Rootstocks Impact Yield, Fruit Composition, Nutrient Deficiencies, and Winter Survival of Hybrid Cultivars in Eastern Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viticultural Parameters
2.2. Statistical Analysis
3. Results
3.1. Bud Survival
3.2. Grapevine Development
3.3. Nutrient Deficiencies
3.4. Yield Components and Fruit Composition
3.4.1. Frontenac
3.4.2. Frontenac Blanc
3.4.3. Marquette
4. Discussion
4.1. Bud Survival
4.2. Grapevine Development
4.3. Nutrient Deficiencies
4.4. Yield Parameters
4.5. Fruit Composition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plocher, T.A.; Parke, R.J. Northern Winework: Growing Grapes and Making Wine in Cold Climates; Eau Claire Printing: Eau Claire, WI, USA, 2008. [Google Scholar]
- Zabadal, T.J.; Dami, I.E.; Goffinet, M.C.; Martinson, T.E.; Chien, M.L. Winter Injury to Grapevines and Methods of Protection; Michigan State University Extension: East Lansing, MI, USA, 2007. [Google Scholar]
- Reynolds, A.G. Grapevine Breeding Programs for the Wine Industry; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Bates, T.R.; English-Loeb, G.; Dunst, R.M.; Taft, T.; Lakso, A. The interaction of phylloxera infection, rootstock, and irrigation on young Concord grapevine growth. VITIS J. Grapevine Res. 2015, 40, 225. [Google Scholar]
- Harris, J.L. Effect of Rootstock on Vegetative Growth, Yield, and Fruit Composition of Norton Grapevines. Ph.D. Thesis, University of Missouri, Columbia, MI, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Hoover, E.E.; Hemstad, P.; Larson, D.; MacKenzie, J.; Zambreno, K.; Propsom, F. Rootstock influence on scion vigor, hardiness, yield, and fruit composition of St. Pepin grape. In Proceedings of the XXVI International Horticultural Congress: Viticulture—Living with Limitations, Toronto, ON, Canada, 31 August 2004; pp. 201–206. [Google Scholar]
- McCraw, B.D.; McGlynn, W.G.; Striegler, R.K. Effect of rootstock on growth, yield and juice quality of vinifera, American and hybrid wine grapes in Oklahoma. In Grapevine Rootstocks: Current Use, Research, and Application; Southwest Missouri State University: Osage Beach, MO, USA, 2005; pp. 61–65. [Google Scholar]
- Reynolds, A.G.; Wardle, D.A. Rootstocks impact vine performance and fruit composition of grapes in British Columbia. HortTechnology 2001, 11, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Cousins, P. Evolution, genetics, and breeding: Viticultural applications of the origins of our rootstocks. In Grapevine Rootstocks: Current Use, Research, and Application; Southwest Missouri State University: Osage Beach, MO, USA, 2005; pp. 1–7. [Google Scholar]
- Wolpert, J.A. Selection of rootstocks: Implications for quality. In Grapevine Rootstocks: Current Use, Research, and Application; Southwest Missouri State University: Osage Beach, MO, USA, 2005; pp. 25–33. [Google Scholar]
- Miller, D.P.; Howell, G.S.; Striegler, R.K. Cane and bud hardiness of selected grapevine rootstocks. Am. J. Enol. Vitic. 1988, 39, 55–59. [Google Scholar]
- Striegler, R.K.; Howell, G.S. The influence of rootstock on the cold hardiness of Seyval grapevines: Primary and secondary effects on growth, canopy development, yield, fruit quality and cold hardiness. VITIS J. Grapevine Res. 1991, 30, 1. [Google Scholar]
- Wolf, T.K.; Pool, R.M. Nitrogen fertilization and rootstock effects on wood maturation and dormant bud cold hardiness of cv. Chardonnay grapevines. Am. J. Enol. Vitic. 1988, 39, 308–312. [Google Scholar]
