Performance of Greenhouse-Grown Beit Alpha Cucumber in Pine Bark and Perlite Substrates Fertigated with Biofloc Aquaculture Effluent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Growth Conditions and Experimental Design
2.2. Measurements and Sampling for Laboratory Analysis (Mineral Composition)
2.3. Data Analysis
3. Results and Discussion
3.1. Aquaculture Effluent and the Substrate Leachate Nitrate Concentration, pH and EC
3.2. Foliar Nutrient Analysis of Cucumbers Affected by the Substrate and Density
3.3. Yield and Yield Components of a Cucumber Due to the Substrate and Density Effect
3.4. Morphological Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Love, D.C.; Fry, J.P.; Genello, L.; Hill, E.S.; Frederick, J.A.; Li, X.; Semmens, K. An international survey of aquaponics practitioners. PLoS ONE 2014, 9, e102662. [Google Scholar] [CrossRef] [Green Version]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Haïssam Jijakli, M.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Pinho, S.M.; Molinari, D.; de Mello, G.L.; Fitzsimmons, K.M.; Coelho Emerenciano, M.G. Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecol. Eng. 2017, 103, 146–153. [Google Scholar] [CrossRef]
- Papadopoulos, A.P.; Asher, B.-T.; Silber, A.; Uttam, K.S.; Michael, R. Inorganic and Synthetic Organic Components of soilless culture and potting mixes. In Soilless Culture:Theory and Practice; Raviv, M., Lieth, H.J., Eds.; Elsevier B.V.: London, UK, 2008; pp. 505–537. [Google Scholar]
- Shaw, N.L.; Cantliffe, D.J.; Funes, J.; Shine, C.I.I.I. Successful Beit Alpha cucumber production in the greenhouse using pine bark as an alternative soilless media. HortTechnology 2004, 14, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Jahromi, N.B.; Fulcher, A.; Walker, F.; Altland, J. Optimizing substrate available water and coir amendment rate in pine bark substrates. Water 2020, 12, 362. [Google Scholar] [CrossRef] [Green Version]
- Niemiera, A.X.; Bilderback, T.E.; Leda, C.E. Pine bark physical characteristics influence pour-through nitrogen concentrations. HortScience 1994, 29, 789–791. [Google Scholar] [CrossRef]
- Grillas, S.; Lucas, M.; Bardopoulou, E.; Sarafopoulos, S.; Voulgari, M. Perlite based soilless culture systems: Current commercial application and prospects. Acta Hortic. 2001, 548, 105–113. [Google Scholar] [CrossRef]
- Peyvast, G.; Olfati, J.A.; Roudsari, O.N.; Kharazi, P.R. Effect of substrate on greenhouse cucumber production in soilless culture. Acta Hortic. 2010, 871, 429–436. [Google Scholar] [CrossRef]
- Ayipio, E.; Wells, D.E.; McQuilling, A.; Wilson, A.E. Comparisons between Aquaponic and Conventional Hydroponic Crop Yields: A Meta-Analysis. Sustainability 2019, 11, 6511. [Google Scholar] [CrossRef] [Green Version]
- Pickens, J.M. Integrating Effluent from Recirculating Aquaculture Systems with Greenhouse Cucumber and Tomato Production. Ph.D. Thesis, Auburn University, Auburn, AL, USA, 2015. [Google Scholar]
- Mills, H.A.; Jones, J.B., Jr. Plant Analysis Handbook II: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Publishing, Inc.: Athens, GA, USA, 1996; ISBN 1878148052. [Google Scholar]
