Is There Daily Growth Hysteresis versus Vapor Pressure Deficit in Cherry Fruit?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Phenology
2.2. Fruit Growth
2.2.1. Automatic Extensometer
2.2.2. Manual Electronic Caliper
2.3. Meteorological Data
2.4. Hysteresis Curve
2.5. Data Analysis and Presentation
3. Results
3.1. Fruit Growth Monitoring
3.2. Analysis of Diameter Growth versus VPD and Hysteresis Curves
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iezzoni, A.F. Cherries. In Temperate Fruit Crop Breeding; Hancock, J.F., Ed.; Springer: New York, NY, USA, 2008; pp. 151–175. [Google Scholar]
- Serrano, M.; Guillen, F.; Martinez-Romero, D.; Castillo, S.; Valero, D. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages. J. Agric. Food Chem. 2005, 53, 2741–2745. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Silva, A.P.; Outinho-peria, J.M.; Bacelar, E.; Rosa, E.; Meyer, A.S. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chem. 2007, 103, 976–984. [Google Scholar] [CrossRef]
- Knoche, M.; Peschel, S.; Hinz, M.; Bukovac, M.J. Studies on water transport through the sweet cherry fruit surface: II. Conductance of the cuticle in relation to fruit development. Planta 2001, 213, 927–936. [Google Scholar] [CrossRef]
- Gucci, R.; Lodolini, E.M.; Rapoport, H.F. Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development. Tree Physiol. 2009, 29, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Corelli-Grappadelli, L.; Lakso, A.N. Fruit development in deciduous tree crops as affected by physiological factors and environmental conditions (keynote). In Proceedings of the XXVI International Horticultural Congress: Key Processes in the Growth and Cropping of Deciduous Fruit and Nut Trees, Toronto, ON, Canada, 11–17 August 2002; Volume 636, pp. 425–441. [Google Scholar]
- Hammami, S.B.; Manrique, T.; Rapoport, H.F. Cultivar-based fruit size in olive depends on different tissue and cellular processes throughout growth. Sci. Hortic. 2011, 130, 445–451. [Google Scholar] [CrossRef]
- Correia, S.; Schouten, R.; Silva, A.P.; Gonçalves, B. Sweet cherry fruit cracking mechanisms and prevention strategies: A review. Sci. Hortic. 2018, 240, 369–377. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Xiloyannis, C.; Celano, G. Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Sci. 2006, 170, 520–527. [Google Scholar] [CrossRef]
- Greenspan, M.D.; Shackel, K.A.; Matthews, M.A. Developmental changes in the diurnal water budget of the grape berry exposed to water deficits. Plant Cell Environ. 1994, 17, 811–820. [Google Scholar] [CrossRef]
- Li, S.H.; Génard, M.; Bussi, C.; Lescourret, F.; Laurent, R.; Besset, J.; Habib, R. Preliminary study on transpiration of peaches and nectarines. Gartenbauwissenschaft 2002, 67, 39–43. [Google Scholar]
- Brüggenwirth, M.; Winkler, A.; Knoche, M. Xylem, phloem, and transpiration flows in developing sweet cherry fruit. Trees 2016, 30, 1822–1830. [Google Scholar] [CrossRef]
- Mancini, A.; Zucchini, M.; Polverigiani, S.; Marcheggiani, E.; Casavecchia, S.; Neri, D. Cherry Fruit Growth: Monitoring and ‘Tweetting’. Acta Hortic. 2021, in press. [Google Scholar]
- Morandi, B.; Losciale, P.; Manfrini, L.; Zibordi, M.; Anconelli, S.; Galli, F.; Pierpaoli, E.; Grappadelli, L.C. Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. J. Plant Physiol. 2014, 171, 1500–1509. [Google Scholar] [CrossRef]
