The Effect of Foliar Application of Magnetic Water and Nano-Fertilizers on Phytochemical and Yield Characteristics of Fennel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Essential Oil Content
2.2. Measurement of Chlorophyll a and b Contents
2.3. Measurement of Nitrogen Content
2.4. Measurement of Potassium Content
2.5. Measurement of Phosphorous Content
2.6. Essential Oil Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Fresh and Dry Weight
3.2. Fruit Yield and Biological Yield
3.3. Chlorophyll a and b
3.4. Essential Oil Yield
3.5. The N Content of Fennel Fruits
3.6. The P Content of Fennel Fruits
3.7. The K Content of Fennel Fruits
3.8. Essential Oil Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rezaei Chiyaneh, E.; Zehtab Salmasi, S.; Ghassemi Golezani, K.; Delazar, A. Physiological responses of Fennel (Foeniculum vulgare L.) to water limitation. J. Agroecol. 2012, 4, 347–355. (In Persian) [Google Scholar]
- Telci, İ.; Demirtaş, İ.; Şahin, A. Variation in plant properties and essential oil composition of sweet fennel (Foeniculum vulgare Mill.) fruits during stages of maturity. Ind. Crop. Prod. 2009, 30, 126–130. [Google Scholar] [CrossRef]
- Marino, S.D.; Gala, F.; Borbone, N.; Zollo, F.; Vitalini, S.; Visioli, F.; Iorizzi, M. Phenolic glycosides from Foeniculum vulgare fruit and evaluation of the antioxidative activity. Phytochemistry 2007, 68, 1805–1812. [Google Scholar] [CrossRef]
- Anant, K.J.; Sanket, K.J.; Tarun, P. Seed Album of Some Medicinal Plants of India; Asian Medicinal Plants and Health Care Trust: New Delhi, India, 2005. [Google Scholar]
- Chaudhary, S.K.; Maity, N.; Nema, N.K.; Bhadra, S.; Saha, B.P.; Mukherjee, P.K. Angiotensin converting enzyme inhibition activity of fennel and coriander oils from India. Nat. Prod. Commun. 2010, 8, 671–672. [Google Scholar] [CrossRef] [Green Version]
- Bahmani, K.; Izadi Darbandi, A.; Sadat Noori, S.A. Evaluation of essential oil content and components in some Iranian Fennel ecotypes. Agric. Crop. Manag. 2013, 15, 129–135. (In Persian) [Google Scholar]
- Nikbakht, J.; Rezaee, E. Effect of different levels of magnetized wastewater on yield and water use efficiency in Maize and some of soil physical properties. Soil Water Res. 2017, 48, 63–75. (In Persian) [Google Scholar]
- Kahrizi, D.; Cheghamirza, K.; Akbari, L.; Rostami-Ahmadvandi, H. Effects of magnetic field on cell dedifferentiation and callus induction derived from embryo culture in bread wheat (Triticum aestivum L.) genotypes. Mol. Biol. Rep. 2013, 40, 1651–1654. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Kumari, B.D.R. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population. Indian J. Biochem. Biophys. 2013, 50, 312–317. [Google Scholar] [PubMed]
- Alemánm, E.I.; Nbogholi, A.; Boix, Y.F.; González-Olmedo, J.; Chalfun-Junior, A. Effects of EMFs on some biological parameters in coffee plants (Coffea arabica L.) obtained by in vitro propagation. Pol. J. Environ. Stud. 2014, 23, 95–101. [Google Scholar]
- Yan, D.; Guo, Y.; Zai, X.; Qin, P. Effects of electromagnetic fields exposure on rapid micropropagation of beach plum (Prunus martima). Ecol. Eng. 2009, 35, 597–601. [Google Scholar]
- Tanaka, M.; Van, P.T.; Teixeira da Silva, J.A.; Ham, L.H. Novel magnetic field system: Application to micropropagation of horticultural plants. Biotech. Biotechnol. Equip. 2010, 24, 2160–2163. [Google Scholar] [CrossRef]
- Çelik, O.; Atak, Ç.; Rzakulieva, A. Stimulation of rapid regeneration by a magnetic field in Paulownia node cultures. J. Cent. Eur. Agric. 2008, 9, 297–304. [Google Scholar]
- Jaime, A.; Silva, T.D.; Dobránszki, J. Impact of magnetic water on plant growth. Environ. Exp. Bot. 2014, 12, 137–142. [Google Scholar]
- Ghadami Firozabadi, A.; Khoshravesh, M.; Shirazi, P.; Zarea Byane, H. Effect of Irrigation with Magnetized Water on the Yield and Biomass of Soybean var. DPX under water deficit and salinity stress. J. Water Res. Agric. 2016, 30, 131–143. (In Persian) [Google Scholar]
- Abdul Qados, A.M.S.; Hozayn, M. Response of growth, yield, yield components and some chemical constituents of flax for irrigation with magnetized and tap water. World Appl. Sci. J. 2010, 8, 630–634. [Google Scholar]
- Mahmoud, H.; Amira, M.S. Magnetic water application for improving wheat (Triticum aestivum L.) crop production. Agric. Biol. J. N. Am. 2010, 1, 677–682. [Google Scholar]
- El Sayed, H.A.S. Impact of magnetic water irrigation improves the growth, chemical composition, and yield production of Broad Bean (Vicia faba L.). Am. J. Exp. Agric. 2014, 4, 476–496. [Google Scholar]
