Phenotyping Almond Orchards for Architectural Traits Influenced by Rootstock Choice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Architectural Traits
2.3. Statistical Analysis
3. Results
3.1. Rootstock Influence in Trait Variability
3.2. Identification of Relevant Parameters and Interaction between Different Categories
3.3. Analysis of Rootstock and Cultivars of Interest
3.4. Principal Component Analysis of Rootstock/Scion Combinations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A History of Grafting. Hortic. Rev. 2009, 35, 437–493. [Google Scholar] [CrossRef]
- Rubio-Cabetas, M.J.R.; Felipe, A.J.; Reighard, G.L. Rootstock Development. In Almonds: Botany, Production and Uses; Socias i Company, R., Gradizel, T.M., Eds.; CABI: Wallingford, UK, 2017; pp. 209–227. [Google Scholar]
- Albacete, A.; Martínez-Andújar, C.; Martínez-Pérez, A.; Thompson, A.J.; Dodd, I.C.; Pérez-Alfocea, F. Unravelling rootstock×scion interactions to improve food security. J. Exp. Bot. 2015, 66, 2211–2226. [Google Scholar] [CrossRef] [PubMed]
- Aloni, B.; Cohen, R.; Karni, L.; Aktas, H.; Edelstein, M. Hormonal signaling in rootstock-scion interactions. Sci. Hortic. 2010, 127, 119–126. [Google Scholar] [CrossRef]
- Foster, T.M.; Celton, J.M.; Chagne, D.; Tustin, D.S.; Gardiner, S.E. Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Hortic. Res. 2015, 2, 9. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; Alcaraz-López, C.; Muries, B.; Mota-Cadenas, C.; Carvajal, M. Physiological aspects of rootstock-scion interactions. Sci. Hortic. 2010, 127, 112–118. [Google Scholar] [CrossRef]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.B.; Miller, A.J. Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends Plant. Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef]
- Felipe, A.J. “Felinem”, “Garnem”, and “Monegro” almond x peach hybrid rootstocks. HortScience 2009, 44, 196–197. [Google Scholar] [CrossRef]
- Tworkoski, T.; Fazio, G. Effects of Size-Controlling Apple Rootstocks on Growth, Abscisic Acid, and Hydraulic Conductivity of Scion of Different Vigor. Int. J. Fruit Sci. 2015, 15, 369–381. [Google Scholar] [CrossRef]
- Tworkoski, T.; Miller, S. Rootstock effect on growth of apple scions with different growth habits. Sci. Hortic. 2007, 111, 335–343. [Google Scholar] [CrossRef]
- Seleznyova, A.N.; Tustin, D.S.; Thorp, T.G. Apple dwarfing rootstocks and interstocks affect the type of growth units produced during the annual growth cycle: Precocious transition to flowering affects the composition and vigour of annual shoots. Ann. Bot. 2008, 101, 679–688. [Google Scholar] [CrossRef]
- Van Hooijdonk, B.M.; Woolley, D.J.; Warrington, I.J.; Tustin, D.S. Initial alteration of scion architecture by dwarfing apple rootstocks may involve shoot-root-shoot signalling by auxin, gibberellin, and cytokinin. J. Hortic. Sci. Biotechnol. 2010, 85, 59–65. [Google Scholar] [CrossRef]
- Balducci, F.; Capriotti, L.; Mazzoni, L.; Medori, I.; Albanesi, A.; Giovanni, B.; Giampieri, F.; Mezzetti, B.; Capocasa, F. The rootstock effects on vigor, production and fruit quality in sweet cherry (Prunus avium L.). J. Berry Res. 2019, 9, 249–265. [Google Scholar] [CrossRef]
