Effects of Municipal Solid Waste Compost Supplemented with Inorganic Nitrogen on Physicochemical Soil Characteristics, Plant Growth, Nitrate Content, and Antioxidant Activity in Spinach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Conditions
2.2. Measurements
2.3. Data Analysis
3. Results and Discussion
3.1. Soil Physicochemical Properties
3.2. Plant Growth and Yield
3.3. Shoot Nutrient Concentration and Uptake
3.4. Photosynthetic Pigments
3.5. Nitrate
3.6. Antioxidant Activity (DPPH)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Communities. Sustainable Agriculture and Soil Conservation Soil Degradation Processes. 2009. Available online: https://esdac.jrc.ec.europa.eu/projects/SOCO/FactSheets/ENFactSheet-03.pdf (accessed on 18 December 2020).
- Jones, A.; Panagos, P.; Barcelo, S.; Bouraoui, F.; Bosco, C.; Dewitte, O.; Gardi, C.; Erhard, M.; Hervás, R.; Hiederer, R.; et al. The State of Soil in Europe. A Contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report. (European Commission: Luxembourg). 2012. Available online: https://esdac.jrc.ec.europa.eu/ESDB_Archive/eusoils_docs/other/EUR25186.pdf (accessed on 15 January 2021).
- Von Uexküll, H.R.; Mutert, E. Global extent, development and economic impact of acid soils. Plant Soil 1995, 171, 1–15. [Google Scholar] [CrossRef]
- Kunhikrishnan, A.; Thangarajan, R.; Bolan, N.; Xu, Y.; Mandal, S.; Gleeson, D.; Seshadri, B.; Zaman, M.; Barton, L.; Tang, C.; et al. Functional Relationships of Soil Acidification, Liming, and Greenhouse Gas Flux. In Advances in Agronomy; Academic Press: Amsterdam, The Netherlands, 2016; Volume 139, pp. 1–71. [Google Scholar] [CrossRef]
- Avillez, F.; Carvalho, M. A importância de uma gestão sustentável do solo para o crescimento da agricultura portuguesa. Cultiv. Cad. Análise Prospetiva. 2015, 2, 27–40. [Google Scholar]
- Bian, M.; Zhou, M.; Sun, D.; Li, C. Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J. 2013, 1, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Machado, R.; Alves-Pereira, I.; Lourenço, D.; Ferreira, R. Effect of organic compost and inorganic nitrogen fertigation on spinach growth, phytochemical accumulation and antioxidant activity. Heliyon 2020, 6, 05085. [Google Scholar] [CrossRef] [PubMed]
- Manicone, F. Municipal Solid Waste Compost Evaluation as Possible Substitute of Mineral Fertilizers in Open Field and Con-trolled Environment Cultivation; Universitá Degli Studi Della Basilicata: Matera, Italy, 2020; 100p. [Google Scholar]
- Amlinger, F.; Favoino, E.; Pollak, M.; Peyr, S.; Centemero, M.; Caima, V. Heavy Metals and Organic Compounds from Wastes Used as Organic Fertilisers; Study on Behalf of the European Commission, Directorate-General Environment: Hochbergstr, Austria, 2004; pp. 168–210. [Google Scholar]
- Hargreaves, J.; Adl, M.; Warman, P. A review of the use of composted municipal solid waste in agriculture. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Domínguez, M.; Núñez, R.P.; Piñeiro, J.; Barral, M.T. Physicochemical and biochemical properties of an acid soil under potato culture amended with municipal solid waste compost. Int. J. Recycl. Org. Waste Agric. 2019, 8, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Linden, A.V.; Brusselaers, J. European Environment Agency, 2020 Bio-Waste in Europe—Turning Challenges into Opportunities; Publications Office of the European Union: Luxembourg, 2020; ISSN 1977-8449. [Google Scholar]
- Smith, S.R. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ. Int. 2009, 35, 142–156. [Google Scholar] [CrossRef]
- Mkhabela, M.; Warman, P. The influence of municipal solid waste compost on yield, soil phosphorus availability and uptake by two vegetable crops grown in a Pugwash sandy loam soil in Nova Scotia. Agric. Ecosyst. Environ. 2005, 106, 57–67. [Google Scholar] [CrossRef]
- Hue, N.V. Correcting soil acidity of a highly weathered Ultisol with chicken manure and sewage sludge. Commun. Soil Sci. Plant Anal. 1992, 23, 241–264. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Jacobsen, J. Nutrient Management-Module no 8. Soil pH and Organic Matter; Montana State University: Bozeman, MT, USA, 2016; pp. 1–16. [Google Scholar]
- Giannakis, G.V.; Kourgialas, N.N.; Paranychianakis, N.V.; Nikolaidis, N.P.; Kalogerakis, N. Effects of Municipal Solid Waste Compost on Soil Properties and Vegetables Growth. Compos. Sci. Util. 2014, 22, 116–131. [Google Scholar] [CrossRef]
- ICT. Atmospheric Sciences Water and Climate. 2019. Available online: http://www.ict.uevora.pt/g1/index.php/meteo-data/ (accessed on 20 June 2020).
