First Steps toward a Test Procedure to Identify Peat Substitutes for Growing Media by Means of Chemical, Physical, and Biological Material Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Procedure and Test Criteria
2.2. Raw Materials and Experiment Treatments
2.3. Analyses of Raw Materials and Treatments
2.4. Statistical Analyses
3. Results
3.1. Development of the Test Procedure
3.1.1. TC I: Analyses of Raw Materials
3.1.2. TC II: Processing of Raw Materials
3.1.3. TC III: Extended Substrate Analyses of the Processed Materials
3.1.4. TC IV: Stability Tests, Growing Tests, and Analyses of C Dynamics
Nmin Budget
Standardized Growing Test
Degradation Stability Tests
Compound Classes Determining Degradation Stability
3.1.5. TC V: Experiments under Practical Conditions
4. Discussion
4.1. Evaluation of Processed Raw Materials
4.2. (Biological) Degradation Stability
4.3. Comparison of Investigated Processed Raw Materials to Substrate Components in Commercial Use
4.4. Advantages of the Test Procedure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treatment | Water Capacity | Air Capacity | Water Capacity | Air Capacity | Water Capacity | Air Capacity |
---|---|---|---|---|---|---|
at −10 hPa | at −50 hPa | at −100 hPa | ||||
[Vol. %] | ||||||
Peat 100 | 75 ± 4 a | 19 ± 4 a | 41 ± 1 a | 53 ± 1 a | 40 ± 1 a | 55 ± 1 a |
Cal 100 | 64 ± 3 b | 27 ± 3 b | 49 ± 2 b | 42 ± 2 b | 33 ± 1 b | 58 ± 1 b |
Cal 50 | 79 ± 1 c | 14 ± 1 c | 50 ± 5 b | 42 ± 5 b | 41 ± 1 a | 51 ± 1 c |
Al 100 | 31 ± 1 d | 60 ± 1d | 29 ± 1 c | 63 ± 1 c | 25 ± 1 c | 66 ± 1 d |
Al 50 | 52 ± 2 e | 41 ± 2 e | 37 ± 2 a | 56 ± 5 a | 32 ± 1 b | 61 ± 1 e |
Ty 100 | 13 ± 1 f | 85 ± 1 f | 13 ± 1 d | 85 ± 1 d | 16 ± 1 (n.d.) | 82 ± 1 (n.d.) |
Ty 50 | 38 ± 1 g | 58 ± 1 d | 24 ± 1 e | 72 ± 1 e | 22 (n.d.) | 74 (n.d.) |
Ph 100 | 15 ± 1 f | 78 ± 1 g | 15 ± 0 d | 78 ±0 f | 15 ± 1d | 78 ± 1 f |
Ph 50 | 40 ± 2 g | 54 ± 2 h | 26 ± 2 c.e | 68 ± 2 g | 22 ± 1 e | 72 ± 1 g |
Treatment | <0.2 mm | 0.2–0.5 mm | 0.5–1 mm | 1–2 mm | 2–4 mm | 4–10 mm | 10–16 mm | 16–31.5 mm | >31.5 mm |
---|---|---|---|---|---|---|---|---|---|
[% of Total Mass] | |||||||||
Peat 100 | 7 ± 1 | 21 ± 1 | 21 ± 1 | 15 ± 2 | 14 ± 1 | 14 ± 2 | 7 ±1 | 1 ± 1 | - |
Cal 100 | 20 ± 6 | 32 ± 3 | 23 ± 3 | 15 ± 3 | 7 ± 2 | 3 ± 2 | 0.4 ± 1 | - | - |
Cal 50 | 12 ± 5 | 28 ± 4 | 27 ± 1 | 18 ± 3 | 10 ± 2 | 5 ± 1 | 1 ± 1 | - | - |
Al 100 | 9 ± 6 | 16 ± 5 | 19 ± 0.2 | 27 ± 4 | 24 ± 5 | 4 ± 1 | - | - | - |
Al 50 | 5 ± 1 | 17 ± 1 | 22 ± 1 | 23 ± 2 | 23 ± 1 | 9 ± 2 | 2 ± 1 | 0.3 ± 1 | - |
Ty 100 | 0.4 ± 0.1 | 0.5 ± 0.1 | 1 ± 0.3 | 11 ± 1 | 55 ± 8 | 32 ± 8 | - | - | - |
Ty 50 | 6 ± 1 | 14 ± 3 | 14 ± 3 | 16 ± 1 | 31 ± 3 | 17 ± 3 | 2 ± 1 | - | - |
Ph 100 | 0.1 ± 0 | 0.3 ± 0 | 3 ± 0.3 | 30 ± 2 | 66 ± 2 | 1 ± 0.2 | - | - | - |