- Lordan, J.; Zazurca, L.; Maldonado, M.; Torguet, L.; Alegre, S.; Miarnau, X. Horticultural performance of ‘Marinada’ and ‘Vairo’ almond cultivars grown on a genetically diverse set of rootstocks. Sci. Hortic. 2019, 256, 108558. [Google Scholar] [CrossRef]
- Hallé, F.; Oldeman, R.A.A.; Tomlinson, P.B.; Hallé, F.; Oldeman, R.A.A.; Tomlinson, P.B. Forests and Vegetation. In Tropical Trees and Forests; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar] [CrossRef]
- Costes, E.; Lauri, P.-E.; Regnard, J.L. Analyzing Fruit Tree Architecture: Implications for Tree Management and Fruit Production. Hort. Rev. 2006, 32, 1–61. [Google Scholar] [CrossRef]
- Barthélémy, D.; Caraglio, Y. Plant architecture: A dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot. 2007, 99, 375–407. [Google Scholar] [CrossRef]
- Costes, E.; Crespel, L.; Denoyes, B.; Morel, P.; Demene, M.-N.; Lauri, P.-E.; Wenden, B. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: A review. Front. Plant. Sci. 2014, 5, 666. [Google Scholar] [CrossRef]
- Hallé, F. Branching in Plants. In Branching in Nature; Centre de Physique des Houches, Fleury, V., Gouyet, J.F., Léonetti, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; Volume 14. [Google Scholar] [CrossRef]
- Durand, J.B.; Guédon, Y.; Caraglio, Y.; Costes, E. Analysis of the plant architecture via tree-structured statistical models: The hidden Markov tree models. New Phytol. 2005, 166, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Guédon, Y.; Barthélémy, D.; Caraglio, Y.; Costes, E. Pattern analysis in branching and axillary flowering sequences. J. Theor. Biol. 2001, 212, 481–520. [Google Scholar] [CrossRef] [PubMed]
- Costes, E.; Guédon, Y. Modelling branching patterns on 1-year-old trunks of six apple cultivars. Ann. Bot. 2002, 89, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Seleznyova, A.N.; Thorp, T.G.; Barnett, A.M.; Costes, E. Quantitative analysis of shoot development and branching patterns in Actinidia. Ann. Bot. 2002, 89, 471–482. [Google Scholar] [CrossRef]
- Negrón, C.; Contador, L.; Lampinen, B.D.; Metcalf, S.G.; Dejong, T.M.; Guédon, Y.; Costes, E. Systematic Analysis of Branching Patterns of Three Almond Cultivars with Different Tree Architectures. J. Am. Soc. Hortic. Sci. 2013, 138, 407–415. [Google Scholar] [CrossRef]
- Negrón, C.; Contador, L.; Lampinen, B.D.; Metcalf, S.G.; Guédon, Y.; Costes, E.; Dejong, T.M. How different pruning severities alter shoot structure: A modelling approach in young “Nonpareil” almond trees. Funct. Plant. Biol. 2015, 42, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Negrón, C.; Contador, L.; Lampinen, B.D.; Metcalf, S.G.; Guédon, Y.; Costes, E.; Dejong, T.M. Differences in proleptic and epicormic shoot structures in relation to water deficit and growth rate in almond trees (Prunus dulcis). Ann. Bot. 2014, 113, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Migault, V.; Pallas, B.; Costes, E. Combining Genome-Wide Information with a Functional Structural Plant Model to Simulate 1-Year-Old Apple Tree Architecture. Front. Plant. Sci. 2017, 7, 2065. [Google Scholar] [CrossRef] [PubMed]
- Segura, V.; Cilas, C.; Costes, E. Dissecting apple tree architecture into genetic, ontogenetic and environmental effects: Mixed linear modelling of repeated spatial and temporal measures. New Phytol. 2008, 178, 302–314. [Google Scholar] [CrossRef]