- Moradi, R.; Rezvani Moghaddam, P.; Nasiri Mahallati, M.; Nezhadali, A. Effects of organic and biological fertilizers on fruit yield and essential oil of sweet fennel (Foeniculum vulgare var. dulce). Span. J. Agric. Res. 2011, 9, 546–553. [Google Scholar] [CrossRef] [Green Version]
- Jamshidi, E.; Ghalavand, A.; Sefidkon, F.; Mohammadi Goltapeh, E. Effect of different nutrition systems (organic and chemical) on quantities and qualities characteristics of Fennel (Foeniculum Vulgare Mill) under water deficit stress. Iran. J. Med. Aromat. Plants 2012, 28, 309–323. [Google Scholar]
- Dahmardeh, M.; Dahmardeh, M.; Khammari, E.; Gorgich, P. The effects of Animal manures and nitrogen fertilizer on quantity and the quality yield on a variety of RGS003 on Autumnal Canola (Brassica napus). Trakia J. Sci. 2010, 1, 42–44. [Google Scholar]
- Picard, D.; Ghiloufi, M.; Saulas, P.; Devx Tourdonnet, S. Does under sowing winter wheat with a cover crop increase competition for resources, and is it compatible with high yield? Field Crop. Res. 2010, 115, 9–18. [Google Scholar] [CrossRef]
- Mehnaz, S.; Lazarovits, G. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microbial. Ecol. 2006, 51, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Neisani, S.; Fallah, S.; Raiesi, F. The effect of poultry manure and urea on agronomic characters of forage Maize under drought stress conditions. J. Agric. Sci. Sustain. Prod. 2011, 2, 63–74. (In Persian) [Google Scholar]
- Azzaz, N.A.; Hassan, E.A.; Hamad, E.H. The Chemical Constituent and Vegetative and Yielding Characteristics of Fennel Plants Treated with Organic and Bio-fertilizer Instead of Mineral Fertilizer. Aust. J. Basic Appl. Sci. 2009, 3, 579–587. [Google Scholar]
- Ahmed, A. Effect of mineral and organic fertilizers on Roselle’s growth and calyx yield (Hibiscus sabdariffa L.). Int. J. Manures Fertil. 2013, 2, 434–436. [Google Scholar]
- Bistgani, Z.E.; Siadat, S.A.; Bakhshandeh, A.; Pirbalouti, A.G.; Hashemi, M.; Maggi, F.; Morshedloo, M.R. Application of combined fertilizers improves biomass, essential oil yield, aroma profile, and antioxidant properties of Thymus daenensis Celak. Ind. Crop. Prod. 2018, 121, 434–440. [Google Scholar] [CrossRef]
- Golestaneh, S.; Ganjali, H.R.; Khamari, I.; Mehraban, A. Morphological Features Response of Calendula to the Application of Animal Manures (Cow, Chicken and Ostrich Manures). Int. J. Agric. Innov. Res. 2013, 2, 341–345. [Google Scholar]
- Rezvani Moghaddam, P.; Norouzian, A.; Seyyedi, S.M. Evaluation of the effects of manure and mycorrhizal inoculation on grain and oil yield of spring Sunflower cultivars (Carthamus tinctorius L.). J. Agroecol. 2015, 7, 331–343. (In Persian) [Google Scholar]
- Al-Enzy, A.F.M.; Ziydan, B.A.; Almehemdi, A.F. Effect of adding two types of Organic fertilizers in some growth and yield indicators for two cultivars of Fennel (Foeniculum Vulgare mill.). Plant. Arch. 2019, 19, 4143–4148. [Google Scholar]
- Abbas, I.S.; Abdul Muttalib, A.G.N. The response of sweet fennel plant (Foeniculum-vulgare Mill) to field practices and their effects on growth characters’ crop yield and the active constituents of the fruits. J. Kerbala Univ. 2011, 9, 117–125. [Google Scholar]
- Bekhrad, H.; Nikonam, F.; Mahdavi, B. Effects of nano-fertilizer and different levels of nitrogen on grain and oil yield of Sesame. J. Plant. EcoPhysiol. 2017, 9, 110–122. (In Persian) [Google Scholar]
- Kole, C.; Kole, P.; Randunu, K.M.; Choudhary, P.; Podila, R.; Ke, P.C.; Rao, A.M.; Marcus, R.K. Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013, 13, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelkader, M.A.I.; Fatma, R.; Ibrahim, F.R.; Metwaly, E.E. Growth and Productivity of Fennel (Foeniculum vulgare, Mill) Plants as Affected by Phosphorus Rate and Nano-Micronutrients Concentration. J. Plant. Prod. Mansoura Univ. 2019, 10, 483–488. [Google Scholar] [CrossRef]
- Naderi, M.R.; Danesh-Shahraki, A. Nano-fertilizers and their roles in sustainable agriculture. Int. J. Agric. Crop Sci. 2013, 5, 2229–2232. [Google Scholar]
- Heidarzadeh, N.; Mohamadpour, H. The effect of magnetic field on scale deposition of Birjand tap water. Iran. Water Resour. Res. 2017, 13, 198–204. (In Persian) [Google Scholar]
- Feizi Asl, V.; Valizadeh, G.H.R. Effect of urea liquid fertilizer spraying at different plant growth stages on grain quality and quantity in sardari dryland wheat (Triticum. aestivum. L.). Iran. J. Agric. Sci. 2004, 35, 301–311. (In Persian) [Google Scholar]
- Ghorbani, R.; Koochaki, A.; Asadi, G.; Jahan, M. Effect of organic amendments and compost extracts on tomato production and storability in ecological production systems. Field Crop. Res. 2008, 6, 111–116. (In Persian) [Google Scholar]
