Effect of Preharvest Application of CPPU and Perforated Packaging on the Postharvest Quality of Red-Fleshed Pitaya (Hylocereus polyrhizus sp.) Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Perforation Packaging and Storage
2.3. Fruit Weight Loss Percentage
2.4. Fruit Size
2.5. Fruit Firmness
2.6. Bract Thickness
2.7. Bract Browning
2.8. Chilling Injury
2.9. Decay Index
2.10. Respiration Rate
2.11. Total Soluble Solid, Titratable Acid, and TSS to TA Ratio
2.12. Statistical Analysis
3. Results
3.1. Fruit Physicochemical Characteristics
3.2. Weight Loss
3.3. Bract Browning
3.4. Chilling Injury and Decay Severity
3.5. Respiration Rate
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mizrahi, Y.; Nerd, A. Climbing and columnar cacti: New arid land fruit crops. In Perspectives on New Crops and New Uses; Janick, J., Ed.; ASHS Press: Alexandria, Egypte, 1999; pp. 358–366. [Google Scholar]
- Wybraniec, S.; Mizrahi, Y. Fruit flesh betacyanin pigments in Hylocereus cacti. J. Agric. Food Chem. 2002, 50, 6086–6089. [Google Scholar] [CrossRef]
- Bellec, F.L.; Vaillant, F.; Imbert, E. Pitahaya (Hylocereus spp.): A new fruit crop, a market with a future. Fruits 2006, 61, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Chuah, T.G.; Ling, H.L.; Chin, N.L.; Choong, T.S.Y.; Fakhru’l-Razi, A. Effects of temperatures on rheological behavior of dragon fruit (Hylocereus sp.) juice. Int. J. Food Eng. 2008, 4, 1–28. [Google Scholar] [CrossRef]
- Hussein, Z.; Caleb, O.J.; Jacobs, K.; Manley, M.; Opara, U.L. Effect of perforation-mediated modified atmosphere packaging and storage duration on physicochemical properties and microbial quality of fresh minimally processed ‘Acco’ pomegranate arils. LWT-Food Sci. Technol. 2015, 64, 911–918. [Google Scholar] [CrossRef]
- Chandran, S. Effect of film packing in extending shelf life of dragon fruit, Hylocereus undatus and Hylocereus polyrhizus. Acta Hortic. 2010, 875, 389–394. [Google Scholar] [CrossRef]
- Liberty, J.T.; Okonkwo, W.I.; Echiege, E.A. Evaporative Cooling: A postharvest technology for fruits and vegetables preservation. Int. J. Sci. Eng. Res. 2013, 4, 2257–2264. [Google Scholar]
- Nerd, A.; Gutman, F.; Mizrahi, Y. Ripening and postharvest behaviour of fruits of two Hylocereus species (Cactaceae). Postharvest Biol. Technol. 1999, 17, 39–45. [Google Scholar] [CrossRef]
- Punitha, V.; Boyce, A.N.; Chandran, S. Effect of storage temperatures on the physiological and biochemical properties of Hylocereus polyrhizus. Acta Hortic. 2010, 875, 137–144. [Google Scholar] [CrossRef]
- Freitas, S.T.; Mitcham, E.J. Quality of pitaya fruit (Hylocereus undatus) as influenced by storage temperature and packaging. Sci. Agric. 2013, 70, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Hoa, T.T.; Clark, C.J.; Waddell, B.C.; Woolf, A.B. Postharvest quality of dragon fruit (Hylocereus undatus) following disinfesting hot air treatments. Postharvest Biol. Technol. 2006, 41, 62–69. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Chen, L.Y.; Lee, T.C.; Chang, P.T. Improving postharvest storage of fresh red-fleshed pitaya (Hylocereus polyrhizus sp.) fruit by pre-harvest application of CPPU. Sci. Hortic. 2020, 273, 109646. [Google Scholar] [CrossRef]
- To, L.V.; Ngu, N.; Duc, N.D.; Huong, H.T.T. Dragon fruit quality and storage life: Effect of harvesting time, use of plant growth regulators and modified atmosphere packaging. Acta Hortic. 2002, 575, 611–621. [Google Scholar]
- Chutichudet, B.; Chutichudet, P. Effects of chitosan coating to some postharvest characteristics of Hylocercus undatus (Haw) Britton and Rose fruit. Int. J. Agric. Res. 2011, 6, 82–92. [Google Scholar] [CrossRef]
