Screening of Amaranthus sp. Varieties for Resistance to Bacterial Wilt Caused by Ralstonia solanacearum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screen House Experiment
2.2. Field Experiment
- −
- 0 = no symptoms (no wilt)
- −
- 1 = plant three quarter wilted, completely wilted or plant dead. From these data, the following parameters were determined.
2.3. Statistical Analysis
3. Results
3.1. Screening of Amaranth Varieties for Resistance to Bacterial Wilt in the Screen House
3.2. Bacterial Wilt Incidence and Bacterial Colonization Index
3.3. Resistance Classes of Amaranth Varieties
3.4. Field Resistance of Uncut Plants of Amaranth Varieties
3.5. Field Resistance of Cut Plants of Amaranth Varieties
3.6. Correlation between Screen House and Field Disease Incidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MCVDD. Rapport National du Benin Pour HABITAT III à QUITO (Equateur); MCVDD: Cotonou, Benin, 2016; 53p. [Google Scholar]
- Tokannou, R.; Quenum, R. Etude sur le Sous-Secteur Maraîchage au sud Benin; Rapport Final, AD Consult; PAIMAF: Cotonou, Benin, 2007; 122p. [Google Scholar]
- Yehouenou Pazou, E.A.; Soton, A.; Azocli, D.; Acakpo, H.; Lawin, H.; Boko, M.; Houinsa, D.; Keke, J. Maraîchage et affections digestives sur le site de Houéyiho en République du Benin. Int. J. Biol. Chem. Sci. 2013, 7, 1976–1986. [Google Scholar] [CrossRef]
- Singbo, G.A.; Nouhoheflin, T.; Idrissou, L. Etude des Perceptions sur les Ravageurs des Légumes dans les Zones Urbaines et Périurbaines du sud Benin; Projet Légumes de qualité, Rapport d’activités; IITA-INRAB-OBEPAB: Cotonou, Benin, 2004; 21p. [Google Scholar]
- Atidegla, C.; Agbossou, K.; Huat, J.; Glele Kakai, R. Contamination métallique des légumes des périmètres maraîchers urbains et péri urbains: Cas de la commune de Grand–Popo au Benin. Int. J. Biol. Chem. Sci. 2011, 5, 2351–2361. [Google Scholar] [CrossRef] [Green Version]
- Tchiégang, C.; Aissatou, K. Données ethnonutritionnelles et caractéristiques physico-chimiques des légumes-feuilles consommés dans la savane de l’Adamaoua (Cameroun). Tropicultura 2004, 22, 11–18. [Google Scholar]
- Atchibri, A.O.A.; Soro, L.C.; Kouame, C.; Agbo, E.A.; Kouadio, K.K.A. Valeur nutritionnelle des légumes feuilles consommés en Côte d’Ivoire. Int. J. Biol. Chem. Sci. 2012, 6, 128–135. [Google Scholar]
- Piscopo, M.; Tenore, G.C.; Notariale, R.; Maresca, V.; Maisto, M.; de Ruberto, F.; Heydari, M.; Sorbo, S.; Basile, A. Antimicrobial and antioxidant activity of proteins from Feijoa sellowiana Berg. fruit before and after in vitro gastrointestinal digestion. Nat. Prod. Res. 2019, 34, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Tortora, F.; Notariale, R.; Maresca, V.; Good, K.V.; Sorbo, S.; Basile, A.; Piscopo, M.; Manna, C. Phenol-Rich Feijoa sellowiana (Pineapple Guava) Extracts Protect Human Red Blood Cells from Mercury-Induced Cellular Toxicity. Antioxidants 2019, 8, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achigan-Dako, E.G.; Olga, E.D.; Sogbohossou, P.M. Current knowledge on Amaranthus spp.: Research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa. Euphytica 2014, 197, 303–317. [Google Scholar] [CrossRef]