- Bates, T. Grapevine root biology and rootstock selection in eastern US. In Grapevine Rootstocks: Current Use, Research, and Application; Southwest Missouri State University: Osage Beach, MO, USA, 2005; pp. 8–13. [Google Scholar]
- Reynolds, A.G.; Wardle, D.A. Evaluation of minimal pruning upon vine performance and berry composition of Chancellor. Am. J. Enol. Vitic. 2001, 52, 45–48. [Google Scholar]
- Krstic, M.; Kelly, G.; Hannah, R.; Clingeleffer, P. Manipulating grape composition and wine quality through the use of rootstocks. In Grapevine Rootstocks: Current Use, Research, and Application; Southwest Missouri State University: Osage Beach, MO, USA, 2005; pp. 34–46. [Google Scholar]
- Dubé, G.; Turcotte, I. Guide d’Identification des Cépages Cultivés en Climat Froid: Cépages de Cuve; Centre de Référence en Agriculture et Agroalimentaire du Québec (CRAAQ): Québec, QC, Canada, 2014. [Google Scholar]
- Provost, C.; Bastien, R.; d’Hauteville, J. Évaluation des caractéristiques øenologiques des cépages prometteurs du Québec. Final Rep. Proj. 2013, 6579, 75. [Google Scholar]
- Wolf, T. Wine Grape Production Guide for Eastern North America (NRAES 145); Natural Resource, Agriculture, and Engineering Service (NRAES): College Park, MD, USA, 2008. [Google Scholar]
- Lorenz, D.; Eichhorn, K.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth stages of the grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Horsfall, J.G.; Barratt, R.W. An improved grading system for measuring plant diseases. Phytopathology 1945, 35, 655. [Google Scholar]
- Sabbatini, P.; Howell, G.S. Rootstock scion interaction and effects on vine vigor, phenology, and cold hardiness of interspecific hybrid grape cultivars (Vitis spp.). Int. J. Fruit Sci. 2013, 13, 466–477. [Google Scholar] [CrossRef]
- Howell, S. Rootstock influence on scion performance. In Grapevine Rootstocks: Current Use, Research, and Application; Southwest Missouri State University: Osage Beach, MO, USA, 2005; pp. 47–56. [Google Scholar]
- Barriault, E.; Bergeron, K. Guide de Bonnes Pratiques en Viticulture; Centre de Référence en Agriculture et Agroalimentaire du Québec (CRAAQ): Québec, QC, Canada, 2017; ISBN 978-2-7649-0512-8. [Google Scholar]
- Kaplan, M.; Klimek, K.; Borowy, A.; Najda, A. Effect of rootstock on yield quantity and quality of grapevine “Regent” in south-eastern Poland. Acta Sci. Pol. Hortorum Cultus 2018, 17, 117–127. [Google Scholar] [CrossRef]
- Domoto, P.A.; Nonnecke, G.R.; Riesselman, L.B.; Tabor, P. NE-1020 Cold Hardy Wine Grape Cultivar Trial; Iowa State University Extension and Outreach: Ames, IA, USA, 2014. [Google Scholar]
- Domoto, P.A.; Nonnecke, G.R.; Tabor, P.; Riesselman, L.B. Cold hardy wine grape cultivar trial. In Iowa State Research Farm Progress Reports; Iowa State University: Ames, IA, USA, 2013. [Google Scholar]
- Nonnecke, G.; Domoto, P.; Cochran, D. NE-1020 Cold Hardy Wine Grape Cultivar Trial; Iowa State University Extension and Outreach: Ames, IA, USA, 2015. [Google Scholar]
- Provost, C.; Barriault, E. Caractéristiques Agronomiques des Cépages Cultivés au Québec et Résumé de l’Etat des Connaissances Scientifiques sur la Protection contre les Gels; Centre de Recherche Agroalimentaire de Québec (CRAM): Mirabel, QC, Canada, 2019. [Google Scholar]
- Conseil des Vins du Québec Portrait Du Vignoble Québécois. 2020. Available online: https://vinsduquebec.com/a-propos/ (accessed on 15 June 2021).