- Clevenger, J.F. Apparatus for determination of essential oil. J. Am. Pharm. Assoc. 1928, 17, 346–349. [Google Scholar]
- Arnon, D.T. Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant. Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Pregl, F. Quantitative Organic Microanalysis, 4th ed.; J. A. Churchill. Ltd.: London, UK, 1945. [Google Scholar]
- Rawe, G.J. Food-Analysis by Atomic Absorption Spectroscopy; Varian Techtron: Belrose, Australia; Palo Alto, CA, USA; Steinhausen, Switzerland, 1973; p. 89. [Google Scholar]
- King, E.J. Micro-Analysis in Medical Biochemistry, 2nd ed.; Churchill Publishing Co.: London, UK, 1951. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- AmaniMachiani, M.; Javanmard, A.; Morshedloo, M.R.; Maggi, F. Evaluation of yield, essential oil content and compositionsof peppermint (Menthapiperita L.) intercropped withfaba bean (Viciafaba L.). J. Clean. Prod. 2018, 171, 529–537. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Craker, L.E.; Salami, A.; Nazeri, V.; Sang, H.; Maggi, F. Effect of prolonged water stress on essentialoil content, compositions and gene expression patterns ofmono-andsesquiterpene synthesis in two oregano (Origanumvulgare L.) subspecies. Plant Physiol. Biochem. 2017, 111, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.H.; Abdu, M. Growth and Oil Production of Fennel (Foeniculum vulgare Mill): Effect of Irrigation and Organic Fertilization. Biol. Agric. Hortic. 2004, 22, 31–39. [Google Scholar] [CrossRef]
- Arisha, H.M.E.; Gad, A.A.; Younes, S.E. esponse of some pepper cultivars to organic and mineral nitrogen fertilizers under sandy soil conditions. Zagazig J. Agric. Res. 2003, 30, 1875–1899. [Google Scholar]
- Zhou, D.M.; Hao, X.Z.; Wang, Y.J.; Dong, Y.H.; Cang, L. Copper and Zn uptake by radish and pakchoi as affected by application of livestock and poultry manures. Chemosphere 2005, 59, 167–175. [Google Scholar] [CrossRef]
- Sanni, K.O. Effect of compost, cow dung, and NPK15-15-15 fertilizer on growth and yield performance of Amaranth (Amaranthus hybridus). Int. J. Adv. Sci. Res. 2016, 2, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Emami Bistgani, Z.; Siadat, S.A.; Bakhshandeh, A.; GhasemiPirbaluti, A.; Hashemi, M. Influence of chitosan concentration on morpho-physiological traits, essential oil and phenolic content under different fertilizers application in Thymus daenensis. J. Med. Herb. 2016, 7, 117–125. [Google Scholar]
- Eisa, E.A. Effect of Some Different Sourses of Organic Fertilizers and Seaweed Extract on Growth and Essential Oil of Sweet Fennel (Foeniculum vulgare Mill.) Plants. J. Plant. Prod. 2016, 7, 575–584. [Google Scholar] [CrossRef]
- Ali, A.F.; Hassan, E.A.; Hamad, E.H.; Abo-Quta, W.M.H. Effect of compost, ascorbic acid and salicylic acid treatments on growth, yield and oil production of fennel plant. Assiut J. Agric. Sci. 2017, 48, 139–154. [Google Scholar]
- Shabrangi, A.; Majd, A. Effect of magnetic fields on growth and antioxidant systems in agricultural plants. PIERS Proc. Beijing China 2009, 23–27, 1142–1147. [Google Scholar]
- Olowoake, A.A.; Adeoye, G.O. Influence of differently composted organic residues on the yield of maize and its residual effects on the fertility of an Alfisol in Ibadan, Nigeria. Int. J. Agric. Environ. Biotech. 2013, 6, 79–84. [Google Scholar]
- Reyhan, M.K. Amisalani, studying the relationship between the vegetation and physicochemical properties of soil: Case study, Tabas region, Iran. Pak. J. Nutr. 2006, 5, 169–171. [Google Scholar]
- Souad, A.E.; Mohammed, A.M.; Mohammed, S.K.; Yasser, A.H.O.; El-Sayed, E. Effect of magnetite Nano-fertilizer on growth and yield of Ocimum basilicum L. Int. J. Indig. Med. Plants 2013, 46, 1286–1293. [Google Scholar]
- Ahmed, Y.M.; Shalaby, E.A.; Shanan, N.T. Organic and inorganic cultures improve vegetative growth, yield characters, and antioxidant activity of Roselle plants (Hibiscus sabdariffa L.). Afr. J. Biotechnol. 2011, 10, 1988–1996. [Google Scholar]
- Taha, B.A.; Khalil, A.E.; Ashraf, M.K. Magnetic treatments of Copsicum Annuum, L. Grown under saline irrigation conditions. J. Appl. Sci. Res. 2011, 7, 1558–1568. [Google Scholar]
- Babaloo, F.; Majd, A.; Arbabian, S.; Sharifnia, F.; Ghanati, F. The Effect of Magnetized Water on Some Characteristics of Growth and Chemical Constituent in Rice (Oryza sativa L.) Var Hashemi. Eurasian J. Biosci. 2018, 12, 129–137. [Google Scholar]
- Marghabeizadeh, G.; Gharineh, M.H.; Fathi, G.H.; Abdali, A.R.; Farbod, M. Effect of ultrasound waves and magnetic field on germination, growth, and yield of Carumcopticum (L.) C. B. Clarke in lab and field conditions. J. Med. Aromat. Plants 2015, 30, 539–560. (In Persian) [Google Scholar]