- Garcia, M.C.; Robayo, P. Evaluation of the use of passive modified atmosphere and low temperature on the conservation of yellow pitahaya. Corpoica–Ciencia 2008, 9, 30–39. [Google Scholar]
- Ding, C.K.; Chachin, K.; Ueda, Y.; Imahori, Y.; Wang, C.Y. Modified atmosphere packaging maintains postharvest quality of loquat fruit. Postharvest Biol. Technol. 2002, 14, 309–315. [Google Scholar] [CrossRef]
- Gontard, N.; Guillaume, C. Packaging and the shelf life of fruits and vegetables. In Food Packaging and Shelf Life; Gordon, L.R., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 297–315. [Google Scholar]
- Kader, A.A. Increasing food availability by reducing postharvest losses of fresh produce. Acta Hortic. 2005, 682, 2169–2176. [Google Scholar] [CrossRef]
- Gonzalez, J.; Ferrer, A.; Oria, R.; Salvador, M.L. Determination of O2 and CO2 transmission rates through microperforated films for modified atmosphere packaging of fresh fruits and vegetables. J. Food Eng. 2008, 86, 120–194. [Google Scholar] [CrossRef]
- Rodriguez-Aguilera, R.; Oliveira, J.C. Review of design engineering methods and applications of active and modified atmosphere packaging systems. Food Eng Rev. 2009, 1, 66–83. [Google Scholar] [CrossRef]
- Sandhya. Modified atmosphere packaging of fresh produce: Current status and future needs. A review. LWT-Food Sci. Technol. 2010, 43, 381–392. [Google Scholar] [CrossRef]
- Oliveira, F.A.R.; Fonseca, S.C.; Oliveira, J.C.; Brecht, J.K.; Chau, K.V. Development of perforation-mediated modified atmosphere packaging to preserve fresh fruit and vegetable quality after harvest. Food Sci. Technol. Int. 1998, 4, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.K.; Goswami, T.K. An engineering approach to design perforated and non-perforated modified atmospheric packaging unit for capsicum. J. Food Proc. Technol. 2012, 3, 187. [Google Scholar]
- Sivakumar, D.; Korsten, L. Influence of modified atmosphere packaging and postharvest treatments on quality retention of litchi cv. Mauritius. Postharvest Biol. Technol. 2006, 41, 135–142. [Google Scholar] [CrossRef]
- Chang, P.T.; Hsieh, C.C.; Jiang, Y.L. Responses of ‘Shih Huo Chuan’ pitaya (Hylocereus polyrhizus (Weber) Britt. & Rose) to different degrees of shading nets. Sci. Hortic. 2016, 198, 154–162. [Google Scholar]
- Marzouk, H.A.; Kassem, H.A. Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. Sci. Hortic. 2011, 130, 425–430. [Google Scholar] [CrossRef]
- Retamales, J.B.; Lobos, G.A.; Romero, S.; Godoy, R.; Moggia, C. Repeated applications of CPPU on highbush blueberry cv. Duke increase yield and enhance fruit quality at harvest and during postharvest. Chil. J. Agri. Res. 2014, 74, 157–161. [Google Scholar] [CrossRef]
- Kartal, S.; Aday, M.S.; Caner, C. Use of microperforated films and oxygen scavengers to maintain storage stability of fresh strawberries. Postharvest Biol. Technol. 2012, 71, 32–40. [Google Scholar] [CrossRef]
- Rivero, R.M.; Shulaev, V.; Blumwald, E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 2009, 150, 1530–1540. [Google Scholar] [CrossRef] [Green Version]
- Wijewardane, R.M.N.A.; Guleria, S.P.S. Effect of pre-cooling, fruit coating and packaging on postharvest quality of apple. J. Food Sci. Technol. 2013, 50, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, P.B. Extending the storage and post-storage life on dragon fruit using a cold room (ecofrost). Int. J. Agri. Env. Biol. Technol. 2018, 11, 557–561. [Google Scholar] [CrossRef]
- Dobránszki, J.; Mendler-Drienyovszki, N. Cytokinins affect the stomatal conductance and CO2 exchange of in vitro apple leaves. Int. J. Hortic Sci. 2014, 20, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Stirk, W.A.; Van Staden, J. Flow of cytokinins through the environment. Plant Growth Regul. 2010, 62, 101–116. [Google Scholar] [CrossRef]