- Decreto-Lei n° 103/2015—Ministério da Economia Diário da República, 1.ª série—N° 114—15 de junho de 2015. Available online: https://dre.pt/home/-/dre/67477872/details/maximized?p_auth=XCOzR77X&serie=I (accessed on 29 December 2020).
- Prazeres, A.O. Comparação de Metodologias Laboratoriais Para Determinação de Azoto Nítrico e Amoniacal em Solos e águas; Programa e Livro de Resumos do 1º Congresso Nacional e Rega e Drenagem: Beja, Portugal, 2005; Volume 59, pp. 1–12. [Google Scholar]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Lastra, O.C. Derivate spectrophotometric determination of nitrate in plant tissue. J. AOAC Int. 2003, 86, 1001–1005. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Zhang, M.; Heaney, D.; Henriquez, B.; Solberg, E.; Bittner, E. A Four-Year Study on Influence of Biosolids/MSW Cocompost Application in Less Productive Soils in Alberta: Nutrient Dynamics. Compos. Sci. Util. 2006, 14, 68–80. [Google Scholar] [CrossRef]
- Paradelo, R.; Barral, M.T. Availability and fractionation of Cu, Pb and Zn in an acid soil from Galicia (NW Spain) amended with municipal solid waste compost. Span. J. Soil Sci. 2017, 7, 31–39. [Google Scholar] [CrossRef]
- Garcίa-Gil, J.; Ceppi, S.; Velasco, M.; Polo, A.; Senesi, N. Long-term effects of amendment with municipal solid waste compost on the elemental and acidic functional group composition and pH-buffer capacity of soil humic acids. Geoderma 2004, 121, 135–142. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting Soil pH Effects on Fungal and Bacterial Growth Suggest Functional Redundancy in Carbon Mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, K.F.; Machado, R.M.; Bryla, D.R.; Strik, B.C. Chemigation with Micronized Sulfur Rapidly Reduces Soil pH in a New Planting of Northern Highbush Blueberry. HortScience 2017, 52, 1413–1418. [Google Scholar] [CrossRef] [Green Version]
- Machado, R.M.A.; Serralheiro, R.P.; Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Fruit Crops. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 465–480.
- Papafilippaki, A.; Paranychianakis, N.V.; Nikolaidis, N.P. Effects of soil type and municipal solid waste compost as soil amendment on Cichorium spinosum (spiny chicory) growth. Sci. Hortic. 2015, 195, 195–205. [Google Scholar] [CrossRef]
- Campbell, C.R. Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States, Southern Cooper-ative Series Bulletin. Available online: www.ncagr.gov/agronomi/saaesd/scsb394.pdf (accessed on 3 December 2020).