- Safaei, L.; Afiuni, D.; Zeinali, H. Correlation relationships and path coefficient analysis between essential oil and essential oil components in 12 genotypes of Fennel (Foeniculum vulgare Mill.). J. Med. Aromat. Plants 2013, 29, 187–200. (In Persian) [Google Scholar]
- Ehsanipour, A.; Razmjoo, K.; Zeinali, H. Effect of nitrogen rates on yield, yield components and essential oil content of several Fennel (Foeniculum vulgare Mill.) populations. J. Med. Aromat. Plants 2013, 28, 579–593. (In Persian) [Google Scholar]
- Maheshwari, B.L.; Grewal, H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agric. Water. Manag. 2009, 96, 1229–1236. [Google Scholar] [CrossRef]
- Kargarshooraki, E.; Majd, A. The comparative study of the effects of the electromagnetic field on seed germination, growth, and development indicators of Nigella sativa L. seeds. J. Plant. Res. 2015, 29, 867–873. [Google Scholar]
- Ahmed, I.M.; Bassem, M.E. Effect of irrigation with magnetically treated water on faba bean growth and composition. Int. J. Agric. Policy Rec. 2013, 1, 24–40. [Google Scholar]
- Mansour, E.R. Effect of Some Cultural Practices on Cauliflower Tolerance to Salinity under Ras Suder Conditions. Master’s Thesis, Ain Shams University, Cairo, Egypt, 2007. [Google Scholar]
- Hozayn, M.; Abdul Qados, A.M.S. Magnetic water technology, a novel tool to increase the growth, yield, and chemical constituents of lentil under greenhouse conditions. Am. Eurasian J. Agric. Environ. Sci. 2010, 7, 457–462. [Google Scholar]
- Otsuka, I.; Ozeki, S. Does magnetic treatment of water change its properties? J. Phys. Chem. 2006, 110, 1509–1512. [Google Scholar] [CrossRef]
- Zamani, F.; Amirnia, R.; Rezaei-chiyaneh, E.; Rahimi, A. Evaluation of yield and yield components of Fennel (Foeniculum vulgare L.) with the combined application of nitrogen, phosphorus, and potassium supplier bacteria with mycorrhizal fungi in the low-input cropping system. Int. J. Agric. Sustain. 2017, 27, 217–231. (In Persian) [Google Scholar]
- El-Abd, S.O.; El-Saied, H.M.; Mahmoud, M.H. Response of fennel (Foeniculum vulgare L.) on urea application rate under water deficit conditions in Cairo. Egypt. J. Hort. 2008, 54, 255–263. [Google Scholar]
- Erdal, I.; Kepenek, K.; Kizilgos, I. Effect of foliar iron applications at different growth stages on iron and some nutrient concentrations in strawberry cultivars. Turk. J. Agric. For. 2004, 28, 421–427. [Google Scholar]
- Nasiri, Y.; Salmasi, S.Z.; Nasrullahzadeh, S.; Najafi, N.; Ghassemi-Golezani, K. Effects of foliar application of micronutrients (Fe and Zn) on flower yield and essential oil of chamomile (Matricaria chamomilla L.). J. Med. Plants Res. 2010, 4, 1733–1737. [Google Scholar]
- Campbell, G.S. An Introduction to Environmental Biophysics; Springer: New York, NY, USA, 1977. [Google Scholar]
- Mihaela, R.; Dorina, C.; Carmen, A. Biochemical changes induced by low-frequency magnetic field exposure of vegetal organisms. Rom. J. Phys. 2007, 52, 645–651. [Google Scholar]
- Mihaela, R.; Simona, M.; Dorina, E.C. The response of plant tissues to magnetic fluid and electromagnetic exposure. Rom. J. Biophys. 2009, 9, 73–82. [Google Scholar]
- Sadeghipour, O.; Aghaei, P. Improving the growth of cowpea (Vigna unguiculata L. Walp.) by magnetized water. J. Biodivers. Environ. Sci. 2013, 3, 37–43. [Google Scholar]
- Aladjadjiyan, A. The use of physical methods for plant growth stimulation in Bulgaria. J. Cent. Eur. Agric. 2007, 8, 369–380. [Google Scholar]
- Aladjadjiyan, A. Study of the Influence of Magnetic Field on Some Biological Characteristics of Zea mays. J. Cent. Eur. Agric. 2002, 3, 89–94. [Google Scholar]
- Racuciu, M.; Creanga, D.; Horga, I. Plant growth under static magnetic field influence. Rom. J. Phys. 2008, 53, 353–359. [Google Scholar]
- Resteghar, S.; Sadeghi Lari, A. Effect of magnetized water on seed germination and early growth characteristics of tomato. Water Res. Agric. 2015, 29, 47–403. [Google Scholar]
- Maie Mohsen, M.A.; Abeer Kassem, H.M. Influence of Magnetic Iron and Organic Manure on Fennel Plant Tolerance Saline Water Irrigation. Int. J. Pharmtech. Res. 2016, 9, 86–102. [Google Scholar]
- Stang, B.; Rowland, R.; Rpley, B.; Podd, J. ELF magnetic field increase amino acid uptake into Vicia faba L. roots and alter ion movement across the plasma membrane. Bioelectromagnetics 2002, 23, 347–354. [Google Scholar] [CrossRef]
- Nashir, S.H. The effect of magnetic water on the growth of chickpea. J. Eng. Technol. 2008, 26, 16–20. [Google Scholar]