- Tardieu, F.; Granier, C.; Muller, B. Water deficit and growth. Co-ordinating processes without an orchestrator? Curr. Opin. Plant Biol. 2011, 14, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Manfrini, L.; Pierpaoli, E.; Taylor, J.A.; Morandi, B.; Losciale, P.; Zibordi, M.; Corelli-Grappadelli, L.; Bastías, R.M. Precision fruit growing: How to collect and interpret data on seasonal variation in apple orchards. In Proceedings of the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on Plant, Lisbon, Portugal, 22–27 August 2010; Volume 932, pp. 461–469. [Google Scholar]
- Fernández, J. Plant-based methods for irrigation scheduling of woody crops. Horticulturae 2017, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Jones, H.G. Monitoring plant and soil water status: Established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 2006, 58, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayergoyz, I.D. Mathematical Models of Hysteresis and Their Applications: Second Edition (Electromagnetism); Academic Press: Cambridge, MA, USA, 2003; ISBN 978-0-12-480873-7. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; p. 922. [Google Scholar]
- O’Kane, J.P. Hysteresis in hydrology. Acta Geophys. Pol. 2005, 53, 373–383. [Google Scholar]
- Zhang, Q.; Manzoni, S.; Katul, G.; Porporato, A.; Yang, D. The hysteretic evapotranspiration—Vapor pressure deficit relation. J. Geophys. Res. Biogeosci. 2014, 119, 125–140. [Google Scholar] [CrossRef]
- Oyarzún, R.; Stockle, C.; Whiting, M. Hydraulic conductance determination and its components in field grown mature sweet cherry trees. Acta Hortic. 2008, 795, 691–694. [Google Scholar] [CrossRef]
- Brüggenwirth, M.; Knoche, M. Mechanical properties of skins of sweet cherry fruit of differing susceptibilities to cracking. J. Am. Soc. Hortic. Sci. 2016, 141, 162–168. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Monteith, J.; Unsworth, M. Principles of Environmental Physics: Plants, Animals, and the Atmosphere; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Phillips, J.D. Sources of nonlinearity and complexity in geomorphic systems. Prog. Phys. Geogr. 2003, 27, 1–23. [Google Scholar] [CrossRef]
- Bai, Y.; Li, X.; Liu, S.; Wang, P. Modelling diurnal and seasonal hysteresis phenomena of canopy conductance in an oasis forest ecosystem. Agric. Forest Meteorol. 2017, 246, 98–110. [Google Scholar] [CrossRef]
- Schumann, C.; Schlegel, H.J.; Grimm, E.; Knoche, M. Water potential and its components in developing sweet cherry. J. Am. Soc. Hortic. Sci. 2014, 139, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Peschel, S.; Beyer, M.; Knoche, M. Surface characteristics of sweet cherry fruit: Stomata-number, distribution, functionality and surface wetting. Sci. Hortic. 2003, 97, 265–278. [Google Scholar] [CrossRef]
- Grimm, E.; Pflugfelder, D.; van Dusschoten, D.; Winkler, A.; Knoche, M. Physical rupture of the xylem in developing sweet cherry fruit causes progressive decline in xylem sap inflow rate. Planta 2017, 246, 659–672. [Google Scholar] [CrossRef]
- Winkler, A.; Brüggenwirth, M.; Ngo, N.S.; Knoche, M. Fruit apoplast tension draws xylem water into mature sweet cherries. Sci. Hortic. 2016, 209, 270–278. [Google Scholar] [CrossRef]
DOY | Daily Mean of VPD (kPa) | Rain Fall | Hysteresis Curve | ||