- Schippers, P.; Lurling, M.; Scheffer, M. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol. Lett. 2004, 7, 446–451. [Google Scholar] [CrossRef]
- Shackleton, C.M.; Pasquini, M.W.; Drescher, A.W. (Eds.) African Indigenous Vegetables in Urban Agriculture, 1 st ed.; Routledge: London, OH, USA, 2009; 336p. [Google Scholar] [CrossRef] [Green Version]
- Sikirou, R.; Dossoumou, M.-E.E.A.; Zocli, B.; Afari-Sefa, V.; Honfoga, J.; Azoma, K.; Chen, J.-R.; Paret, M.L.; Bihon, W. First Report of Bacterial Wilt of Amaranth (Amaranthus cruentus) caused by Ralstonia solanacearum in Benin. Plant Dis. 2018, 103, 578. [Google Scholar] [CrossRef]
- Sikirou, R.; Zocli, B.; Paret, M.; Deberdt, P.; Coranson-Beaudu, R.; Huat, J.; Assogba-Komlan, F.; Etchiha Afoha, S.A.P.; Simon, S. First Report of Bacterial Wilt of Gboma (Solanum macrocarpum) Caused by Ralstonia solanacearum in Benin. Plant Dis. 2015, 99, 1640. [Google Scholar] [CrossRef]
- Zocli, B. Flétrissement de ‘Gboma’ Solanum macrocarpon au sud du Benin: Cause et Perspective de Contrôle. Master’s Thesis, Université Catholique de l’Afrique de l’Ouest (UCAO), Cotonou, Benin, 2014. [Google Scholar]
- Gourc, D.; Monnier, D.; Payet, J.-D. Pomme de Terre de Conservation Screening Varietal. Rapport annuel du Centre Technique d’Expérimentation de l’ARMEFLHOR; 2007. p. 4. Available online: https://armeflhor.pagesperso-orange.fr/plein_champ/Publication/compterendu/pomme_de_terre/Pomme__terre_conservation07.pdf (accessed on 13 May 2021).
- Subedi, N. Characterization and Management of Ralstonia solanacearum Populations in South Asia. Ph.D. Thesis, Ohio State University, Columbus, OH, USA, 2015; 140p. [Google Scholar]
- She, X.; Yu, L.; Lan, G.; Tang, Y.; He, Z. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China. Front. Plant. Sci. 2017, 8, 1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelbrecht, M.C. Modification of a selective medium for the isolation and quantification of Pseudomonas solanacearum. ACIAR Bact. Wilt Newsl. 1994, 10, 3–5. [Google Scholar]
- Shaner, G.; Finney, R.E. The effect of nitrogen fertilization on the expression of slow-milde wing resistance in Knox wheat. Phytopathology 1977, 67, 1051–1056. [Google Scholar] [CrossRef] [Green Version]
- Jeger, M.J.; Viljanen-Rollinson, S.L.H. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor Appl Genet. 2001, 102, 32–40. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3-1. 2019. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 1 September 2021).
- Techawongstien, S.; Thummabenjapone, P.; Bolkan, H. Screening tomato varieties for their bacterial wilt resistance over seasons in northeast thailand. Acta Hortic. 2009, 808, 263–268. [Google Scholar] [CrossRef]
- Singh, D.; Yadav, D.K.; Sinha, S.; Choudhary, G. Effect of temperature, cultuvars, injury of root and inoculums load of Ralstonia solanacearum to cause bactérial wilt of tomato. Arch. Phytopathol. Plant Prot. 2013, 47, 1574–1583. [Google Scholar] [CrossRef]
- Chuang, M.F.; Lo, S.F.; Lin, C.Y. Effect of temperature on virulence or Ralstonia solanacearum biovars and response of potato cultivars (lines) to bacterial wilt. JTAR 2015, 64, 89–98. [Google Scholar] [CrossRef]