- Segura, V.; Cilas, C.; Laurens, F.; Costes, E. Phenotyping progenies for complex architectural traits: A strategy for 1-year-old apple trees (Malus x domestica Borkh.). Tree Genet. Genomes 2006, 2, 140–151. [Google Scholar] [CrossRef]
- Coupel-Ledru, A.; Pallas, B.; Delalande, M.; Boudon, F.; Carrié, E.; Martinez, S.; Regnard, J.-L.; Costes, E. Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes. Hortic. Res. 2019, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Gradziel, T.M. The utilization of wild relatives of cultivated almond and peach in modifying tree architecture for crop improvement. Acta Hortic. 2012, 948, 271–278. [Google Scholar] [CrossRef]
- Cline, M.G. Apical dominance. Bot. Rev. 1991, 57, 318–358. [Google Scholar] [CrossRef]
- Dun, E.A.; Ferguson, B.J.; Beveridge, C.A. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms? Plant. Physiol. 2006, 142, 812–819. [Google Scholar] [CrossRef] [PubMed]
- Hollender, C.A.; Dardick, C. Molecular basis of angiosperm tree architecture. New Phytol. 2015, 206, 541–556. [Google Scholar] [CrossRef]
- Barbier, F.F.; Dun, E.A.; Kerr, S.C.; Chabikwa, T.G.; Beveridge, C.A. An Update on the Signals Controlling Shoot Branching. Trends Plant. Sci. 2019, 24, 220–236. [Google Scholar] [CrossRef]
- Casal, J.J. Shade Avoidance. Arab. B. 2012, 10, e0157. [Google Scholar] [CrossRef]
- Dun, E.A.; de Saint Germain, A.; Rameau, C.; Beveridge, C.A. Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant. Physiol. 2012, 158, 487–498. [Google Scholar] [CrossRef]
- Mason, M.G.; Ross, J.J.; Babst, B.A.; Wienclaw, B.N.; Beveridge, C.A. Sugar demand, not auxin, is the initial regulator of apical dominance. Proc. Natl. Acad. Sci. USA 2014, 111, 6092–6097. [Google Scholar] [CrossRef]
- Pereira-Netto, A.B.; Roessner, U.; Fujioka, S.; Bacic, A.; Asami, T.; Yoshida, S.; Clouse, S.D. Shooting control by brassinosteroids: Metabolomic analysis and effect of brassinazole on Malus prunifolia, the Marubakaido apple rootstock. Tree Physiol. 2009, 29, 607–620. [Google Scholar] [CrossRef]
- Rameau, C.; Bertheloot, J.; Leduc, N.; Andrieu, B.; Foucher, F.; Sakr, S. Multiple pathways regulate shoot branching. Front. Plant. Sci. 2015, 5, 741. [Google Scholar] [CrossRef]
- Kieber, J.J.; Schaller, G.E. Cytokinin signaling in plant development. Development 2018, 145, dev149344. [Google Scholar] [CrossRef] [PubMed]
- Waldie, T.; McCulloch, H.; Leyser, O. Strigolactones and the control of plant development: Lessons from shoot branching. Plant. J. 2014, 79, 607–622. [Google Scholar] [CrossRef]
- Wang, B.; Smith, S.M.; Li, J. Genetic Regulation of Shoot Architecture. Annu. Rev. Plant. Biol. 2018, 69, 437–468. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Ongaro, V.; Ljung, K. Auxin and Strigolactone Signaling are Required for Modulation of Arabidopsis Shoot Branching by Nitrogen Supply. Plant. Physiol. 2014, 166, 384–395. [Google Scholar] [CrossRef]
- Xu, J.; Zha, M.; Li, Y.; Ding, Y.; Chen, L.; Ding, C.; Wang, S. The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant. Cell Rep. 2015, 34, 1647–1662. [Google Scholar] [CrossRef]
- Napoli, C. Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting. Plant. Physiol. 1996, 111, 27–37. [Google Scholar] [CrossRef]