- Candir, E.; Ozdemir, A.E.; Aksoy, M.C. Effects of chitosan coating and modified atmosphere packaging on postharvest quality and bioactive compounds of pomegranate fruit cv.‘Hicaznar’. Sci. Hortic. 2018, 235, 235–243. [Google Scholar] [CrossRef]
- Kammapana, L.; Buanong, M.; Techavuthiporn, C.; Jitareerat, P.; Wongs-Aree, C.; Yamauchi, N.; Srilaong, V. SEM studies on the morphology of ‘white pulp’ dragon fruit. Acta Hortic. 2013, 989, 85–90. [Google Scholar] [CrossRef]
- Jamaludin, N.A.; Ding, P.; Hamid, A.A. Physico-chemical and structural changes of red-fleshed dragon fruit (Hylocereus polyrhizus) during fruit development. J. Sci. Food Agri. 2011, 91, 278–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toivonen, P.M.; Brummell, D.A. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol. Technol. 2008, 48, 1–14. [Google Scholar] [CrossRef]
Treatment | Physico-Chemical Characteristics | |||||||
---|---|---|---|---|---|---|---|---|
Weight (g) z | Length (mm) | Width (mm) | Bract Thickness (mm) | Firmness (kg·cm−2) | TSS (°Brix) | TA (%) | TSS/TA | |
Control | 664.6 ± 23.5a y | 109.4 ± 3.3b | 99.6 ± 1.5a | 1.44 ± 0.1b | 1.04 ± 0.0b | 14.9 ±0.3a | 0.24 ± 0.0a | 62.1 ± 2.4a |
CPPU | 671.7 ± 30.2a | 120.5 ± 2.4a | 102.0 ± 2.1a | 2.26 ± 0.1a | 1.56 ± 0.0a | 15.3 ±0.3a | 0.23 ± 0.0a | 66.5 ± 3.6a |
Physico-Chemical Characteristics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | 21 Days 5 °C | 7 Days 20 °C | |||||||||
Bract z Thickness (mm) | Firmness (kg·cm−2) | TSS (°Brix) | TA (%) | TSS/TA | Bract Thickness (mm) | Firmness (kg·cm−2) | TSS (°Brix) | TA (%) | TSS/TA | ||
Control | N x | 1.24 ± 0.1b y | 1.00 ± 0.0b | 13.2 ± 0.2a | 0.2 ± 0.0a | 66.1 ± 2.6a | 0.8 ± 0.1b | 0.5 ± 0.0b | 13.5 ± 0.4a | 0.2 ± 0.0a | 67.1 ± 2.5a |
0 | 1.34 ± 0.1b | 1.02 ± 0.0b | 13.6 ± 0.3a | 0.2 ± 0.0a | 68.0 ± 1.4a | 0.83 ± 0.1b | 0.4 ± 0.0b | 13.5 ± 0.3a | 0.2 ± 0.0a | 66.8 ± 3.6a | |
2 | 1.34 ± 0.1b | 1.01 ± 0.0b | 13.4 ± 0.7a | 0.2 ± 0.0a | 67.4 ± 1.1a | 0.9 ± 0.1b | 0.4 ± 0.0b | 13.5 ± 0.4a | 0.2 ± 0.0a | 67.3 ± 4.6a | |
CPPU | N | 1.91 ± 0.1a | 1.22 ± 0.0a | 13.5 ± 0.7a | 0.2 ± 0.0a | 67.5 ± 3.1a | 1.5 ± 0.3a | 1.01 ± 0.0a | 13.5 ± 0.4a | 0.2 ± 0.0a | 67.5 ± 3.4a |
0 | 2.20 ± 0.2a | 1.28 ± 0.0a | 14.5 ± 0.2a | 0.2 ± 0.0a | 71.5 ± 3.1a | 1.9 ± 0.3a | 1.03 ± 0.0a | 14.1 ± 0.2a | 0.2 ± 0.0a | 68.5 ± 4.4a | |
2 | 2.01 ± 0.3a | 1.21 ± 0.0a | 14.0 ± 0.5a | 0.2 ± 0.0a | 70.2 ± 2.2a | 1.8 ± 0.2a | 1.02 ± 0.0a | 14.0 ± 0.4a | 0.2 ± 0.0a | 68.8 ± 4.8a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, P.-T. Effect of Preharvest Application of CPPU and Perforated Packaging on the Postharvest Quality of Red-Fleshed Pitaya (Hylocereus polyrhizus sp.) Fruit. Horticulturae 2021, 7, 253. https://doi.org/10.3390/horticulturae7080253
Chang P-T. Effect of Preharvest Application of CPPU and Perforated Packaging on the Postharvest Quality of Red-Fleshed Pitaya (Hylocereus polyrhizus sp.) Fruit. Horticulturae. 2021; 7(8):253. https://doi.org/10.3390/horticulturae7080253
Chicago/Turabian StyleChang, Pai-Tsang. 2021. "Effect of Preharvest Application of CPPU and Perforated Packaging on the Postharvest Quality of Red-Fleshed Pitaya (Hylocereus polyrhizus sp.) Fruit" Horticulturae 7, no. 8: 253. https://doi.org/10.3390/horticulturae7080253
APA StyleChang, P. -T. (2021). Effect of Preharvest Application of CPPU and Perforated Packaging on the Postharvest Quality of Red-Fleshed Pitaya (Hylocereus polyrhizus sp.) Fruit. Horticulturae, 7(8), 253. https://doi.org/10.3390/horticulturae7080253