Ph 50 | 5 ± 1 | 11 ± 3 | 11 ± 3 | 35 ± 1 | 25 ± 3 | 10 ± 3 | 2 ± 1 | 2 ± 0 | - |
Vegetables | Ornamentals | Trees | |
---|---|---|---|
Plant culture | Occimum basilicum | Cyclamen persicum | Taxus baccata |
Cultivation period | 6 weeks | 4 months | 5.5 months |
Irrigation | ebb and flow system | channel system | irrigation cart |
Treatments | Peat 100, Cal 100, Cal 50, Al 50, Al 25, in house growing media | ||
Fertilization (start) | No N compensation | N compensation for Al 50 and Al 25 | |
Complementary fertilization recommended | According to the results of the test procedure N compensation recommended for Al 50 and Al 25. | ||
Complementary fertilization applied | No | Yes | Yes |
References
- Gruda, N. Current and future perspective of growing media in Europe. Acta Hortic. 2012, 960, 37–43. [Google Scholar] [CrossRef]
- Schmilewski, G. The role of peat in assuring the quality of growing media. Mires Peat 2008, 3, 1–8. [Google Scholar]
- Myllylä, I. The role and characteristics of peat in horticulture are unique. Peatl. Int. 2005, 1, 11–14. [Google Scholar]
- Blok, C.; Eveleens, B.; van Winkel, A. Growing media for food and quality of life in the period 2020–2050. Acta Hortic. 2021, 341–356. [Google Scholar] [CrossRef]
- Prasad, M.; Maher, M.J. Stability of peat alternatives and use of moderately decomposed peat as a structure builder in growing media. Acta Hortic. 2004, 648, 145–151. [Google Scholar] [CrossRef]
- Noguera, P.; Abad, M.; Noguera, V. Coconut coir waste, a new and viable ecologically friendly peat substitute. Acta Hortic. 2000, 517, 279–286. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Puchades, R.; Maquieira, A.; Noguera, V. Physico-chemical and chemical properties of some coconut coir dusts for use as peat substitute for containerised ornamental plants. Bioresoure Technol. 2002, 82, 241–245. [Google Scholar] [CrossRef]
- la Bella, S.; Virga, G.; Iacuzzi, N.; Licata, M.; Sabatino, L.; Consentino, B.B.; Leto, C.; Tuttolomondo, T. Effects of irrigation, peat-alternative substrate and plant habitus on the morphological and production characteristics of sicilian rosemary (Rosmarinus officinalis L.) biotypes grown in pot. Agriculture 2021, 11, 13. [Google Scholar] [CrossRef]
- Benito, M.; Masaguer, A.; Moliner, A.; De Antonio, R. Chemical and physical properties of pruning waste compost and their seasonal variability. Bioresoure Technol. 2006, 97, 2071–2076. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.M.A.; Alves-pereira, I.; Ferreira, R. Coir, an Alternative to Peat—Effects on Plant Growth, Phytochemical Accumulation, and Antioxidant Power of Spinach. Horticulturae 2021, 7, 127. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Leiber-Sauheitl, K.; Bohne, H.; Böttcher, J. Peat substitutes from renewable resources and land-scape conservation materials. Acta Hortic. 2021, 1305, 545–552. [Google Scholar] [CrossRef]