- Simons, J.L.; Napoli, C.A.; Janssen, B.J.; Plummer, K.M.; Snowden, K.C. Analysis of the DECREASED APICAL DOMINANCE genes of petunia in the control of axillary branching. Plant. Physiol. 2007, 143, 697–706. [Google Scholar] [CrossRef]
- Chesterfield, R.J.; Vickers, C.E.; Beveridge, C.A. Translation of Strigolactones from Plant Hormone to Agriculture: Achievements, Future Perspectives, and Challenges. Trends Plant. Sci. 2020, 25, 1087–1106. [Google Scholar] [CrossRef] [PubMed]
- Génard, M.; Pagès, L.; Kervella, K. Relationship between sylleptic branching and components of parent shoot development in the peach tree. Ann. Bot. 1994, 74, 465–470. [Google Scholar] [CrossRef]
- Ben Yahmed, J.; Ghrab, M.; Ben Mimoun, M. Eco-physiological evaluation of different scion-rootstock combinations of almond grown in Mediterranean conditions. Fruits 2016, 71, 185–193. [Google Scholar] [CrossRef]
- Hearn, D.J. Perennial Growth, Form and Architecture of Angiosperm Trees. In Comparative and Evolutionary Genomics of Angiosperm Trees; Groover, A., Cronk, Q., Eds.; Springer: Cham, Switzerland, 2016; Volume 21, pp. 179–204. [Google Scholar] [CrossRef]
- De Saint Germain, A.; Ligerot, Y.; Dun, E.A.; Pillot, J.-P.; Ross, J.J.; Beveridge, C.A.; Rameau, C. Strigolactones Stimulate Internode Elongation Independently of Gibberellins. Plant. Physiol. 2013, 163, 1012–1025. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, S.A.; Krishnareddy, S.R.; Kebrom, T.H.; Casal, J.J. Phytochrome regulation of branching in arabidopsis. Plant. Physiol. 2010, 152, 1914–1927. [Google Scholar] [CrossRef] [PubMed]
- Kolesnikov, Y.S.; Kretynin, S.V.; Volotovsky, I.D.; Kordyum, E.L.; Ruelland, E.; Kravets, V.S. Molecular mechanisms of gravity perception and signal transduction in plants. Protoplasma 2016, 253, 1005. [Google Scholar] [CrossRef]
- Schüler, O.; Hemmersbach, R.; Böhmer, M. A Bird’s-Eye View of Molecular Changes in Plant Gravitropism Using Omics Techniques. Front. Plant. Sci. 2015, 6, 1176. [Google Scholar] [CrossRef] [PubMed]
Type | Parameter | Formula | Trunk | Branches |
---|---|---|---|---|
Vigor | Number of internodes | Nb_IN | ||
Length (mm) | Length | |||
Average lenght of internodes (mm) | Length/Nb_IN | IN_L | ||
Base diameter (mm) | d_Base | B_dBase | ||
Apex diameter (mm) | d_Top | B_dTop | ||
Branch quantity | Number of branches | Nb_B | B_NbAS | |
Ratio of branches by trunk internodes | Nb_B/Nb_IN | BbyIN | ||
Ratio of branches by trunk length | Nb_B/Length | BbyL | ||
Number of short branches (<100 mm) | Nb_sB | |||
Number of medium branches (100–200 mm) | Nb_mB | |||
Number of long branches (>200 mm) | Nb_lB | |||
Branch distribution | Mean distribution of branches trought the trunk | SUM(IN)/Nb_IN | Dist_B | |
Percentage of branches in the 1st third of the trunk | NbDown/Nb_B | Dist_Down | ||
Percentage of branches in the 2nd third of the trunk | NbMed/Nb_B | Dist_Med | ||
Percentage of branches in the 3rd third of the trunk | NbTop/Nb_B | Dist_Up | ||
Branching habit | Number of upright branches measured at the base (<45°) | Base_U | ||
Number of semiopen branches measured at the base (45°–65°) | Base_SO | |||