- Bittsánszky, A.; Uzinger, N.; Gyulai, G.; Mathis, A.; Junge, R.; Villarroel, M.; Kotzen, B.; Kőmíves, T. Nutrient supply of plants in aquaponic systems. Ecocycles 2016, 2, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Blanchard, C.; Wells, D.E.; Pickens, J.M.; Blersch, D.M. Effect of pH on cucumber growth and nutrient availability in a decoupled aquaponic system with minimal solids removal. Horticulturae 2020, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Pinho, S.M.; de Lima, J.P.; David, L.H.; Oliveira, M.S.; Goddek, S.; Carneiro, D.J.; Keesman, K.J.; Portella, M.C. Decoupled FLOCponics systems as an alternative approach to reduce the protein level of tilapia juveniles’ diet in integrated agri-aquaculture production. Aquaculture 2021, 543, 736932. [Google Scholar] [CrossRef]
- Maher, M.J.; Thomson, D. Growth and manganese content of tomato (Lycopersicon esculentum) seedlings grown in Sitka spruce (Picea sitchensis (Bong.) Carr.) bark substrate. Sci. Hortic. 1991, 48, 223–231. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; van Erik, O.; Anseeuw, D.; Robin, V.H.; Junge, R. Hydroponic Technologies. In Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Goddek, S., Joyce, A., Kotzen, B., Burnell, G.M., Eds.; SpringerOpen: Chan, Switzerland, 2019; pp. 76–110. ISBN 978-3-030-15942-9. [Google Scholar]
- Xiaolei, S.; Zhifeng, W. The optimal leaf area index for cucumber photosynthesis and production in plastic greenhouse. Acta Hortic. 2004, 633, 161–165. [Google Scholar] [CrossRef]
- Maher, M.; Prasad, M.; Raviv, M. Organic soilless media components. In Soilless Culture Theory and Practice; Raviv, M., Lieth, J.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 459–504. [Google Scholar]
- Silber, A. Chemical Characteristics of Soilless Media. In Soilless Culture Theory and Practice; Raviv, M., Lieth, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 210–239. [Google Scholar]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Giménez, C.; Thompson, R.B. Derivation of sufficiency values of a chlorophyll meter to estimate cucumber nitrogen status and yield. Comput. Electron. Agric. 2017, 141, 54–64. [Google Scholar] [CrossRef]
- Kharkina, T.G.; Ottosen, C.O.; Rosenqvist, E. Effects of root restriction on the growth and physiology of cucumber plants. Physiol. Plant. 1999, 105, 434–441. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, G.; Du, X.; Liu, Y.; Wang, B.; Xu, G.; Mao, H. Effects of Nutrient Solution Irrigation Quantity and Downy Mildew Infection on Growth and Physiological Traits of Greenhouse Cucumber. Agronomy 2020, 10, 1921. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Modelling transpiration of soilless greenhouse cucumber and its relationship with leaf temperature in a mediterranean climate. Emir. J. Food Agric. 2017, 29, 911–920. [Google Scholar] [CrossRef] [Green Version]
Week After Transplanting | NO3-N (ppm) | pH | EC (mS cm−1) | |
---|---|---|---|---|
Week1 | ||||
Mean | 61.05 ± 3.3 | 6.4 ± 0.15 | 1.08 ± 0.00 | |
N | 4 | 4 | 4 | |
Week2 | ||||
Mean | 62.54 ± 4.9 | 6.2 ± 0.14 | 1.09 ± 0.09 | |
N | 7 | 7 | 7 | |
Week3 | ||||
Mean | 77.31 ± 3.7 | 6.3 ± 0.21 | 1.24 ± 0.15 | |
N | 7 | 7 | 7 | |
Week4 | ||||
Mean | 69.14 ± 7.6 | 6.5 ± 0.22 | 1.01 ± 0.14 | |
N | 7 | 7 | 7 | |
Week5 | ||||
Mean | 61.60 ± 11.9 | 6.7 ± 0.27 | 1.18 ± 0.39 | |
N | 7 | 7 | 7 | |
Week6 | ||||
Mean | 75.43 ± 17.0 | 6.5 ± 0.34 | 0.98 ± 0.25 | |
N | 7 | 7 | 7 | |
Week7 | ||||
Mean | 61.6 | 6.7 ± 0.27 | 1.13 ± 0.20 | |
N | 6 | 6 | 6 | |
Week8 | ||||
Mean | 59.4 ± 4.4 | 6.6 ± 0.10 | 1.12 ± 16 | |
N | 3 | 3 | 3 |
Density z | Substrate | NO3-N (ppm) | pH | EC (mS cm−1) |
---|---|---|---|---|