- Tuck, A.B.; Gartner, W.; Appiah, G. Vineyards and Grapes of the North; University of Minnesota Extension: Minneapolis, MN, USA, 2016. [Google Scholar]
- Clark, A.M.; Tuck, B. Minnesota Grape Production Statistics: 2013–2016; University of Minnesota Extension: Minneapolis, MN, USA, 2017. [Google Scholar]
- Pedneault, K.; Dorais, M.; Angers, P. Flavor of cold-hardy grapes: Impact of berry maturity and environmental conditions. J. Agric. Food Chem. 2013, 61, 10418–10438. [Google Scholar] [CrossRef] [PubMed]
- Pedneault, K.; Provost, C. Fungus resistant grape varieties as a suitable alternative for organic wine production: Benefits, limits, and challenges. Sci. Hortic. 2016, 208, 57–77. [Google Scholar] [CrossRef]
- Slegers, A.; Angers, P.; Ouellet, É.; Truchon, T.; Pedneault, K. Volatile compounds from grape skin, juice and wine from five interspecific hybrid grape cultivars grown in Québec (Canada) for wine production. Molecules 2015, 20, 10980–11016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vos, R. Stage of Maturation, Crop Load, and Shoot Density Affect the Fruit Quality of Cold-Hardy Grape Cultivars; Iowa State University: Ames, IA, USA, 2018. [Google Scholar]
Scion | Origin | Hardiness | GDD at Harvest (Base 10) | Vigor | Mean Yield | Deficiency |
---|---|---|---|---|---|---|
Frontenac | Vitis riparia 89 × Landot 4511 | −30 to −34 °C | 1250 | High | 8 to 12 T ha−1 | Mg |
Frontenac blanc | Mutation from the Frontenac | −30 to −34°C | 1150 | High | 8 to 12 T ha−1 | Mg |
Marquette | Mn 1094 × Ravat 26,212 | −30 to −34°C | 1100 | High | 6 to 10 T ha−1 |
Rootstock | Origin | Vigor | Soil Adaptation | Nutrient Absorption |
---|---|---|---|---|
Couderc 3309 (3309C) | V. riparia × Vitis rupestris | Medium | Adapted to various types of soils (deep, sandy-clay, silty-clay, little limestone) and well-drained. High tolerance to soil acidity. | Absorbs magnesium well, and low absorption of potassium |
Sélection Oppenheim 4 (SO4) | Vitis berlandieri × V. riparia | Medium to high | Adapts to various types of soils (sandy, clay-limestone, medium or low fertility), best results in well-drained, moist, and rich soils. | Badly assimilates magnesium |
Riparia Gloire (RP) | V. riparia | Low | All non-calcareous, rich, and fresh soils. Adapted to acidic soils. Not suitable for too clayey and compact soils. | Easily absorbs potassium and low absorption of magnesium |
Millardet et de Grasset 101-14 (101-14) | V. riparia × V. rupestris | Medium | Deep and clayey soils. Sensitive to soil acidity. | Absorbs magnesium well |
Year | GDD (Base10) | Precipitations (mm) | Days without Frost |
---|---|---|---|
1 March to 30 October | 1 March to 30 October | ||
2019 | 1305 | 630 | 186 |
2018 | 1253 | 550 | 177 |