Number of open branches measured at the base (>65°) | Base_O | |||
Number of upright branches measured at the apex (<45°) | Top_U | |||
Number of semiopen branches measured at the apex (45°–65°) | Top_SO | |||
Number of open branches measured at the apex (>65°) | Top_O |
Trait | Cultivar | Rootstock | Cultivar × Rootstock Interaction | |
---|---|---|---|---|
Vigor | Nb_IN | 2.21 × 10−6 | 0.726 | 4.21 × 10−7 |
Length | 0.00263 | 0.23671 | 4.01 × 10−5 | |
IN_L | 3.87 × 10−10 | 0.000153 | 0.080919 | |
d_Base | 4.06 × 10−10 | 7.32 × 10−6 | 0.168 | |
d_Top | 8.29 × 10−5 | 0.28228 | 0.00696 | |
B_dBase | 8.74 × 10−8 | 0.00189 | 0.23873 | |
B_dTop | 0.0986 | 0.0686 | 0.1342 | |
Branch quantity | Nb_B | 0.00037 | 1.14 × 10−12 | 0.01043 |
BbyIN | 0.000152 | 1.20 × 10−7 | 0.001294 | |
BbyL | 0.001262 | 8.53 × 10−7 | 0.000649 | |
B_NbAS | 7.93 × 10−9 | 0.00547 | 0.05479 | |
Nb_sB | 3.47 × 10−5 | 0.00036 | 0.05135 | |
Nb_mB | 0.00208 | 8.33 × 10−7 | 0.01555 | |
Nb_lB | 0.00634 | 1.65 × 10−9 | 0.00814 | |
Branch distribution | Dist_B | 0.00256 | 0.08757 | 0.00303 |
Dist_Down | 0.249 | 0.7719 | 0.0288 | |
Dist_Med | 0.4682 | 0.0288 | 0.2746 | |
Dist_Up | 0.0127 | 0.0116 | 0.0169 | |
Branching habit | Base_U | 0.7449 | 0.0541 | 0.9252 |
Base_SO | 0.182 | 0.0156 | 0.6591 | |
Base_O | 0.0643 | 2.96 × 10−5 | 0.3477 | |
Top_U | 0.00336 | 7.06 × 10−7 | 0.11616 | |
Top_SO | 0.2424 | 0.3178 | 0.0845 | |
Top_O | 0.0247 | 7.55 × 10−7 | 0.6563 |
Vigor | Branch Quantity | Branch Distribution | Branch Habit | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nb_IN | Length | IN_L | d_Top | Nb_B | BbyIN | BbyL | B_NbAS | Nb_sB | Nb_mB | Nb_lB | Dist_B | Dist_Down | Dist_Up | Top_SO | ||
Vigor | Nb_IN | 1.000 | ||||||||||||||
Length | 0.899 | 1.000 | ||||||||||||||
IN_L | −0.306 | 0.078 | 1.000 | |||||||||||||
d_Top | −0.707 | −0.711 | 0.075 | 1.000 | ||||||||||||
Branch quantity | Nb_B | 0.323 | 0.246 | −0.169 | −0.229 | 1.000 | ||||||||||
BbyIN | −0.587 | −0.563 | 0.233 | 0.472 | 0.437 | 1.000 | ||||||||||
BbyL | −0.490 | −0.591 | −0.177 | 0.445 | 0.489 | 0.887 | 1.000 | |||||||||
B_NbAS | −0.483 | −0.485 | 0.067 | 0.501 | −0.268 | 0.215 | 0.165 | 1.000 | ||||||||
Branch vigor | Nb_sB | 0.458 | 0.366 | −0.224 | −0.351 | 0.722 | 0.084 | 0.148 | −0.394 | 1.000 | ||||||
Nb_mB | 0.257 | 0.219 | −0.161 | −0.234 | 0.801 | 0.281 | 0.361 | −0.225 | 0.359 | 1.000 | ||||||
Nb_lB | −0.214 | −0.220 | 0.122 | 0.260 | 0.397 | 0.616 | 0.547 | 0.211 | −0.155 | 0.186 | 1.000 | |||||
Branch distribution | Dist_B | −0.656 | −0.672 | 0.084 | 0.622 | −0.088 | 0.452 | 0.409 | 0.393 | −0.124 | −0.113 | 0.113 | 1.000 | |||
Dist_Down | 0.540 | 0.579 | −0.026 | −0.480 | −0.041 | −0.434 | −0.398 | −0.262 | 0.031 | −0.031 | −0.112 | −0.796 | 1.000 | |||
Dist_Up | −0.596 | −0.580 | 0.140 | 0.602 | −0.174 | 0.362 | 0.308 | 0.372 | −0.210 | −0.190 | 0.128 | 0.914 | −0.584 | 1.000 | ||
Branch habit | Top_SO | 0.121 | 0.088 | −0.045 | −0.034 | −0.016 | −0.010 | 0.000 | −0.072 | −0.050 | 0.035 | −0.007 | 0.022 | −0.078 | 0.030 | 1.000 |
‘Lauranne’ | ‘Guara’ | ‘Isabelona’ | ‘Diamar’ | ‘Soleta’ | ‘Vialfas’ | ||
---|---|---|---|---|---|---|---|
Length (mm) | ‘Garnem’ | 353 a | 707 a | 800 ab | 323 c | 357 b | 1190 a |
‘GN-8’ | 223 a | 453 a | 443 b | 820 ab | 847 a | 313 d | |