- Esitken, A.; Turan, M. Alternating magnetic field effects on yield and plant nutrient element composition of strawberry (Fragaria x ananassa cv. Camarosa). Acta Agric. Scand. B Soil Plant Sci. 2004, 54, 135–139. [Google Scholar] [CrossRef]
- Dhawi, F.; Al-Khayri, J.M. Magnetic fields induce changes in photosynthetic pigments content in date palm (Phoenix dactylifera L.) seedlings. Open Agric. 2009, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, S. Effect of the pre-sowing magnetic biostimulation of the buckwheat seeds on the yield and chemical composition of the buckwheat grain. Curr. Advan. Buckwheat. Res. 1995, 93, 667–674. [Google Scholar]
- Samadyar, H.; Rahi, A.R.; Shirmohammadi, K.; Taghizade, F.; Kadkhoda, Z. The effects of electronic water filtration (magnetic water) on alkaloids hyoscine seeds and some morphological traits in two species of Datura. J. Plant. Ecosys. 2014, 10, 59–72. (In Farsi) [Google Scholar]
- Nasreen, S.; Haque, M.M.; Hossain, M.A.; Farid, A.T.M. Nutrient uptake and yield of onion as Influence by nitrogen and sulfur fertilization. Bangladesh J. Agric. Res. 2007, 32, 413–420. [Google Scholar] [CrossRef] [Green Version]
- El Sagan, M.A.M.; Abd El Baset, A. Impact of magnetic on metal uptake, quality and productivity in onion crop. J. Agric. Vet. Sci. 2015, 8, 2319–2372. [Google Scholar]
- Darzi, M.T. Effects of organic manure and biofertilizer application on flowering and some yield traits of coriander (Coriandrum sativum). Int. J. Agric. Crop Sci. 2012, 4, 103–107. [Google Scholar]
- Osman, E.A.M.; Abd El-Latif, K.M.; Hussien, S.M.; Sherif, A.E.A. Assessing the effect of irrigation with different levels of saline magnetic water on growth parameters and mineral contents of pear seedlings. Glob. J. Eng. Sci. Res. 2014, 2, 128–136. [Google Scholar]
- Khazan, M.M.; Abdullatif, B.M. Effect of irrigation with magnetized water on growth, photosynthesis pigments and proline accumulation in jojoba (Simmondsia chinensis L.) seedlings. Saudi J. Biol. Sci. 2009, 16, 107–113. [Google Scholar]
- Ottow, E.A.; Brinker, M.; Teichmann, T.; Fritz, E.; Kaiser, W.; Brosché, M.; Kangasjärvi, J.; Jiang, X.; Polle, A. Populus euphratica displays apoplectic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress. Plant Physiol. 2005, 139, 1762–1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerabi, M.M.; Mefakheri, S.; Kviani, A. Comparision of the effect of irrigation with ordinary and magnetic water on the morphological and physiological characteristic of corn under drought tension condition. Crop Physiol. J. 2017, 9, 39–54. [Google Scholar]
- Grewal, H.S.; Maheshwari, B.L. Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances seedlings’ early growth and nutrient contents. Bioelectromagnetics 2011, 32, 58–65. [Google Scholar] [CrossRef]
- Hashemabadi, D.; Zaredost, F.; Jadid Solimandarabi, M. The Effect of Magnetic Water and Irrigation Intervals on the Amount of the Nutrient Elements in Soil and Aerial Parts of Periwinkle (Catharanthus roseus L.). J. Ornam. Plant. 2015, 5, 139–149. [Google Scholar]
- Mohamed, H.M.; El-Kamar, F.A.; Abd-El-Elall, A.A.M. Effect of magnetite and some biofertilizer application on growth and yield of Valencia orange trees under El-Bustan condition. J. Nat. Sci. 2013, 11, 46–61. [Google Scholar]
- Hasan, M.; Alharby, H.F.; Hajar, A.S.; Hakeem, K.R.; Alzahrani, Y. The Effect of Magnetized Water on the Growth and Physiological Conditions of Moringa Species under Drought Stress. Pol. J. Environ. Stud. 2019, 28, 1145–1155. [Google Scholar] [CrossRef]
- Abdul-Jaleel, C.; Manivannan, P.; Lakshmanan, G.M.A.; Gomathinayagam, M.; Panneerselvam, R. Alterations in morphological parameters photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf. 2008, 61, 298–303. [Google Scholar] [CrossRef]
- Darzi, M.T.; Ghalavand, A.; Rejali, F. Effect of mycorrhiza, vermicompost and phosphate biofertilizer application on flowering, biological yield and root colonization in fennel (Foeniculum vulgare Mill.). Iran. J. Crop Sci. 2008, 10, 88–109. [Google Scholar]
- Younesian, A.; Taheri, S.; Moghaddam, P.R. The effect of organic and biological fertilizers on the essential oil content of Foeniculum vulgare Mill. (Sweet Fennel). Int. J. Agric. Crop Sci. 2013, 5, 2141–2146. [Google Scholar]
- Baydar, H.; Sagdic, O.; Ozkan, G.; Karadogan, T. Antibacterial activity and composition of essential oils from Origanum, Thymbra, and Satureja species with commercial importance in Turkey. Food Control J. 2004, 15, 169–172. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Aidi-Wannes, N.; Kchouk, M.E.; Marzouk, B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Novak, J.; Grausgruber, H.; Pank, F.; Langbehn, J.; Blüthner, W.D.; Vender, C.; Niekerk, L.V.; Junghanns, W.; Franzl, C. Stability of Hybrid combinations of Marjoram (Origanum majorana L.). Flavour Fragr. J. 2003, 18, 401–406. [Google Scholar] [CrossRef]