- VDLUFA. Bestimmung der Rohdichte (Volumengewicht) von gärtnerischen Substraten mit sperrigen Komponenten (Determination of bulk density (volume weight) of horticultural substrates with bulky components). Methodenb. I 1997, A 13.2.2, 1–5. [Google Scholar]
- VDLUFA. Bestimmung des pH-Wertes (Determination of the pH value). Methodenb. I 2016, A 5.1.1, 1–7. [Google Scholar]
- VDLUFA. Bestimmung des Salzgehaltes in Böden, gärtnerischen Erden und Substraten (Determination of salt content in soils, horticultural soils and substrates). Methodenb. I 1991, A 10.1.1, 1–8. [Google Scholar]
- DIN; ISO. Soil quality—Determination of organic and total carbon after dry combustion (elementary analysis). DIN ISO 10694 1995, 1–5. [Google Scholar]
- BGK. Rottegrad im Selbsterhitzungsversuch (Degree of Rotting in Self-Heating Test). Methodenb. zur Anal. Org. Düngemittel, Bodenverbesserungsm. und Substrate; Kapitel IV; Bundesgütegemeinschaft Kompost e.V.: Köln-Gremberghoven, Germany, 2006. [Google Scholar]
- DIN; EN. Soil improvers and growing media—Determination of the aerobic biological activity—Part 2: Self heating test for compost. DIN EN 16087-2 2011, 1–10. [Google Scholar]
- VDLUFA. Bestimmung von Haupt- und Spurennährstoffen in Kultursubstraten im Calciumchlorid/ DTPA-Auszug—CAT-Methode (Determination of major and trace nutrients in growing media in calcium chloride/ DTPA extract—CAT method). Methodenb. I 1997, A 13.1.1, 1–56. [Google Scholar]
- VDLUFA. Bestimmung der Wasserkapazität (WK) von Substraten und Komposten ohne sperrige Komponenten (Determination of the water capacity (WC) of substrates and composts without bulky components). Methodenb. I 2002, A 13.2.3, 1–4. [Google Scholar]
- DIN; EN. Soil improvers and growing media—Determination of physical properties—Dry bulk density, air volume, water volume, shrinkage value and total pore space. DIN EN 13041 2011, 1–30. [Google Scholar]
- DIN; EN. Peats for horticulture and landscape gardening—Test methods, properties, specifications. DIN EN 11540 2005, 1–27. [Google Scholar]
- VDLUFA. Bestimmung der Stabilität des Stickstoffhaushaltes organischer Materialien (Determination of the stability of the nitrogen balance of organic materials). Methodenb. I 2007, A 13.5.1, 1–7. [Google Scholar]
- VDLUFA. Keimpflanzentest zum Nachweis von pflanzenschädigenden Stoffen in Kultursubstraten und Substratausgangsstoffen (Seedling test for the detection of substances harmful to plants in growing media and components for growing media). Methodenb. I 2016, A 10.2.1, 1–22. [Google Scholar]
- Alef, K. Bodenatmung—Die Isermeyer-Methode (Soil respiration—The method of Isermeyer). In Methodenhandbuch Bodenmikrobiologie; Ecomed: Landsberg/Lech, Germany, 1991; pp. 87–90. [Google Scholar]