Rootpac® 20 | 317 a | 923 a | 1053 a | 1053 a | 373 b | 380 cd | |
Rootpac® 40 | 317 a | 720 a | 450 b | 607 bc | 730 a | 697 b | |
Rootpac® R | 690 a | 717 a | 623 ab | 687 b | 597 ab | 653 bc | |
IN_L (mm) | ‘Garnem’ | 19.0 a | 16.7 a | 12.4 a | 17.0 a | 11.0 a | 12.8 ab |
‘GN-8’ | 11.0 b | 14.5 a | 12.1 a | 15.9 a | 10.6 a | 9.2 b | |
Rootpac® 20 | 18.8 a | 18.5 a | 11.0 a | 17.6 a | 13.1 a | 15.1 a | |
Rootpac® 40 | 16.2 a | 14.8 a | 12.2 a | 15.0 a | 12.7 a | 12.3 ab | |
Rootpac® R | 16.7 a | 15.8 a | 11.3 a | 14.0 a | 13.9 a | 11.9 ab | |
Nb_B | ‘Garnem’ | 9.0 ab | 15.3 a | 22.3 a | 8.7 ab | 14.7 a | 18.0 a |
‘GN-8’ | 4.0 b | 3.3 b | 8.0 b | 5.7 b | 10.3 a | 8.7 bc | |
Rootpac® 20 | 5.3 ab | 2.7 b | 4.7 b | 2.7 b | 6.3 a | 7.7 c | |
Rootpac® 40 | 12.0 a | 8.7 ab | 8.0 b | 7.0 ab | 12.0 a | 16.7 ab | |
Rootpac® R | 11.3 a | 12.0 ab | 13.0 ab | 15.0 a | 15.3 a | 11.7 abc | |
BbyIN | ‘Garnem’ | 0.481 ab | 0.382 a | 0.359 a | 0.452 a | 0.456 a | 0.193 a |
‘GN-8’ | 0.199 b | 0.191 a | 0.292 a | 0.107 c | 0.130 b | 0.242 a | |
Rootpac® 20 | 0.331 ab | 0.070 a | 0.048 a | 0.043 c | 0.232 ab | 0.295 a | |
Rootpac® 40 | 0.608 a | 0.247 a | 0.288 a | 0.183 bc | 0.209 ab | 0.294 a | |
Rootpac® R | 0.365 ab | 0.268 a | 0.232 a | 0.303 ab | 0.362 ab | 0.211 a | |
Nb_lB | ‘Garnem’ | 5.3 ab | 4.7 a | 6.3 a | 7.7 a | 6.3 a | 4.3 a |
‘GN-8’ | 3.0 b | 2.3 a | 1.7 a | 3.3 b | 4.0 ab | 2.7 ab | |
Rootpac® 20 | 3.3 ab | 1.0 a | 1.3 a | 0.7 b | 1.7 b | 3.0 ab | |
Rootpac® 40 | 7.0 a | 3.3 a | 2.7 a | 1.7 b | 3.7 ab | 3.7 a | |
Rootpac® R | 4.7 ab | 4.7 a | 1.7 a | 2.7 b | 4.0 ab | 0.7 b | |
B_NbAS | ‘Garnem’ | 5.2 a | 2.7 a | 0.5 a | 1.3 a | 2.8 a | 0.4 a |
‘GN-8’ | 7.1 a | 1.3 a | 0.5 a | 0.1 a | 0.9 a | 2.4 a | |
Rootpac® 20 | 3.5 a | 1.0 a | 0.0 a | 0.3 a | 1.6 a | 0.2 a | |
Rootpac® 40 | 1.2 a | 0.5 a | 0.8 a | 0.0 a | 1.7 a | 0.1 a | |
Rootpac® R | 2.2 a | 0.7 a | 0.3 a | 0.0 a | 2.2 a | 0.1 a | |
Dist_B | ‘Garnem’ | 0.58 a | 0.61 a | 0.53 a | 0.69 a | 0.58 ab | 0.46 a |
‘GN-8’ | 0.64 a | 0.60 a | 0.48 a | 0.22 b | 0.37 b | 0.72 a | |
Rootpac® 20 | 0.69 a | 0.59 a | 0.39 a | 0.35 b | 0.79 a | 0.74 a | |
Rootpac® 40 | 0.59 a | 0.40 a | 0.52 a | 0.44 b | 0.49 b | 0.47 a | |
Rootpac® R | 0.63 a | 0.50 a | 0.51 a | 0.44 b | 0.57 ab | 0.47 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montesinos, Á.; Thorp, G.; Grimplet, J.; Rubio-Cabetas, M.J. Phenotyping Almond Orchards for Architectural Traits Influenced by Rootstock Choice. Horticulturae 2021, 7, 159. https://doi.org/10.3390/horticulturae7070159
Montesinos Á, Thorp G, Grimplet J, Rubio-Cabetas MJ. Phenotyping Almond Orchards for Architectural Traits Influenced by Rootstock Choice. Horticulturae. 2021; 7(7):159. https://doi.org/10.3390/horticulturae7070159
Chicago/Turabian StyleMontesinos, Álvaro, Grant Thorp, Jérôme Grimplet, and María José Rubio-Cabetas. 2021. "Phenotyping Almond Orchards for Architectural Traits Influenced by Rootstock Choice" Horticulturae 7, no. 7: 159. https://doi.org/10.3390/horticulturae7070159
APA StyleMontesinos, Á., Thorp, G., Grimplet, J., & Rubio-Cabetas, M. J. (2021). Phenotyping Almond Orchards for Architectural Traits Influenced by Rootstock Choice. Horticulturae, 7(7), 159. https://doi.org/10.3390/horticulturae7070159