- Gupta, V.; Mittal, P.; Bansal, P.; Khokra, S.L.; Kaushik, D. Pharmacological potential of Matricaria recutita: A review. Int. J. Pharm. Sci. Res. 2006, 2, 12–16. [Google Scholar]
- Kapoor, R.; Giri, B.; Mukerji, K.G. Improved growth and essential oil yield and quality in Fennel (Foeniculum vulgare Mill) on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour. Technol. 2004, 93, 307–311. [Google Scholar] [CrossRef]
- Anwar, M.; Patra, D.D.; Chand, S.; Alpesh, K.; Naqvi, A.A.; Khanuja, S.P.S. Effect of organic manures and inorganic fertilizer on growth, herb and oil yield, nutrient accumulation, and oil quality of French basil. Commun. Soil Sci. Plant. Anal. 2005, 36, 1737–1746. [Google Scholar] [CrossRef]
Year | Clay (%) | Silt (%) | Sand (%) | O.M (%) | pH | Available Nutrients (mg/kg−1) | EC Ds/m | S.P (%) | TNV (%) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
N | P | K | |||||||||
First | 35.5 | 38 | 26.5 | 2 | 7.9 | 0.2 | 8.15 | 408 | 1.13 | 46 | 15.8 |
Second | 34 | 38 | 28 | 1.47 | 7.88 | 0.23 | 7.25 | 416 | 1.82 | 47 | 15.1 |
Year | Cu (mg/kg−1) | Zn (mg/kg−1) | K (mg/kg−1) | P (mg/kg−1) | N (mg/kg−1) | pH | C/N Ratio | O.M (%) | Moisture (%) |
---|---|---|---|---|---|---|---|---|---|
First | 106.8 | 400 | 20,000 | 17,500 | 50,000 | 7.6 | 12.8 | 34.1 | 28 |
Second | 103 | 395 | 18,000 | 17,000 | 52,000 | 7.5 | 11.2 | 35 | 30 |
Shiraz | Yazd | Urmia | Hamadan | Ghazian Tep | |
---|---|---|---|---|---|
Longitude (Degrees, minutes) | 34°22′ | 45° | 48°32′ | 56°36′ | 52°32′ |
Latitude (Degrees, minutes) | 29°36′ | 33°22′ | 34°5′ | 34°4′ | 46°4′ |
Height (meter) | 1519 | 1230 | 1363 | 1803 | 859 |
Sources of Variance | df | Oil Yield (kg/ha) | Biological Yield (kg/ha) | Seed Yield (kg/ha) | Dry Weight (g) | Fresh Weight (g) |
---|---|---|---|---|---|---|
Y | 1 | 224.4 ** | 26,779,317 ** | 3,734,179 ** | 124.2 ** | 2468 ** |
R × Y | 2 | 29.07 ** | 1,612,841 ** | 4,9095 ** | 3.2 ns | 59.4 ns |
L | 4 | 406.8 ** | 3,954,296 ** | 267,121 ** | 101.9 ** | 541.9 ** |
T | 4 | 117.7 ** | 4,252,999 ** | 188,794 ** | 31.9 * | 407.8 ** |
L × T | 16 | 44.52 ** | 2,127,966 ** | 9,6580 ** | 97.7 ** | 1439.5 ** |
T × Y | 4 | 99.95 ** | 5,441,764 ** | 200,400 ** | 350.3 ** | 3234.1 ** |
T × Y | 4 | 57.97 ** | 783,887 ns | 43,057 ** | 80.1 ** | 93.7 ** |
L × T × Y | 16 | 45.88 ** | 2,123,625 ** | 113,983 ** | 75.2 ** | 979.9 ** |
Error | 96 | 8.34 | 505,972 | 1,2469 | 3.9 | 61.3 |
CV (%) | 13.08 | 19.69 | 10.76 | 10.8 | 8.16 |
Sources of Variance | Df | P (kg/ha) | K (kg/ha) | N (kg/ha) | Chlorophyll a (kg/ha) | Chlorophyll b (kg/ha) |
---|---|---|---|---|---|---|
Y | 1 | 188.1 ** | 1450.8 ** | 4996.3 ** | 666.1 ** | 13834 ** |
R × Y | 2 | 1.2 ns | 15.1 ns | 72.7 ** | 48.1 * | 74.4 ns |
L | 4 | 20.1 ** | 377.8 ** | 573.4 ** | 391.4 ** | 998.2 ** |
T | 4 | 11.9 ** | 54.4 ** | 299.9 ** | 627.4 ** | 1706.6 ** |
L × T | 16 | 6.8 ** | 112.3 ** | 183.5 ** | 462.6 ** | 778.5 ** |
T × Y | 4 | 13.2 ** | 149.7 ** | 297.9 ** | 549.8 ** | 1531 ** |
T × Y | 4 | 4.9 ** | 155.6 ** | 149 ** | 56.5 * | 222 ** |
L × T × Y | 16 | 4.4 ** | 134.1 ** | 172.9 ** | 218.7 ** | 675.9 ** |
Error | 96 | 0.71 | 5.03 | 15.5 | 19.3 | 36.4 |
CV (%) | 13.8 | 11.5 | 11.4 | 13.1 | 10.9 |
Treatments | Dry Weight Ecotype | Fresh Weight Ecotype | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Qaziantep | Hamadan | Urmia | Yazd | Shiraz | Qaziantep | Hamadan | Urmia | Yazd | Shiraz | |
2014 | ||||||||||
Nano Nitrogen | 100 e–m | 121.6 cd | 104 d–k | 99 h–p | 91 m–p | 26.7 de | 23.9 d–h | 18.5 j–n | 16 n–p | 22.9 e–j |
Magnetic Water | 126 bc | 71.4 p–s | 143 b | 62 j–q | 87 j–q | 31 bc | 12.6 o–t | 17 i–n | 11 m–o | 21.4 f–l |
Urea | 100 e–m | 95.4 g–n | 117 c–e | 85 e–m | 100 e–m | 23.8 d–h | 14.7 n–r | 21.5 f–l | 19 r–t | 21.8 f–k |
Chicken Manure | 166 a | 116.3 c–f | 70 q–s | 91 s | 89 i–q | 35.5 a | 20.7 g–m | 18.4 j–n | 20 i–n | 21 f–l |
Control | 91 h–p | 76.3 n–s | 110 c–h | 87 k–r | 95 g–n | 24 d–h | 15.3 n–q | 23.1 d–i | 23 h–m | 16 m–o |
Main B | 116.6 | 96.2 | 108.8 | 84.8 | 92.4 | 28.4 | 17.5 | 19.7 | 17.8 | 20.6 |
2015 | ||||||||||
Nano Nitrogen | 80 m–s | 77 n–s | 82.5 l–r | 101 e–l | 109 c–i | 18.3 k–n | 14.3 n–s | 18.6 i–n | 25 d–f | 28 b–d |
Magnetic Water | 83 l–r | 91 h–p | 92.5 e–m | 122 c–d | 81 l–s | 15.2 n–q | 20.8 g–m | 22 f–k | 27 c–e | 9.4 t |