2017 | 1373 | 879 | 190 |
2016 | 1424 | 901 | 179 |
2015 | 1429 | 923 | 190 |
2014 | 1395 | 450 | 202 |
Bud Survival (%) | ||||
---|---|---|---|---|
Rootstock | Frontenac | Frontenac Blanc | Marquette | |
Rootstock | 101-14 | 82.47 | 78.16 | 82.12 |
3309C | 88.93 | 87.69 | 82.18 | |
Own-rooted | 90.91 | 88.96 | 83.55 | |
Riparia gloire | 86.93 | 87.69 | 86.88 | |
SO4 | 87.25 | 86.32 | 83.59 | |
Year | 2014 | 66.25 | 63.25 | 67.11 |
2015 | 90.63 | 89.27 | 88.05 | |
2016 | 90.63 | 89.71 | 89.82 | |
2017 | 97.36 | 97.81 | 96.96 | |
2018 | 84.06 | 80.80 | 71.71 | |
2019 | 91.67 | 91.26 | 84.87 | |
p-value | Rootstock | 0.83 | 0.42 | 0.91 |
Year | 0.19 | 0.15 | 0.64 | |
Roostock × Year | 0.77 | 0.91 | 0.92 |
Frontenac | Frontenac Blanc | Marquette | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Rootstock | Shoot Length (cm) | Trunk Diameter (cm) | Leaf Area Index | Shoot Length (cm) | Trunk Diameter (cm) | Leaf Area Index | Shoot Length (cm) | Trunk Diameter (cm) | Leaf Area Index | |
Rootstock | 101-14 | 189.94 | 17.82 a | 4.65 ab | 161.28 a | 16.50 ab | 4.17 bc | 170.81 a | 15.48 bc | 4.75 abc |
3309C | 187.57 | 18.01 a | 4.90 a | 174.07 ab | 17.91 a | 4.49 abc | 169.84 a | 17.35 a | 5.01 bc | |
Own-root | 186.60 | 17.56 a | 4.21 c | 190.78 c | 17.67 a | 4.80 a | 185.66 b | 17.24 ab | 4.62 ab | |
Riparia Gloire | 174.71 | 14.92 b | 4.35 bc | 178.73 bc | 15.98 b | 4.08 c | 172.44 a | 14.88 c | 4.40 a | |
SO4 | 183.73 | 16.93 a | 4.58 abc | 175.56 b | 17.05 ab | 4.61 ab | 188.27 b | 18.17 a | 5.23 c | |
Year | 2014 | 214.67 a | 9.26 a | 188.60 ab | 8.95 a | 220.31 a | 8.97 a | |||
2015 | 180.68 bc | 13.81 b | 175.88 bc | 13.88 b | 166.86 c | 13.87 b | ||||
2016 | 169.04 bc | 16.20 c | 3.93 a | 166.03 cd | 16.61 c | 3.67 a | 166.03 c | 16.54 c | 4.00 a | |
2017 | 160.87 c | 19.15 d | 3.91 a | 159.36 d | 19.34 d | 4.02 a | 150.14 d | 17.81 c | 4.58 b | |
2018 | 198.23 ab | 21.69 e | 5.15 b | 192.59 a | 22.16 e | 5.04 b | 189.95 b | 21.51 d | 5.32 c | |
2019 | 184.99 bc | 21.77 e | 5.15 b | 174.05 bcd | 21.20 e | 5.04 b | 171.70 c | 21.62 d | 5.32 c | |
p-value | Rootstock | 0.4874 | <0.0001 | <0.0001 | <0.0001 | 0.0025 | 0.0001 | <0.0001 | <0.0001 | <0.0001 |
Year | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Roostock × Year | 0.3332 | 0.3731 | 0.0581 | 0.0744 | 0.9167 | 0.4584 | 0.0013 | 0.1013 | 0.6048 |
Level of Magnesium Deficiency (Horsfall–Barratt Grade Scale) | ||||
---|---|---|---|---|
Rootstock | Frontenac | Frontenac Blanc | Marquette | |
Rootstock | 101-14 | 2.22 b | 2.02 b | 0.79 a |
3309C | 1.35 a | 1.49 c | 0.76 a | |
Own-rooted | 3.59 c | 2.88 ab | 0.86 ab | |
Riparia gloire | 2.66 b | 2.35 b | 1.07 ab | |
SO4 | 3.51 c | 3.15 a | 1.78 b | |
Year | 2014 | 0.84 | 0.78 | 0.80 |