- DeLuca, T.H.; Keeney, D.R. Soluble Anthrone-Reactive Carbon in Soils: Effect of Carbon and Nitrogen Amendments. Soil Sci. Soc. Am. J. 1993, 57, 1296–1300. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mueller, T.; Wolters, V. Total carbohydrates of the soil microbial biomass in 0.5 M K2SO4 soil extracts. Soil Biol. Biochem. 1996, 28, 1147–1153. [Google Scholar] [CrossRef]
- Amha Amde, Y. Water- and salt-extractable organic carbon from peats: Their relations with long-term CO2 evolution, microbial biomass-C, and the degree of decomposition. In Microbial Activity and Biomass of Peats in Relation to the Intrinsic Organic Matter Composition, pH, Moisture, and C and N Inputs; Leibniz University Hannover: Hannover, Germany, 2011; pp. 26–43. [Google Scholar]
- Hedges, J.I.; Ertel, J.R. Characterization of Lignin by Gas Capillary Chromatography of Cupric Oxide Oxidation Products. Anal. Chem. 1982, 54, 174–178. [Google Scholar] [CrossRef]
- Dao, T.T.; Gentsch, N.; Mikutta, R.; Sauheitl, L.; Shibistova, O.; Wild, B.; Schnecker, J.; Bárta, J.; Čapek, P.; Gittel, A.; et al. Fate of carbohydrates and lignin in north-east Siberian permafrost soils. Soil Biol. Biochem. 2018, 116, 311–322. [Google Scholar] [CrossRef]
- VDLUFA. Bestimmung der Säure-Detergenzien-Faser (ADF) und der Säure-Detergenzien-Faser nach Veraschung (ADFom) (Determination of acid detergent fiber (ADF) and acid detergent fiber after ashing (ADFom)). Methodenb. III 2012, 6.5.2, 1–8. [Google Scholar]
- VDLUFA. Bestimmung der Neutral-Detergenzien-Faser nach Amylasebehandlung (aNDF) sowie nach Amylasebehandlung und Veraschung (aNDFom) (Determination of neutral detergent fiber after amylase treatment (aNDF) and after amylase treatment and ashing (aNDFom)). Methodenb. III 2012, 6.5.1, 1–8. [Google Scholar]
- VDLUFA. Bestimmung des Säure-Detergenzien-Lignins (ADL) (Determination of acid-detergent lignin (ADL)). Methodenb. III 2012, 6.5.1, 1–4. [Google Scholar]
- RAL. Substrate für Pflanzen—Gütesicherung RAL-GZ 250 (Substrates for plants—Quality assurance system RAL-GZ 250); RAL, Ed.; Beuth GmbH: Berlin, Germany, 2015. [Google Scholar]
- Amha Amde, Y. Microbial Activity and Biomass of Peats in Relation to the Intrinsic Organic Matter Composition, pH, Moisture, and C and N Inputs. Ph.D. Thesis, Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany, 2011. [Google Scholar]
- Campbell, M.M.; Sederoff, R.R. Variation in lignin content and composition. Plant Physiol. 1996, 110, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- BGK; RAL. Gütesicherung Kompost—Qualitätskriterien für Substratkompost (RAL quality assurance system for compost—quality criteria for substrate compost). DOK 251-006-3 2018, 1–2. [Google Scholar]