Urea | 77 n–s | 92 h–o | 96.7 f–n | 126 c | 81 l–s | 15.5 n–p | 20.7 g–m | 24 d–h | 24 d–h | 16 m–o |
Chicken Manure | 83.5 k–r | 113 c–g | 89.4 h–q | 87 j–r | 74 o–s | 14.3 n–s | 31.3 b | 11.4 p–t | 14 n–s | 12 o–t |
Control | 65.6 r–s | 106 d–g | 101 e–l | 77 n–s | 70 q–s | 11 q–t | 25.2 d–g | 22 f–k | 21 f–l | 10.2 st |
Main B | 77.8 | 95.8 | 72.5 | 103 | 83 | 14.9 | 22.53 | 19.6 | 21.9 | 15.2 |
Treatments | Fruit Yield (kg/ha) Ecotype | Biological Yield (kg/ha) Ecotype | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Qaziantep | Hamadan | Urmia | Yazd | Shiraz | Qaziantep | Hamadan | Urmia | Yazd | Shiraz | |
2014 | ||||||||||
Nano Nitrogen | 1728 b | 1369 cd | 1067 e–n | 1317 c–f | 1227 c–g | 5003 b–c | 4848 b–i | 3234 c–j | 4454 b–f | 4364 b–j |
Magnetic Water | 2039 a | 1118 dk | 952 j–o | 1051 f–o | 1303 c–e | 7604 a | 4068 b–i | 2785 h–j | 3870 c–j | 4765 b–e |
Urea | 892 k–r | 1426 c | 1082 e–n | 914 k–r | 1340 c–i | 2438 h–j | 5719 b | 3492 c–j | 2111 g–j | 3326 b–e |
Chicken Manure | 1294 c–h | 1050 e–o | 1091 d–m | 830 k–r | 1283 c–f | 4845 b–d | 3586 c–j | 2412 h–j | 2745 f–g | 4454 b–f |
Control | 1048 e–n | 1231 c–j | 1013 h–q | 876 k–r | 1318 g–p | 3477 c–j | 3942 b–i | 3543 c–j | 2888 e–j | 5001 b–c |
Main B | 1400 | 1239 | 1041 | 998 | 1294 | 3072 | 4433 | 3093 | 3214 | 4382 |
2015 | ||||||||||
Nano Nitrogen | 1029 g–p | 819 i–r | 860 k–r | 886 k–r | 968 j–q | 2727 f–j | 3345 c–j | 3399 c–j | 4145 b–h | 3157 c–j |
Magnetic Water | 874 k–r | 1104 d–f | 857 k–r | 899 k–r | 975 j–q | 3468 c–j | 3088 d–j | 3632 c–j | 3598 c–j | 3630c –j |
Urea | 608 k–r | 914 k–r | 822 i–r | 998 i–q | 765 q–r | 4092 b–r | 3642 c–j | 2437 h–j | 3930 b–j | 3222 c–j |
Chicken Manure | 1016 h–q | 875 k–r | 1028 g–p | 737 p–r | 634 r | 3241 c–j | 2275 h–j | 3579 c–j | 3083 d–j | 2235 i–j |
Control | 788 n–r | 796 m–r | 907 k–r | 725 q–r | 813 l–r | 2889 e–j | 2763 f–j | 2917 c–j | 2040 j | 2861 f–j |
Main B | 863 | 902 | 895 | 849 | 831 | 3283 | 3023 | 3193 | 3359 | 3021 |
Treatments | Chlorophyll a Ecotype | Chlorophyll b Ecotype | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Qaziantep | Hamadan | Urmia | Yazd | Shiraz | Qaziantep | Hamadan | Urmia | Yazd | Shiraz | |
2014 | ||||||||||
Nano Nitrogen | 67 e–i | 79.6 b–d | 52.1 j–o | 78 b–e | 72 c–g | 40.2 e–i | 47.6 de | 27.8 j–o | 54 cd | 29 m–r |
Magnetic Water | 116 a | 71.8 c–g | 44.7 k–p | 70 d–h | 76.4 c–e | 65.6 a | 40.4 e–t | 24.3 i–n | 38 f–l | 31 i–r |
Urea | 33 p–u | 109 a | 58.6 h–j | 40 o–s | 81.6 bc | 20 s–u | 57.6 bc | 38.2 f–j | 18 u | 37 f–m |
Chicken Manure | 73 c–f | 56.3 ik | 32.3 q–u | 36 p–t | 68.6 d–h | 42.3 e–g | 41.1 e–i | 19.5 tu | 33 iq | 21 f–l |
Control | 55 il | 62 f–j | 58.5 h–j | 43 m–r | 87.5 b | 26.9 o–t | 23.8 r–u | 27.5 n–t | 30 k–r | 33 n–p |
Main B | 68.8 | 62.5 | 49.3 | 53.4 | 77.4 | 42.1 | 42.5 | 27.5 | 34.6 | 30.2 |
2015 | ||||||||||
Nano Nitrogen | 31 r–u | 51.7 j–o | 53 jn | 50.6 i–o | 43.5 l–q | 23.1 r–u | 39.2 c–j | 33.9 g–o | 63 ab | 22 r–u |
Magnetic Water | 53.7 j–m | 44.7 k–p | 58.3 h–j | 59 h–j | 51.5 j–o | 39.3 e–j | 29.1 m–r | 36.7 f–m | 40 e–i | 26 o–u |
Urea | 58.5 h–j | 60.8 g–j | 33.2 p–u | 58.7 h–j | 52 j–o | 37.9 f–k | 38.2 f–j | 27.5 n–t | 36 g–n | 29 l–r |
Chicken Manure | 41.3 n–s | 27.3 tu | 54.5 i–l | 38.9 p–s | 30.5 s–u | 28.6 m–s | 23.9 r–u | 38.2 f–j | 42 e–h | 18 u |
Control | 41.3 n–s | 40.3 o–s | 40.4 o–s | 23.8 u | 42.6 m–r | 24.9 p–u | 19.9 tu | 23 r–u | 20 tu | 25 p–u |
Main B | 45.2 | 45 | 47.9 | 46.2 | 44 | 30.8 | 30 | 31.9 | 40 | 24 |
Treatments | Nitrogen Content Ecotype (mg/g) | Essential Oil Ecotype | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Qaziantep | Hamadan | Urmia | Yazd | Shiraz | Qaziantep | Hamadan | Urmia | Yazd | Shiraz | |
2014 | ||||||||||
Nanonitrogen | 39 a | 34.4 b–g | 34.4 b–g | 33.3 c–j | 32.9 d–j | 34 h | 19.8 g–k | 24.7 c–f | 27 cd | 23 d–g |
Magnetic Water | 38.3 a | 32.8 e–j | 32.4 f–k | 32.5 | 31.4 i–w | 38.8 a | 14.7 l–o | 23.3 d–g | 21 f–j | 23 d–g |
Urea | 32.4 f–k | 34 b–h | 33.2 c–j | 31.9 | 33.1 d–j | 17.3 f–n | 19.8 g–k | 25.7 c–e | 18 g–m | 26 c–e |
Chicken Manure | 34.2 b–h | 33 d–j | 34.2 b–h | 33.1 | 31 j–n | 26 g–k | 14.8 m–o | 25.7 c–e | 17 j–o | 29 c |
Control | 33.5 c–i | 33 c–j | 28.7 o | 31.4 | 33 e–j | 22 e–i | 17.6 i–n | 25 c–f | 17 j–o | 19 g–h |
Main B | 35.5 | 33.2 | 32.6 | 32.4 | 32.3 | 27.6 | 17.3 | 24.9 | 20 | 24 |
2015 | ||||||||||
Nano Nitrogen | 33.6 h–p | 26.6 o–s | 25.1 q–s | 28.6 m–s | 30 k–r | 16 h–o | 12.33 n–o | 18 h–n | 20 g–k | 20 g–k |
Magnetic Water | 30.7 j–r | 38.5 e–j | 26.9 n–s | 27.2 n–s | 29 l–s | 12.3 a | 17.3 i–n | 19.3 g–l | 19 g–l | 17 i–n |