- Maftoun, M.; Moshiri, F.; Karimian, N.; Ronaghi, A.M. Effects of Two Organic Wastes in Combination with Phosphorus on Growth and Chemical Composition of Spinach and Soil Properties. J. Plant Nutr. 2005, 27, 1635–1651. [Google Scholar] [CrossRef]
- Barber, S.A. Soil Nutrient Bioavailability: A Mechanistic Approach, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1995. [Google Scholar]
- Hinsinger, P.; Brauman, A.; Devau, N.; Gérard, F.; Jourdan, C.; Laclau, J.-P.; Le Cadre-Barthélémy, E.; Jaillard, B.; Plassard, C. Acquisition of phosphorus and other poorly mobile nutrients by roots. Where do plant nutrition models fail? Plant Soil 2011, 348, 29–61. [Google Scholar] [CrossRef]
- Rodd, A.V.; Warman, P.R.; Hicklenton, P.; Webb, K. Comparison of N fertilizer, source-separated municipal solid waste compost and semi-solid beef manure on the nutrient concentration in boot-stage barley and wheat tissue. Can. J. Soil Sci. 2002, 82, 33–43. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Warman, P.R. Source-Separated Municipal Solid Waste Compost Application to Swiss Chard and Basil. J. Environ. Qual. 2004, 33, 542–552. [Google Scholar] [CrossRef]
- Montemurro, F.; Maiorana, M.; Convertini, G.; Ferri, D. Compost organic amendments in fodder crops: Effects on yield, nitrogen utilization and soil characteristics. Compost. Sci. Util. 2006, 14, 114–123. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Astatkie, T.; Caldwell, C.D.; MacLeod, J.; Grimmett, M. Compost, Manure, and Gypsum Application to Timothy/Red Clover Forage. J. Environ. Qual. 2006, 35, 2410–2418. [Google Scholar] [CrossRef]
- Ebertseder, T.; Gutser, R. Nutrition potential of biowaste composts. In Applying Compost–Benefits and Needs; Seminar Proceedings Federal Ministry of Agriculture, Forestry Environment and Water Management, Austria, and European Communities, Eds.; European Commission: Brussels, Belgium, 2003; pp. 117–128. [Google Scholar]
- Warman, P.R.; Murphy, C.J.; Burnham, J.C.; Eaton, L.J. Soil and Plant Response to MSW Compost Applications on Lowbush Blueberry Fields in 2000 and 2001. Small Fruits Rev. 2004, 3, 19–31. [Google Scholar] [CrossRef]
- Chen, Y.; Clapp, C.; Magen, H. Mechanisms of plant growth stimulation by humic substances: The role of organo-iron complexes. Soil Sci. Plant Nutr. 2004, 50, 1089–1095. [Google Scholar] [CrossRef]
- Bocanegra, M.P.; Lobartini, J.C.; Orioli, G.A. Plant Uptake of Iron Chelated by Humic Acids of Different Molecular Weights. Commun. Soil Sci. Plant Anal. 2006, 37, 239–248. [Google Scholar] [CrossRef]
- Carvalho, M.; Goss, M.J.; Teixeira, D. Manganese toxicity in Portuguese Cambisols derived from granitic rocks: Causes, limitations of soil analyses and possible solutions. Rev. Ciências Agrárias 2015, 38, 518–527. [Google Scholar] [CrossRef]
- Rajaie, M.; Tavakoly, A.R. Effects of municipal waste compost and nitrogen fertilizer on growth and mineral composition of tomato. Int. J. Recycl. Org. Waste Agric. 2016, 5, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Mortvedt, J.J.; Cox, F.R.; Shuman, L.M.; Welch, R.M. Micronutrients in Agriculture; Soil Science Society of America Inc.: Madison, WI, USA, 1991. [Google Scholar] [CrossRef]