- Bittner, R.J.; Arellano, C.; Mila, A.L. Effect of temperature and resistance of tobacco cultivars to the progression of bacterial wilt, caused by Ralstonia solanacearum. Plant Soil 2016, 408, 299–310. [Google Scholar] [CrossRef]
- Oussou, G.F.G.N.; Sikirou, R.; Boukari, S.A.; Afoha, S.A.P.E.; Komlan, F.A.; Dossoumou, M.E.E.A.; Zocli, B. Resistance assessment of tomato (Solanum lycopersicum L.) and Gboma (Solanum macrocarpon L.) cultivars against bacterial wilt caused by Ralstonia solanacearum in Benin. Pak. J. Phytopathol. 2020, 32, 241–249. [Google Scholar] [CrossRef]
- Monaghan, J.; Zipfel, C. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin Plant Biol. 2012, 15, 349–357. [Google Scholar] [CrossRef]
- Yanping, Z.; Hui, L.; Hairui, Z.; Gao, G. Identification and utility of SRAP markers linked to bacterial wilt resistance gene in potato. Vegetos 2013, 26, 131–138. [Google Scholar] [CrossRef]
- Salgon, S.; Jourda, C.; Sauvage, C.; Daunay, M.-C.; Reynaud, B.; Wicker, E.; Dintinger, J. Eggplant Resistance to the Ralstonia solanacearum Species Complex Involves Both Broad-Spectrum and Strain-Specific Quantitative Trait Loci. Front. Plant Sci. 2017, 8, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidikou, R.D.S.; Sirifi, S.; Vanderhofstadt, B.; Sihachakr, D.; Lavergne, D.; Nato, A.; Ellisseche, D.; Jouan, B.; Ducreux, G. Apport des Biotechnologies Végétales au Développement de la Culture de Pomme de Terre au Sahel: Projet de Production de Plants à Partir de Mini Tubercules; Viles Journées Scientifiques AUpELF-UREF: Montreal, QC, Canada, 2000; p. 76. [Google Scholar]
- N’Guessan, C.A.; Abo, K.; Fondio, L.; Chiroleu, F.; Lebeau, A.; Poussier, S.; Koné, D. So Near and Yet so Far: The Specific Case of Ralstonia solanacearum Populations from Côte d’Ivoire in Africa. Phytopathology 2012, 102, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, D.; Kim, B.-S.; Iyer-Pascuzzi, A.S. Ralstonia solanacearum Differentially Colonizes Roots of Resistant and Susceptible Tomato Plants. Phytopathology 2017, 107, 528–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Resistance Class | IBW (%) | AUDPC (%-Days) |
---|---|---|
Resistant | 0–15 | 0–200 |
Moderately resistant | 15–40 | 200–400 |
Susceptible | >40 | >400 |
Source of Variation | DF | Experiment 1 | Experiment 2 | ||
---|---|---|---|---|---|
F | P | F | P | ||
Varieties | 9 | 11.33 | 0.000 | 5.04 | 0.002 |
Time | 3 | 204.00 | 0.000 | 246.90 | 0.000 |
Varieties × Time | 27 | 4.65 | 0.000 | 3.18 | 0.000 |
Varieties | AUDPC (%-Days) | |
---|---|---|
Experiment 1 | Experiment 2 | |
AC-NL | 711.7 a | 583.3 ab |
IP-5-Sel | 665.0 a | 1131.7 a |
GARE ES13-7 | 653.3 a | 840.0 ab |
Bresil (B)-Sel | 466.7 ab | 700.0 ab |
Madiira 1 | 455.0 ab | 350.0 b |
Madiira 2 | 256.7 bc | 198.3 b |
AM-NKGN | 163.3 bc | 233.3 b |
Benin-local-variety | 116.7 bc | 338.3 b |
A2002 | 81.7 bc | 431.7 b |
UG-AMES13-2 | 0.0 c | 163.3 b |
p | <0.001 | <0.001 |
Varieties | Mean BWI (%) | Mean AUDPC (%-Days) | Resistance Class a |
---|---|---|---|
IP-5-Sel | 95.0 | 1291.1 | S |