- Gruda, N. Sustainable Peat Alternative Growing Media. Acta Hortic. 2012, 927, 973–979. [Google Scholar] [CrossRef]
- Sollins, P.; Homann, P.; Caldwell, B.A. Stabilization and destabilization of soil organic matter—Mechanisms and controls. Geoderma 1996, 74, 65–105. [Google Scholar] [CrossRef]
- Tuomela, M.; Vikman, M.; Hatakka, A.; Itävaara, M. Biodegradation of lignin in a compost environment: A review. Bioresoure Technol. 2000, 72, 169–183. [Google Scholar] [CrossRef]
- Riviere, L.-M.; Caron, J. Research on substrates: State of the art and need for the coming 10 years. Acta Hortic. 2001, 548, 29–41. [Google Scholar] [CrossRef]
- Aendekerk, T.G.L. Decomposition of peat substrates in relation to physical properties and growth of Chamaecyparis. Acta Hortic. 1997, 450, 191–198. [Google Scholar] [CrossRef]
- Verhagen, J.B.G.M. Stability of growing media from a physical, chemical and biological perspective. Acta Hortic. 2009, 819, 135–142. [Google Scholar] [CrossRef]
- Amha, Y.; Bohne, H.; Schmilewski, G.; Picken, P.; Reinikainen, O. Physical, chemical and botanical characteristics of peats used in the horticultural industry. Eur. J. Hortic. Sci. 2010, 75, 177–183. [Google Scholar]
- Handreck, K.A. Composts in the Production and Performance of Growing Media for Containers. ISHS Acta Hortic. 1018 2014, 505–512. [Google Scholar] [CrossRef]
- Raviv, M. Composts in growing media: What’s new and what’s next? Acta Hortic. 2013, 982, 39–52. [Google Scholar] [CrossRef]
- Stucki, M.; Wettstein, S.; Mathis, A. Erweiterung der Studie Torf und Torfersatzprodukte im Vergleich; Institut für Umwelt und Natürliche Ressourcen, Zürcher Hochschule für Angewandte Wissenschaften: Wädenswil, Schweiz, 2019. [Google Scholar]
- Frangi, P.; Amoroso, G.; Piatti, R. Alternative growing media to peat obtained from two fast growing species of poaceae. Acta Hortic. 2012, 927, 967–972. [Google Scholar] [CrossRef]
- Altland, J.E.; Locke, J.C. Use of Ground Miscanthus Straw in Container Nursery Substrates. J. Environ. Hortic. 2011, 29, 114–118. [Google Scholar] [CrossRef]
- Wichtmann, W.; Schröder, C.; Joosten, H. Paludiculture—Productive Use of Wet Peatlands. Climate Protection—Biodiversity—Regional Economic Benefits, 1st ed.; Schweizerbart: Stuttgart, Germany, 2016. [Google Scholar]
Treatment | Processed Raw Material I | Processed Raw Material II |
---|---|---|
Peat 100 | 100% (Vol.) peat | - |
Cal 100 | 100% (Vol.) composted heather | - |
Cal 50 | 50% (Vol.) composted heather | 50% (Vol.) peat |
Al 100 | 100% (Vol.) alder | - |
Al 50 | 50% (Vol.) alder | 50% (Vol.) peat |
Ty 100 | 100% (Vol.) cattail | - |
Ty 50 | 50% (Vol.) cattail | 50% (Vol.) peat |
Ph 100 | 100% (Vol.) reed | - |
Ph 50 | 50% (Vol.) reed | 50% (Vol.) peat |
Raw Material | pH (CaCl2) | Salt Content [g KCl L−1] | C/N | N | P | K |