Urea | 29.7 k–r | 32.8 i–q | 26.7 n–s | 35.4 hm | 24.8 rs | 17.8 h–n | 16.7 j–p | 18 h–n | 23 d–g | 17 i–n |
Chicken Manure | 34.1 h–o | 30.3 k–r | 34.1 h–o | 25.1 q–s | 21.3 s | 16.3 j–o | 13.3 n–o | 16 k–o | 16 k–o | 19 g–h |
Control | 26.9 n–s | 25.9 p–s | 26.9 n–s | 21.8 s | 25.2 q–s | 17.3 i–n | 12.3 p | 22.3 e–h | 16 k–o | 19 g–h |
Main B | 31 | 30.8 | 27.9 | 27.6 | 26 | 15.9 | 14.4 | 18.7 | 18.8 | 18.4 |
Treatments | Potassium Ecotype (mg/g) | Phosphor Ecotype (mg/g) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Qaziantep | Hamadan | Urmia | Yazd | Shiraz | Qaziantep | Hamadan | Urmia | Yazd | Shiraz | |
2014 | ||||||||||
Nano Nitrogen | 27.8 a | 18.8 h–l | 17.4 l–r | 16.8 n–t | 17 o–t | 7.7 ab | 7.8 a | 5.8 h–o | 5.1 n–t | 5.7 g–q |
Magnetic Water | 28.5 a | 19.2 g– j | 12 ef | 19.2 gk | 19.4 g–j | 8.7 j–q | 6.6 c–g | 7 bcd | 5.6 d–h | 5.4 m–t |
Urea | 15.2 t–w | 19.4 g–j | 20 fh | 16.2 q–u | 18.5 h–l | 6.5 c–i | 5.4 m–t | 6 g–m | 5.3 n–t | 5.4 m–t |
Chicken Manure | 22.4 de | 17.4 l–k | 14.5 vw | 17.2 l–s | 18.4 i–n | 4.3 abc | 5.2 o–t | 6.2 f–k | 6.5 d–h | 5.5 l–s |
Control | 17.8 j–o | 17.2 l–s | 15.8 p–u | 18.3 j–n | 18 j–o | 4.7 t–v | 5.4 m–t | 4.9 r–h | 6.7 l–s | 6.6 c–g |
Main B | 22.34 | 18.4 | 15.9 | 17.54 | 18.24 | 6.38 | 6.1 | 5.98 | 5.84 | 5.72 |
2015 | ||||||||||
Nano Nitrogen | 18 h–o | 16.8 m–t | 18.1 h–m | 16.3 p–u | 19.4 g–j | 5.9 h–n | 6.9 b–e | 5.9 h–n | 5.7 k–r | 4.9 s–u |
Magnetic Water | 15 q–u | 15 q–u | 17.9 j–p | 17.4 l–r | 19.5 f–g | 7.4 ab | 5.1 g–u | 6.5 d–i | 5.1 p–u | 4.1 u–v |
Urea | 17.8 j–o | 17.8 j–o | 14.2 s–u | 18 j–o | 19.9 f–i | 6.6 c–g | 4 v | 6.3 e–j | 4.5 u–v | 5.7 j–q |
Chicken Manure | 14.6 vw | 14.6 vw | 20.5 f–g | 14.1 w | 20 fh | 5.8 i–p | 4.7 t–v | 6.9 b–f | 5.7 j–g | 7.3 abc |
Control | 15.8 o–r | 15.8 p–u | 14.4 vw | 15.7 o–r | 15.5 p–u | 5.4 m–s | 6.1 g–l | 7 b–d | 5.6 k–r | 4.5 w |
Main B | 16.22 | 16 | 17.02 | 16.3 | 18.86 | 6.22 | 5.36 | 6.52 | 5.32 | 5.3 |
Foliar Application | |||||
---|---|---|---|---|---|
Control | Chicken Manure | Urea | Magnetic Water | Nano-N | |
Trans-anetol | 79.2 | 80.16 | 78.9 | 78.98 | 81.21 |
Fenchone | 7.32 | 7.92 | 6.89 | 7.37 | 7.56 |
Limonene | 3.98 | 3.94 | 4.11 | 4.41 | 3.45 |
Estragol | 4.21 | 4.67 | 4.52 | 4.96 | 4.68 |
P-anisaldehyde | 2.35 | 2.77 | 2.76 | 3.28 | 2.96 |
Alpha-pinene | 0.48 | 0.48 | 0.48 | 0.58 | 0.44 |
Sabinene | 0.08 | 0.08 | 0.14 | 0.11 | 0.11 |
Beta-mercine | 0.1 | 0.09 | 0.12 | 0.13 | 0.08 |
p-simene | 0.09 | 0.11 | 0.1 | 0.35 | 0.1 |
1.8 Cineol | 0.15 | 0.22 | 0.16 | 0.2 | 0.18 |
Camphor | 0.07 | 0.1 | 0.07 | 0.1 | 0.12 |
Beta-osimene | 0.24 | 0.25 | 0.22 | 0.27 | 0.22 |
Camphen | 0.01 | 0.01 | - | - | - |
L-phelendrel | 0.01 | - | - | - | - |
Landrace | |||||
---|---|---|---|---|---|
Shiraz | Yazd | Urmia | Hamadan | Qazian Tep | |
Trans-anetol | 77.52 | 80.82 | 83.18 | 78.68 | 78.04 |
Fenchone | 8.75 | 9.61 | 2.18 | 8.58 | 8.53 |
Limonene | 3.93 | 3.85 | 4.2 | 3.96 | 4.18 |
Estragol | 5.27 | 4.31 | 5.27 | 3.87 | 4.18 |
P-anisaldehyde | 3.04 | 3.25 | 2.91 | 2.12 | 2.61 |
Alpha-pinene | 0.54 | 0.46 | 0.33 | 0.53 | 0.6 |
Sabinene | 0.12 | 0.1 | 0.11 | 0.06 | 0.11 |
Beta-mercine | 0.14 | 0.09 | 0.01 | 0.14 | 0.12 |
P-simene | 0.09 | 0.09 | 0.15 | 0.05 | 0.08 |
1.8 Cineol | 0.21 | 0.17 | 0.16 | 0.15 | 0.12 |
Camphor | 0.12 | 0.09 | 0.01 | 0.15 | 0.12 |
Beta-osimene | 0.26 | 0.27 | 0.27 | 0.27 | 0.14 |
Camphen | 0.01 | 0.01 | - | - | - |
L-phelendrel | - | - | - | - | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faridvand, S.; Amirnia, R.; Tajbakhsh, M.; El Enshasy, H.A.; Sayyed, R.Z. The Effect of Foliar Application of Magnetic Water and Nano-Fertilizers on Phytochemical and Yield Characteristics of Fennel. Horticulturae 2021, 7, 475. https://doi.org/10.3390/horticulturae7110475
Faridvand S, Amirnia R, Tajbakhsh M, El Enshasy HA, Sayyed RZ. The Effect of Foliar Application of Magnetic Water and Nano-Fertilizers on Phytochemical and Yield Characteristics of Fennel. Horticulturae. 2021; 7(11):475. https://doi.org/10.3390/horticulturae7110475
Chicago/Turabian StyleFaridvand, Shahin, Reza Amirnia, Mehdi Tajbakhsh, Hesham Ali El Enshasy, and R. Z. Sayyed. 2021. "The Effect of Foliar Application of Magnetic Water and Nano-Fertilizers on Phytochemical and Yield Characteristics of Fennel" Horticulturae 7, no. 11: 475. https://doi.org/10.3390/horticulturae7110475
APA StyleFaridvand, S., Amirnia, R., Tajbakhsh, M., El Enshasy, H. A., & Sayyed, R. Z. (2021). The Effect of Foliar Application of Magnetic Water and Nano-Fertilizers on Phytochemical and Yield Characteristics of Fennel. Horticulturae, 7(11), 475. https://doi.org/10.3390/horticulturae7110475