---|---|---|---|---|---|
Fruit 1 | Fruit 2 | Fruit 3 | |||
124 | 0.22 | Yes | Full | Partial | |
125 | 0.17 | Yes | Full | Partial | |
126 | 0.24 | No | Full | Partial | |
127 | 0.42 | No | Full | No | |
128 | 0.47 | Yes | Full | Partial | |
129 | 0.20 | Yes | No | Partial | |
130 | 0.50 | No | Partial | ||
131 | 0.60 | Yes | No | No | |
132 | 0.08 | Yes | No | No | |
133 | 0.15 | Yes | No | No | |
134 | 0.19 | Yes | Partial | Partial | |
135 | 0.19 | Yes | Partial | Partial | |
136 | 0.25 | No | No | No | |
137 | 0.32 | No | Partial | Partial | |
138 | 0.19 | Yes | Partial | Partial | |
139 | 0.25 | Yes | No | No | |
140 | 0.50 | No | Partial | Partial | |
141 | 0.47 | No | Partial | Partial | |
142 | 0.53 | No | Partial | Partial | |
143 | 0.45 | No | No | No | |
144 | 0.50 | No | No | Partial | |
145 | 0.52 | Yes | No | No | |
146 | 0.14 | Yes | No | No | |
147 | 0.18 | Yes | No | No | |
148 | 0.22 | Yes | No | No | |
149 | 0.10 | Yes | No | No | |
150 | 0.13 | Yes | No | No | |
151 | 0.41 | No | Full | Partial | |
152 | 0.64 | No | No | Full | |
153 | 0.63 | No | Partial | Full | |
154 | 0.96 | No | Full | Full | |
155 | 0.99 | No | Full | Full |
DOY | Daily Mean of VPD (kPa) | Rain Fall | Hysteresis Curve |
---|---|---|---|
114 | 0.28 | No | Partial |
115 | 0.73 | No | Partial |
116 | 0.83 | No | No |
117 | 0.61 | No | No |
118 | 0.67 | No | No |
119 | 0.37 | Yes | No |
120 | 0.54 | Yes | No |
121 | 0.7 | No | No |
122 | 0.8 | Yes | No |
123 | 0.59 | No | No |
124 | 0.38 | Yes | Partial |
125 | 0.74 | No | Partial |
126 | 1.06 | No | No |
127 | 0.26 | No | No |
128 | 0.53 | Yes | Partial |
129 | 0.96 | No | No |
130 | 0.78 | No | No |
131 | 0.51 | No | Partial |
132 | 0.71 | No | No |
133 | 0.7 | Yes | No |
134 | 0.49 | Yes | Partial |
135 | 0.39 | No | Partial |
136 | 0.88 | No | Partial |
137 | 0.41 | Yes | No |
138 | 0.34 | No | Partial |
139 | 0.31 | No | No |
140 | 0.38 | Yes | Partial |
141 | 0.15 | Yes | No |
142 | 0.6 | Yes | Full |
143 | 0.89 | No | Full |
144 | 1.47 | No | Full |
145 | 0.47 | Yes | No |
146 | 1.02 | No | Partial |
Hysteresis Curve | Frequency |
---|---|
No hysteresis | 0.573 |
Partial | 0.427 |
Full | - |
Pearson test value | 0.204 |
Hysteresis Curve | Frequency |
---|---|
No hysteresis | 0.133 |
Partial | 0.200 |
Full | 0.667 |
Pearson test value | 0.0224 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zucchini, M.; Khosravi, A.; Giorgi, V.; Mancini, A.; Neri, D. Is There Daily Growth Hysteresis versus Vapor Pressure Deficit in Cherry Fruit? Horticulturae 2021, 7, 131. https://doi.org/10.3390/horticulturae7060131
Zucchini M, Khosravi A, Giorgi V, Mancini A, Neri D. Is There Daily Growth Hysteresis versus Vapor Pressure Deficit in Cherry Fruit? Horticulturae. 2021; 7(6):131. https://doi.org/10.3390/horticulturae7060131
Chicago/Turabian StyleZucchini, Matteo, Arash Khosravi, Veronica Giorgi, Adriano Mancini, and Davide Neri. 2021. "Is There Daily Growth Hysteresis versus Vapor Pressure Deficit in Cherry Fruit?" Horticulturae 7, no. 6: 131. https://doi.org/10.3390/horticulturae7060131
APA StyleZucchini, M., Khosravi, A., Giorgi, V., Mancini, A., & Neri, D. (2021). Is There Daily Growth Hysteresis versus Vapor Pressure Deficit in Cherry Fruit? Horticulturae, 7(6), 131. https://doi.org/10.3390/horticulturae7060131