2015 | 1.00 | 0.95 | 0.95 | |
2016 | 5.49 | 5.18 | 1.78 | |
2017 | 0.81 | 0.66 | 0.03 | |
2018 | 3.55 | 3.03 | 0.65 | |
2019 | 4.31 | 3.74 | 2.21 | |
p-value | Rootstock | <0.0001 | 0.0001 | 0.02 |
Year | 0.08 | 0.10 | 0.99 | |
Roostock × Year | 0.01 | 0.006 | 0.25 |
Frontenac | |||||||||
---|---|---|---|---|---|---|---|---|---|
Rootstock | Average Number of Cluster (pcs) | Cluster Weight (g) | Berry Weight (g) | Yield (kg·vine−1) | Yield (t·ha−1) | Soluble Solids (°Brix) | pH | Titratable Acidity (g·L−1 tar. ac.) | |
Rootstock | 101-14 | 32.31 | 96.22 bc | 1.10 a | 3.16 | 10.66 | 24.77 a | 3.22 a | 12.89 |
3309C | 32.78 | 101.72 abc | 1.14 ab | 3.33 | 11.22 | 24.23 a | 3.20 a | 13.20 | |
Own-rooted | 30.88 | 102.22 ab | 1.26 c | 3.19 | 10.74 | 21.98 c | 3.13 b | 13.91 | |
Riparia Gloire | 30.75 | 105.01 a | 1.17 b | 3.44 | 11.58 | 23.94 ab | 3.18 ab | 13.26 | |
SO4 | 31.58 | 93.6 c | 1.19 b | 3.04 | 10.25 | 22.88 bc | 3.18 a | 13.67 | |
Year | 2015 | 25.00 a | 85.62 a | 1.00 a | 2.16 a | 7.29 a | 24.23 a | 3.58 a | 11.18 a |
2016 | 35.97 b | 106.41 b | 1.27 c | 3.77 b | 12.70 b | 24.73 a | 3.20 b | 13.21 bc | |
2017 | 29.75 c | 80.92 a | 1.13 b | 2.42 ac | 8.14 ac | 21.53 b | 3.12 c | 12.14 ab | |
2018 | 24.64 a | 106.36 b | 1.23 c | 2.66 c | 8.97 c | 23.73 a | 3.20 b | 13.91 c | |
2019 | 42.98 d | 119.70 c | 1.22 c | 5.15 d | 17.36 d | 23.76 a | 2.90 d | 15.95 a | |
p-value | Rootstock | 0.4571 | 0.0010 | <0.0001 | 0.1150 | 0.1150 | <0.0001 | <0.0001 | 0.2419 |
Year | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Roostock × Year | 0.4765 | 0.0602 | 0.3386 | 0.0268 | 0.0268 | 0.5083 | 0.2806 | 0.8173 |
Frontenac Blanc | |||||||||
---|---|---|---|---|---|---|---|---|---|
Rootstock | Average Number of Clusters (pcs) | Cluster Weight (g) | Berry Weight (g) | Yield (kg·vine−1) | Yield (t·ha−1) | Soluble Solids (°Brix) | pH | Titratable Acidity (g·L−1 tar. ac.) | |
Rootstock | 101-14 | 31.20 | 96.05 ab | 1.09 a | 3.12 ab | 10.53 ab | 23.76 a | 3.15 a | 13.22 a |
3309C | 34.31 | 104.16 bc | 1.11 a | 3.66 bc | 12.33 bc | 24.18 a | 3.09 ab | 13.06 a | |
Own-rooted | 34.91 | 110.70 c | 1.25 b | 3.87 c | 13.06 c | 21.02 b | 3.05 b | 14.56 b | |
Riparia Gloire | 32.35 | 99.59 b | 1.21 b | 3.36 abc | 11.33 abc | 23.27 a | 3.09 ab | 13.63 a | |
SO4 | 34.76 | 87.64 a | 1.09 a | 3.10 a | 10.46 a | 23.51 a | 3.10 ab | 13.42 a | |
Year | 2015 | 26.08 a | 80.80 a | 1.03 a | 2.21 a | 7.45 a | 25.14 a | 3.44 a | 10.89 a |
2016 | 36.58 b | 103.62 b | 1.27 c | 3.75 c | 12.62 c | 23.48 b | 3.06 c | 14.85 b | |
2017 | 24.53 b | 84.53 a | 1.09 a | 2.93 b | 9.87 b | 21.97 c | 3.10 bc | 11.45 a | |
2018 | 25.55 a | 106.78 b | 1.16 b | 2.73 ab | 9.20 ab | 23.48 b | 3.14 b | 14.09 b | |
2019 | 45.12 c | 123.18 c | 1.22 bc | 5.58 d | 18.79 d | 22.17 c | 2.82 d | 15.94 c | |
