago/Turabian StyleGrohar, Mariana Cecilia, Barbara Gacnik, Maja Mikulic Petkovsek, Metka Hudina, and Robert Veberic. 2021. "Exploring Secondary Metabolites in Coffee and Tea Food Wastes" Horticulturae 7, no. 11: 443. https://doi.org/10.3390/horticulturae7110443