- White, P.J. The Use of Nutrients in Crop Plants; Fageria, N.K., Ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 430. ISBN 978-1-4200-7510-6. [Google Scholar]
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dechen, A.R.; Nachtigall, G.R. Micronutrientes. In Nutrição Mineral de Plantas; Fernandes, M.S., Ed.; SBCS: Viçosa, Brazil, 2006; Chapter XIII; pp. 328–352. [Google Scholar]
- Fredeen, A.L.; Raab, T.K.; Rao, I.M.; Terry, N. Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr. Planta 1990, 181, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Zengin, F.K.; Munzuroglu, O. Effects of some heavy metals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolus vulgaris L.) seedlings. Acta Biol. Cracov. Bot. 2005, 47, 157–164. [Google Scholar]
- Hussain, P.R.; Suradkar, P.; Javaid, S.; Akram, H.; Parvez, S. Influence of postharvest gamma irradiation treatment on the content of bioactive compounds and antioxidant activity of fenugreek (Trigonella foenum–graceum L.) and spinach (Spinacia oleracea L.) leaves. Innov. Food Sci. Emerg. Technol. 2016, 33, 268–281. [Google Scholar] [CrossRef]
- Batziakas, K.G.; Rivard, C.L.; Stanley, H.; Batziakas, A.G.; Pliakoni, E.D. Reducing preharvest food losses in spinach with the implementation of high tunnels. Sci. Hortic. 2020, 265, 109268. [Google Scholar] [CrossRef]
- Kopsell, D.; Kopsell, D.; Curran-Celentano, J. Carotenoid pigments in kale are influenced by nitrogen concentration and form. J. Sci. Food Agric. 2007, 87, 900–907. [Google Scholar] [CrossRef]
- Borowski, E.; Michałek, S. The effect of foliar nutrition of spinach (Spinacia oleracea L.) with magnesium salts and urea on gas exchange, leaf yield and quality. Acta Agrobot. 2012, 63, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Regulation (EU) n°1258/European Commission, Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Nitrates in Foodstuffs. Official Journal of the European Union, 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1258&from=EN (accessed on 3 December 2020).
- Cakmak, I.; Marschner, H. Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase, Ascorbate Peroxidase, and Glutathione Reductase in Bean Leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anza, M.; Riga, P.; Garbisu, C. Time course of antioxidant responses of Capsicum annuum subjected to a progressive magnesium deficiency. Ann. Appl. Biol. 2005, 146, 123–134. [Google Scholar] [CrossRef]
- Galani, J.H.Y.; Patel, J.S.; Patel, N.J.; Talati, J.G. Storage of Fruits and Vegetables in Refrigerator Increases their Phenolic Acids but Decreases the Total Phenolics, Anthocyanins and Vitamin C with Subsequent Loss of their Antioxidant Capacity. Antioxidants 2017, 6, 59. [Google Scholar] [CrossRef] [Green Version]
Soil | ||
---|---|---|
Neutral | Acidic | |
pH | 7.19 | 5.50 |
Organic matter (%) | 1.62 | 1.10 |
ECe (dS m−1) | 0.082 | 0.03 |
Bulk density (g cm−3) | 1.39 | 1.47 |
NO3− (ppm) | 43.6 | 20.5 |
P2O5 (ppm) | 238.0 | 10.0 |
K2O (ppm) | 204.0 | 60.0 |
Ca (meq 100 g−1) | 8.34 | 1.16 |
Mg (meq 100 g−1) | 1.20 | 0.27 |
Na (meq 100 g−1) | 0.13 | 0.70 |
CEC (meq 100 g−1) | 9.39 | 5.70 |
K (meq 100 g−1) | 0.49 | 0.11 |