---|---|---|---|---|---|---|
[% in d. m.] | ||||||
Peat | 3.2 ± 0.0 a | 0.06 ± 0.00 a | 60 ± 0 a | 0.82 ± 0.00 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a |
Composted heather | 5.2 ± 0.1 bc | 0.47 ± 0.00 b | 21 ± 0 b | 1.44 ± 0.01 b | 0.07 ± 0.02 b | 0.22 ± 0.01 b |
Alder | 6.2 ± 0.1 d | 0.21 ± 0.01 c | 83 ± 0 c | 0.55 ± 0.01 c | 0.06 ± 0.01 b | 0.17 ± 0.00 c |
Cattail | 5.4 ± 0.2 b | 0.41 ± 0.00 d | 154 ± 1 d | 0.30 ± 0.00 d | 0.01 ± 0.01 ac | 0.23 ± 0.00 b |
Reed | 5.1 ± 0.0 c | 0.37 ± 0.01 e | 184 ± 4 e | 0.25 ± 0.01 e | 0.00 ± 0.00 c | 0.07 ± 0.01 d |
Raw Material | Volume Weight Dry [g L−1] | pH (CaCl2) | Salt Content [g KCl L−1] | Nmin | P | K |
---|---|---|---|---|---|---|
[mg L−1] | ||||||
Peat | 78 ± 1 a | 3.2 ± 0.0 a | 0.06 ± 0.00 a | 20 ± 1 a | 1 ± 0 a | 3 ± 0 a |
Composted heather | 248 ± 1 b | 5.2 ± 0.1 bc | 0.47 ± 0.00 b | 28 ± 1 b | 62 ± 1 b | 608 ± 14 b |
Alder | 170 ± 1 c | 6.2 ± 0.1 d | 0.21 ± 0.01 c | 0 ± 0 c | 34 ± 1 c | 231 ± 5 c |
Cattail | 36 ± 0 d | 5.4 ± 0.2 b | 0.41 ± 0.00 d | 6 ± 0 d | 10 ± 0 d | 68 ± 2 d |
Reed | 103 ± 5 e | 5.1 ± 0.0 c | 0.37 ± 0.01 e | 10 ± 0 e | 15 ± 0 e | 97 ± 1 e |
Treatment | WHCmax [Vol. %] | Plant Available Water [Vol. %] |
---|---|---|
Peat 100 | 82 ± 1 a | 35 ± 3 a |
Cal 100 | 63 ± 1 b | 31 ± 3 b |
Cal 50 | 72 ± 1 c | 37 ± 2 c |
Al 100 | 36 ± 1 d | 6 ± 1 d |
Al 50 | 57 ± 1 e | 20 ± 2 e |
Ty 100 | 15 ± 1 f | 0 ± 0 f |
Ty 50 | 48 ± 1 g | 17 ± 1 g |
Ph 100 | 15 ± 1 f | 0 ± 0 f |
Ph 50 | 45 ± 1 h | 19 ± 2 eg |
Treatment | Dry Matter [g pot−1] | N | P | K |
---|---|---|---|---|
[% in d. m.] | ||||
Peat 100 | 3.4 ± 0.3 a | 3.1 ± 0.3 a | 0.52 ± 0.05 a | 2.1 ± 0.3 a |
Cal 100 | 3.0 ± 0.5 a | 2.8 ± 0.3 a | 0.48 ± 0.08 a | 4.1 ± 0.6 b |
Cal 50 | 3.0 ± 0.3 a | 2.9 ± 0.3 a | 0.49 ± 0.05 a | 3.8 ± 0.3 b |
Al 100 | 0.9 ± 0.5 b | 1.1 ± 0.0 b | 0.40 ± 0.10 a | 2.1 ± 0.7 a |
Al 50 | 0.8 ± 0.4 b | 1.0 ± 0.1 b | 0.44 ± 0.02 a | 2.5 ± 0.1 a |
Ty 100 | - | - | - | - |
Ty 50 | 2.2 ± 0.2 c | 2.0 ± 0.1 c | 0.42 ± 0.03 a | 2.5 ± 0.3 a |
Ph 100 | - | - | - | - |
Ph 50 | 1.0 ± 0.2 b | 1.0 ± 0.0 b | 0.37 ± 0.09 a | 1.9 ± 0.5 a |
Treatment | Stage 1 | Stage 2 | ||||
---|---|---|---|---|---|---|
Total Corg | SSC 20 °C | SSC 80 °C | Total Corg | SSC 20 °C | SSC 80 °C | |
[mg C g−1 d. m.] | ||||||
Peat 100 | 470 ± 1 a | 0.9 ± 0.1 a | 8.2 ± 0.3 a | 499 ± 1 a | 0.6 ± 0.0 a | 6.4 ± 0.2 a |
Cal 100 | 302 ± 2 b | 0.9 ± 0.1 a | 6.5 ± 0.6 b | 220 ± 2 b | 0.9 ± 0.1 a,b | 7.5 ± 0.5 b |
Cal 50 | 350 ± 2 c | 0.9 ± 0.0 a | 7.2 ± 0.3 c | 397 ± 1 c | 0.7 ± 0.1 a,b | 6.4 ± 0.1 a |
Al 100 | 455 ± 3 d | 0.9 ± 0.2 a | 8.8 ± 0.4 d | n.d. | n.d. | n.d. |
Al 50 | 442 ± 1 e | 1.0 ± 0.1 a | 8.6 ± 0.3 a,d | 477 ± 1 d | 1.2 ± 0.0 b | 10.7 ± 0.5 c |
Al 25 | n.d. | n.d. | n.d. | 486 ± 1 e | 0.9 ± 0.0 a,b | 8.8 ± 0.2 d |