AC-NL | 80.0 | 1156.6 | S |
GARE ES13-7 | 81.7 | 1107.4 | S |
Bresil (B)-Sel | 86.7 | 679.1 | S |
Madiira 1 | 71.7 | 674.9 | S |
A2002 | 46.7 | 455.0 | S |
Madiira 2 | 38.3 | 227.5 | MR |
AM-NKGN | 36.7 | 215.7 | MR |
Benin-local-variety | 38.3 | 311.4 | MR |
UG-AMES13-2 | 6.5 | 167.8 | R |
Source of Variation | DF | Experiment 1 | Experiment 2 | ||
---|---|---|---|---|---|
F | P | F | P | ||
Varieties | 9 | 6.65 | 0.000 | 4.46 | 0.003 |
Time | 3 | 23.67 | 0.001 | 62.00 | 0.000 |
Varieties × Time | 27 | 2.03 | 0.014 | 1.26 | 0.230 |
Varieties | AUDPC (%-Days) | |
---|---|---|
Experiment 1 | Experiment 2 | |
IP-5-Sel | 1426.9 a* | 1557.1 a* |
AC-NL | 1180.1 a | 1637.8 a |
GARE ES13-7 | 596.8 b | 1817.3 a |
Madiira 1 | 471.2 b | 1041.0 ab |
A2002 | 152.6 b | 753.9 ab |
Bresil (B)-Sel | 260.3 b | 1076.9 ab |
Madiira 2 | 336.5 b | 879.5 ab |
AM-NKGN | 80.8 b | 323.1 ab |
Benin-local-variety | 112.2 b | 587.8 ab |
UG-AMES13-2 | 13.5 b | 394.8 b |
p | 0.000 | 0.007 |
Source of Variation | DF | Experiment 1 | Experiment 2 | ||
---|---|---|---|---|---|
F | F | P | |||
Varieties | 9 | 6.21 | 0.001 | 12.94 | <0.001 |
Time | 3 | 34.52 | <0.001 | 215.20 | <0.001 |
Varieties × Time | 27 | 4.63 | <0.001 | 2.02 | 0.014 |
Varieties | AUDPC (%-Days) | |
---|---|---|
Experiment 1 | Experiment 2 | |
IP-5-Sel | 1409.0 a | 1557.1 a |
AC-NL | 1189.1 ab | 1637.8 a |
GARE ES13-7 | 919.9 abc | 1817.3 a |
Madiira 1 | 691.0 bcd | 1041.0 b |
A2002 | 556.4 bcd | 753.9 bc |
Bresil (B)-Sel | 493.6 bcd | 1076.9 b |
Madiira 2 | 448.7 bcd | 879.5 bc |
AM-NKGN | 170.5 cd | 323.1 c |
Benin-local-variety | 125.6 cd | 587.8 bc |
UG-AMES13-2 | 40.4 d | 394.9 c |
p | <0.001 | <0.001 |
Incidence of Bacterial Wilt | Correlation Coefficient | |
---|---|---|
Experiment 1 | Experiment 2 | |
Screen house x Field with cut plants | 0.7454 * | 0.5680 * |
Screen house × Field with uncut plants | 0.6102 * | 0.5541 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikirou, R.; Dossoumou, M.E.; Honfoga, J.; Afari-Sefa, V.; Srinivasan, R.; Paret, M.; Bihon, W. Screening of Amaranthus sp. Varieties for Resistance to Bacterial Wilt Caused by Ralstonia solanacearum. Horticulturae 2021, 7, 465. https://doi.org/10.3390/horticulturae7110465
Sikirou R, Dossoumou ME, Honfoga J, Afari-Sefa V, Srinivasan R, Paret M, Bihon W. Screening of Amaranthus sp. Varieties for Resistance to Bacterial Wilt Caused by Ralstonia solanacearum. Horticulturae. 2021; 7(11):465. https://doi.org/10.3390/horticulturae7110465
Chicago/Turabian StyleSikirou, Rachidatou, Marie Epiphane Dossoumou, Judith Honfoga, Victor Afari-Sefa, Ramasamy Srinivasan, Mathews Paret, and Wubetu Bihon. 2021. "Screening of Amaranthus sp. Varieties for Resistance to Bacterial Wilt Caused by Ralstonia solanacearum" Horticulturae 7, no. 11: 465. https://doi.org/10.3390/horticulturae7110465
APA StyleSikirou, R., Dossoumou, M. E., Honfoga, J., Afari-Sefa, V., Srinivasan, R., Paret, M., & Bihon, W. (2021). Screening of Amaranthus sp. Varieties for Resistance to Bacterial Wilt Caused by Ralstonia solanacearum. Horticulturae, 7(11), 465. https://doi.org/10.3390/horticulturae7110465