Texture | Sand loamy | Loamy sand |
Sand (%) | 70.3 | 81.2 |
Loam (%) | 12.3 | 8.00 |
Clay (%) | 17.4 | 10.8 |
Municipal Soil Waste Compost | Maximum Values of Heavy Metals for Organic Composts of Class I 3 | ||||
---|---|---|---|---|---|
pH 1 | 8.68 | Cd (mg.kg−1) | 0.35 | Cd (mg.kg−1) 3 | 0.7 |
EC (Elec. Conductivity) (dS.m−1) 1 | 5.4 | Pb (mg.kg−1) | 32 | Pb (mg.kg−1) | 100 |
Organic Matter (%) 2 | 52.47 | Cr (mg.kg−1) | 22.3 | Cr (mg.kg−1) | 100 |
Humidity (%) | 10.52 | Cu (mg.kg−1) | 49 | Cu (mg.kg−1) | 100 |
Humic acids (%) | 3.71 | Hg (mg.kg−1) | 0.1 | Hg (mg.kg−1) | 0.7 |
Ratio C/N | 11.94 | Ni (mg.kg−1) | 7.47 | Ni (mg.kg−1) | 50 |
C (%) | 29.15 | Zn (mg.kg−1) | 160 | Zn (mg.kg−1) | 200 |
N (%) | 2.41 | B (mg.kg−1) | 38 | B(mg.kg−1) | |
P2O5 (%) | 1.49 | ||||
K2O (%) | 1.81 | ||||
CaO (%) | 15.17 | ||||
MgO (%) | 0.7 |
Treat. | Type | N | P205 | K2O | CaO | MgO |
---|---|---|---|---|---|---|
Kg ha−1 | ||||||
FS | Inorg. 1 | 214.1 3 | 61.4 | 91.3 | 294 4 | 6.14 |
35 | Org. 2 | 679.7 | 431.6 | 524.3 | 4545.2 | 202.7 |
70 | Org. | 1395.4 | 862.7 | 1047.9 | 9090.3 | 405.3 |
35 + N | Org. + Inorg. | 679.7 + 92 | 431.6 | 524.3 | 4545.2 + 147 4 | 202.7 |
70 + N | Org. + Inorg. | 1395.4 + 92 | 862.7 | 1047.9 | 9090.3 + 147 4 | 405.3 |
MSWC Treatments | Shoot Dry Weight (g/plant) | Foliar Area (cm2/plant) | Fresh Yield (kg m−2) | |||
---|---|---|---|---|---|---|
Soil | Soil | Soil | ||||
Neutral | Acidic | Neutral | Acidic | Neutral | Acidic | |
FS | 1.70 a 1 | 1.44 a | 215.20 b | 240.98 b | 3.97 a | 3.60 a |
35 | 0.59 d | 0.52 d | 101.24 d | 82.80 d | 1.61 d | 1.23 d |
70 | 0.72 d | 0.71 d | 126.83 c | 124.08 c | 2.03 c | 1.90 c |
35 + N | 1.17 c | 1.13 c | 254.85 a | 239.72 b | 3.43 b | 3.05 b |
75 + N | 1.44 b | 1.42 b | 258.30 a | 255.25 a | 3.86 a | 3.68 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, R.M.A.; Alves-Pereira, I.; Robalo, M.; Ferreira, R. Effects of Municipal Solid Waste Compost Supplemented with Inorganic Nitrogen on Physicochemical Soil Characteristics, Plant Growth, Nitrate Content, and Antioxidant Activity in Spinach. Horticulturae 2021, 7, 53. https://doi.org/10.3390/horticulturae7030053
Machado RMA, Alves-Pereira I, Robalo M, Ferreira R. Effects of Municipal Solid Waste Compost Supplemented with Inorganic Nitrogen on Physicochemical Soil Characteristics, Plant Growth, Nitrate Content, and Antioxidant Activity in Spinach. Horticulturae. 2021; 7(3):53. https://doi.org/10.3390/horticulturae7030053
Chicago/Turabian StyleMachado, Rui M. A., Isabel Alves-Pereira, Miguel Robalo, and Rui Ferreira. 2021. "Effects of Municipal Solid Waste Compost Supplemented with Inorganic Nitrogen on Physicochemical Soil Characteristics, Plant Growth, Nitrate Content, and Antioxidant Activity in Spinach" Horticulturae 7, no. 3: 53. https://doi.org/10.3390/horticulturae7030053
APA StyleMachado, R. M. A., Alves-Pereira, I., Robalo, M., & Ferreira, R. (2021). Effects of Municipal Solid Waste Compost Supplemented with Inorganic Nitrogen on Physicochemical Soil Characteristics, Plant Growth, Nitrate Content, and Antioxidant Activity in Spinach. Horticulturae, 7(3), 53. https://doi.org/10.3390/horticulturae7030053