Ty 100 | 469 ± 1 f | 5.3 ± 0.1 b | 14.0 ± 0.3 e | n.d. | n.d. | n.d. |
Ty 50 | 460 ± 1 g | 2.2 ± 0.1 c | 9.5 ± 0.1 f | 475 ± 0 d | 1.9 ± 0.6 c | 11.4 ± 0.6 e |
Ty 25 | n.d. | n.d. | n.d. | 485 ± 1 e | 0.9 ± 0.1 a,b | 8.5 ± 0.5 d |
Ph 100 | 468 ± f 0 | 2.9 ± 0.1 d | 7.4 ± 0.5 c | n.d. | n.d. | n.d. |
Ph 50 | 453 ± 1 d | 2.0 ± 0.0 c | 7.3 ± 0.1 c | n.d. | n.d. | n.d. |
Treatment | Stage 1/Stage 2 | |||
---|---|---|---|---|
Hemi- Cellulose | Cellulose | (Raw) Lignin | Sum of VSC Units | |
[% of d. m.] | [mg g−1 d. m.] | |||
Peat 100 | 10.0/10.9 | 53.0/46.6 | 21.1/23.0 | 7.6 ± 1.9 a/ 11.6 ± 1.5 a |
Cal 100 | 3.4/10.0 | 8.4/8.2 | 73.6/65.1 | 17.2 ± 3.7 b/ 22.6 ± 7.3 b |
Al 100 | 16.4/13.4 | 41.2/40.3 | 32.4/31.1 | 37.4 ± 8.7 c/ 61.2 ± 7.8 c |
Ty 100 | 23.5/22.3 | 47.0/32.6 | 16.8/20.7 | 55.4 ± 2.8 d/ 39.8 ± 3.5 d |
Ph 100 | 25.1/- | 53.7/- | 14.7/- | 70.8 ± 10.0 e/- |
Treatment | Basil | Cyclamen | Yew | |||
---|---|---|---|---|---|---|
Fresh Weight | Dry Weight | Fresh Weight | Dry Weight | Fresh Weight | Dry Weight | |
[g pot−1] | ||||||
Peat 100 | 10 ± 2 a | 1.1 ± 0.3 a | 86 ± 12 a | 7.2 ± 0.9 a | 84 ± 15 a | 31 ± 6 a |
Cal 100 | 40 ± 7 b | 3.9 ± 0.5 b | 49 ± 4 b | 4.1 ± 0.3 b | 85 ± 10 a | 31 ± 4 a |
Cal 50 | 35 ± 1 b | 3.7 ± 0.1 b | 87 ± 11 a | 6.9 ± 1.0 a | 102 ± 10 a | 38 ± 4 a |
Al 50 | 7 ± 1 a | 0.9 ± 0.2 a | 46 ± 11 b | 3.9 ± 0.7 b | 84 ± 14 a | 31 ± 4 a |
Al 25 | 5 ± 1 a | 0.7 ± 0.2 a | 66 ± 11 a | 5.9 ± 0.8 a | 83 ± 11 a | 31 ± 4 a |
In-house growing media | 51 ± 4 c | 5.1 ± 0.3 c | 89 ± 20 a | 7.3 ± 1.3 a | 93 ± 14 a | 35 ± 5 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leiber-Sauheitl, K.; Bohne, H.; Böttcher, J. First Steps toward a Test Procedure to Identify Peat Substitutes for Growing Media by Means of Chemical, Physical, and Biological Material Characteristics. Horticulturae 2021, 7, 164. https://doi.org/10.3390/horticulturae7070164
Leiber-Sauheitl K, Bohne H, Böttcher J. First Steps toward a Test Procedure to Identify Peat Substitutes for Growing Media by Means of Chemical, Physical, and Biological Material Characteristics. Horticulturae. 2021; 7(7):164. https://doi.org/10.3390/horticulturae7070164
Chicago/Turabian StyleLeiber-Sauheitl, Katharina, Heike Bohne, and Jürgen Böttcher. 2021. "First Steps toward a Test Procedure to Identify Peat Substitutes for Growing Media by Means of Chemical, Physical, and Biological Material Characteristics" Horticulturae 7, no. 7: 164. https://doi.org/10.3390/horticulturae7070164
APA StyleLeiber-Sauheitl, K., Bohne, H., & Böttcher, J. (2021). First Steps toward a Test Procedure to Identify Peat Substitutes for Growing Media by Means of Chemical, Physical, and Biological Material Characteristics. Horticulturae, 7(7), 164. https://doi.org/10.3390/horticulturae7070164