1× | ||||
Pine bark | 68.91 a | 6.07 b | 0.81 a | |
Perlite | 77.11 a | 6.66 a | 0.87 a | |
p-value | 0.4351 | <0.0001 | 0.1942 | |
2× | ||||
Pine bark | 59.29 a | 6.13 b | 0.74 b | |
Perlite | 74.17 a | 6.61 a | 0.85 a | |
p-value | 0.1683 | <0.0001 | 0.0169 |
N | P | K | Mg | Ca | S | |
---|---|---|---|---|---|---|
Winter–Spring 2016 | ||||||
Substrate | ||||||
Pine bark | 5.26 | 0.86 | 2.63 | 0.43 | 2.07 | 0.55 a |
Perlite | 5.16 | 0.8 | 2.62 | 0.42 | 2.04 | 0.49 b |
p-value | 0.4313 | 0.2284 | 0.9796 | 0.8356 | 0.9153 | 0.0197 |
Density z | ||||||
1× | 5.25 | 0.86 | 2.70 | 0.44 | 2.06 | 0.53 |
2× | 5.18 | 0.8 | 2.55 | 0.42 | 2.05 | 0.51 |
p-value | 0.6028 | 0.195 | 0.2956 | 0.384 | 0.9636 | 0.2322 |
Spring 2016 | ||||||
Substrate | ||||||
Pine bark | 4.44 | 0.61 | 2.11 | 0.42 | 4.06 | 0.66 |
Perlite | 4.45 | 0.57 | 2.14 | 0.43 | 4.21 | 0.6 |
p-value | 0.9697 | 0.5708 | 0.8397 | 0.8091 | 0.5778 | 0.2014 |
Density | ||||||
1× | 4.43 | 0.6 | 1.98 | 0.44 | 4.23 | 0.63 |
2× | 4.47 | 0.6 | 2.27 | 0.41 | 4.04 | 0.63 |
p-value | 0.8694 | 0.9954 | 0.075 | 0.1828 | 0.4921 | 0.9772 |
Sufficiency level y | 4.3 | 0.3 | 3.1 | 0.35 | 2.4 | 0.32 |
B | Fe | Mn | Cu | Zn | |
---|---|---|---|---|---|
Winter–Spring 2016 | |||||
Substrate | |||||
Pine bark | 19.55 | 69.32 | 99.37 a | 9.75 a | 67.3 a |
Perlite | 22.02 | 67.13 | 71.25 b | 8.67 b | 58 b |
p-value | 0.0893 | 0.5552 | 0.0205 | 0.0413 | 0.0246 |
Density z | |||||
1× | 21.43 | 69.23 | 88.53 | 9.23 | 61.95 |
2× | 20.13 | 67.22 | 82.08 | 9.18 | 63.35 |
p-value | 0.327 | 0.5849 | 0.5004 | 0.9088 | 0.6695 |
Spring 2016 | |||||
Substrate | |||||
Pine bark | 30.66 | 79.49 | 215.59 | 7.68 | 79.75 |
Perlite | 27.2 | 74.68 | 193.25 | 8.088 | 80.36 |
p-value | 0.1214 | 0.6239 | 0.2067 | 0.3942 | 0.9221 |
Density | |||||
1× | 28.83 | 79.20 a | 213.5 | 7.73 | 84.43 |
2× | 29.04 | 74.96 a | 195.34 | 8.038 | 75.69 |
p-value | 0.9187 | 0.6654 | 0.2972 | 0.5149 | 0.1851 |
Sufficiency levels y | 30 | 50 | 50 | 8 | 25 |
Yield (kg m−2) | |||
---|---|---|---|
Winter–Spring 2016 | Spring 2016 | Spring–Summer 2019 | |
Substrate | |||
Pine bark | 13.26Aa z | 11.17Aa | 3.37Ba |
Perlite | 12.52Aa | 12.03Aa | 3.90Ba |
Density y | |||
1× | 10.39Ab | 9.73Ab | 2.91Ba |
2× | 15.38Aa | 13.46Aa | 4.37Ba |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayipio, E.; Wells, D.E.; Smith, M.; Blanchard, C. Performance of Greenhouse-Grown Beit Alpha Cucumber in Pine Bark and Perlite Substrates Fertigated with Biofloc Aquaculture Effluent. Horticulturae 2021, 7, 144. https://doi.org/10.3390/horticulturae7060144
Ayipio E, Wells DE, Smith M, Blanchard C. Performance of Greenhouse-Grown Beit Alpha Cucumber in Pine Bark and Perlite Substrates Fertigated with Biofloc Aquaculture Effluent. Horticulturae. 2021; 7(6):144. https://doi.org/10.3390/horticulturae7060144
Chicago/Turabian StyleAyipio, Emmanuel, Daniel E. Wells, Mollie Smith, and Caroline Blanchard. 2021. "Performance of Greenhouse-Grown Beit Alpha Cucumber in Pine Bark and Perlite Substrates Fertigated with Biofloc Aquaculture Effluent" Horticulturae 7, no. 6: 144. https://doi.org/10.3390/horticulturae7060144
APA StyleAyipio, E., Wells, D. E., Smith, M., & Blanchard, C. (2021). Performance of Greenhouse-Grown Beit Alpha Cucumber in Pine Bark and Perlite Substrates Fertigated with Biofloc Aquaculture Effluent. Horticulturae, 7(6), 144. https://doi.org/10.3390/horticulturae7060144