p-value | Rootstock | 0.1203 | <0.0001 | <0.0001 | 0.0003 | 0.0003 | <0.0001 | 0.0082 | <0.0001 |
Year | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Roostock × Year | 0.1246 | 0.1763 | 0.1875 | 0.3161 | 0.3161 | 0.6921 | 0.3680 | 0.9921 |
Marquette | |||||||||
---|---|---|---|---|---|---|---|---|---|
Rootstock | Average Number of Clusters (pcs) | Cluster Weight (g) | Berry Weight (g) | Yield (kg·vine−1) | Yield (t·ha−1) | Soluble Solids (°Brix) | pH | Titratable Acidity (g·L−1 tar. ac.) | |
Rootstock | 101-14 | 29.98 ab | 60.68 a | 1.19 a | 1.86 a | 6.27 a | 24.61 b | 3.31 | 10.78 ab |
3309C | 32.70 a | 71.02 ab | 1.27 b | 2.32 c | 7.83 c | 25.21 ab | 3.27 | 10.51 a | |
Own-rooted | 31.35 a | 70.09 ab | 1.37 c | 2.20 bc | 7.40 bc | 24.95 ab | 3.24 | 11.20 b | |
Riparia gloire | 31.45 a | 80.35 b | 1.35 c | 2.40 c | 8.07 c | 25.26 a | 3.23 | 11.21 b | |
SO4 | 26.95 b | 71.74 ab | 1.32 bc | 1.99 ab | 6.70 ab | 23.45 c | 3.23 | 11.85 c | |
Year | 2015 | 26.37 b | 89.18 a | 1.14 a | 2.16 b | 7.26 b | 25.74 a | 3.72 a | 7.88 a |
2016 | 36.63 a | 68.95 b | 1.44 c | 2.53 a | 8.53 a | 25.42 a | 3.16 c | 12.03 c | |
2017 | 33.97 a | 65.02 bc | 1.27 b | 2.22 b | 7.48 b | 24.39 b | 3.43 b | 9.01 b | |
2018 | 20.05 c | 58.25 c | 1.28 b | 1.26 c | 4.25 c | 23.72 c | 3.07 d | 12.58 c | |
2019 | 35.32 a | 75.16 b | 1.39 c | 2.66 a | 8.95 a | 24.45 b | 2.98 e | 13.45 d | |
p-value | Rootstock | <0.0001 | 0.0002 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0972 | <0.0001 |
Year | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Roostock × Year | <0.0001 | 0.0003 | 0.6467 | <0.0001 | <0.0001 | 0.2392 | 0.1267 | 0.0936 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Provost, C.; Campbell, A.; Dumont, F. Rootstocks Impact Yield, Fruit Composition, Nutrient Deficiencies, and Winter Survival of Hybrid Cultivars in Eastern Canada. Horticulturae 2021, 7, 237. https://doi.org/10.3390/horticulturae7080237
Provost C, Campbell A, Dumont F. Rootstocks Impact Yield, Fruit Composition, Nutrient Deficiencies, and Winter Survival of Hybrid Cultivars in Eastern Canada. Horticulturae. 2021; 7(8):237. https://doi.org/10.3390/horticulturae7080237
Chicago/Turabian StyleProvost, Caroline, Alexander Campbell, and François Dumont. 2021. "Rootstocks Impact Yield, Fruit Composition, Nutrient Deficiencies, and Winter Survival of Hybrid Cultivars in Eastern Canada" Horticulturae 7, no. 8: 237. https://doi.org/10.3390/horticulturae7080237
APA StyleProvost, C., Campbell, A., & Dumont, F. (2021). Rootstocks Impact Yield, Fruit Composition, Nutrient Deficiencies, and Winter Survival of Hybrid Cultivars in Eastern Canada. Horticulturae, 7(8), 237. https://doi.org/10.3390/horticulturae7080237