Nutrient Solution Temperature Affects Growth and °Brix Parameters of Seventeen Lettuce Cultivars Grown in an NFT Hydroponic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Water Temperature
2.3. Data Collection
2.4. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Temperature and Cultivar Effect on Plant Growth Parameters
3.2. Temperature and Cultivar Effect on SPAD Readings and °Brix
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jones, J.B., Jr. Hydroponics: A Practical Guide for the Soilless Grower, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2005; p. 423. [Google Scholar]
- Pandey, R.; Jain, V.; Singh, K.P. Hydroponics agriculture: Its status, scope and limitations. Division of Plant Physiology, Indian Agric. Res. Inst. 2009, 20–29. [Google Scholar]
- Bradley, P.; Marulanda, C. Simplified hydroponics to reduce global hunger. Acta Hort. 2001, 554, 289–295. [Google Scholar] [CrossRef]
- Rodrigues, L.R.F. Growing by hydroponics: Hydroponic cultivation techniques and environmental control in the management of pests, diseases and plant nutrition in a protected environment. Jaboticabal FUNEP 2002, 726. [Google Scholar]
- Nxawe, S.; Laubscher, C.; Ndakidemi, P. Effect of regulated irrigation water temperature on hydroponics production of Spinach (Spinacia oleracea L.). Afr. J. Agric. Res. 2009, 12, 1442–1446. [Google Scholar]
- Calatayud, A.; Gorbe, E.; Roca, D.; Martínes, P.F. Effects of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants. Environ. Exp. Bot. 2008, 64, 65–74. [Google Scholar] [CrossRef]
- Falah, M.A.F.; Wajima, T.; Yasutake, D.; Sago, Y.; Kitano, M. Responses of root uptake to high temperature of tomato plants (Lycopersicon esculentum Mill.) in soilless culture. J. Agric. Technol. 2010, 6, 543–558. [Google Scholar]
- Chun, C.; Takakura, T. Rate of root respiration of lettuce under various dissolved oxygen concentrations in hydroponics. Environ. Control Biol. 1994, 32, 125–135. [Google Scholar] [CrossRef]
- Masarirambi, M.T.; Nxumalo, K.A.; Musi, P.J.; Rugube, L.M. Common physiological disorders of lettuce (Lactuca sativa) found in Swaziland: A review. Am.-Eurasian J. Agric. Environ. Sci. 2018, 18, 50–56. [Google Scholar]
- Landers, E.T. Effects of Nutrient Solution Temperature on Lettuce Grown in a Nutrient Film Technique System. Master’s Thesis, Auburn University, Auburn, AL, USA, 2017. [Google Scholar]
- Yan, Q.; Duan, Z.; Mao, J.; Li, X.; Dong, F. Effects of root-zone temperature and N, P, and K supplies on nutrient uptake of cucumber (Cucumis sativus L.) seedlings in hydroponics. Soil Sci. Plant Nutr. 2012, 58, 707–717. [Google Scholar] [CrossRef] [Green Version]
- Ilahi, W.F.; Ahmad, D.; Husain, M.C. Effects of root zone cooling on butterhead lettuce grown in tropical conditions in a coir-perlite mixture. Hort. Environ. Biotech. 2017, 58, 1–4. [Google Scholar] [CrossRef]
- Economakis, C.D.; Said, M. Effect of solution temperature on growth and shoot nitrate content of lettuce grown in solution culture. Acta Hort. 2002, 579, 411–415. [Google Scholar] [CrossRef]
- Boxall, M. Some effects of soil warming on plant growth. Acta Hort. 1971, 22, 57–65. [Google Scholar] [CrossRef]
- Al-harbi, A.R. Growth and flowering of five lettuce cultivars as affected by planting date. J. Veg. Crop Prod. 2001, 7, 23–36. [Google Scholar] [CrossRef]
- Thompson, H.C.; Langhans, R.W.; Both, A.; Albright, L.D. Shoot and root temperature effects on lettuce growth in a floating hydroponic system. J. Amer. Soc. Hort. Sci. 1998, 123, 361–364. [Google Scholar] [CrossRef] [Green Version]
- Zobayed, S.M.A.; Afreen, F.; Kozai, T. Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort. Plant Phy. Biochem. 2005, 43, 977–988. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.A.; Ingram, D.L.; Nell, T.A. Supraoptimal root-zone temperature alters growth and photosynthesis of holly and elm. J. Arbor. 1989, 15, 272–276. [Google Scholar]
- Udomprasert, N.; Li, P.H.; Davis, D.W.; Markhart, A.H. Effects of root temperatures on leaf gas exchange and growth at high air temperature in Phaseolus acutifolius and Phaseolus vulgaris. Crop Sci. 1993, 35, 490–495. [Google Scholar] [CrossRef]
- Sun, J.; Lu, N.; Xu, H.; Maruo, T.; Guo, S. Root zone cooling and exogenous spermidine root-pretreatment promoting Lactuca sativa L. growth and photosynthesis in the high-temperature season. Front. Plant Sci. 2016, 7, 368. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.P.; Qiao, Y.X.; Zhang, Y.L.; Zhou, Y.H.; Yu, J.Q. Effects of root temperature on leaf gas exchange and xylem sap abscisic acid concentrations in six cucurbitaceae species. Photosynthetica 2008, 46, 356–362. [Google Scholar] [CrossRef]
- He, J.; Qin, L.; Lee, S.K. Root-zone CO2 and root-zone temperature effects on photosynthesis and nitrogen metabolism of aeroponically grown lettuce (Lactuca sativa L.) in the tropics. Photosynthetica 2013, 51, 330–340. [Google Scholar] [CrossRef]
- He, L.; Nada, K.; Kasukabe, Y.; Tachibana, S. Enhanced susceptibility of photosynthesis to low-temperature photo inhibition due to interruption of chill-induced increase of S-adenosylmethionine decarboxyllase activity in leaves of Spinach (Spinacea oleraceae L.). Plant Cell Physiol. 2002, 43, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Lam, V.P.; Kim, S.J.; Bok, G.J.; Lee, J.W.; Park, J.S. The effects of root temperature on growth, physiology, and accumulation of bioactive compounds of Agastache rugosa. Agriculture 2020, 10, 162. [Google Scholar] [CrossRef]
- Díaz-Pérez, J.; Gitaitis, R.; Mandal, B. Effects of plastic mulches on root zone temperature and on the manifestation of tomato spotted wilt symptoms and yield of tomato. Sci. Hort. 2007, 114, 90–95. [Google Scholar] [CrossRef]
- Nguyen, D.T.P.; Lu, N.; Kagawa, N.; Takagaki, M. Optimization of photosynthetic photon flux density and root-zone temperature for enhancing secondary metabolite accumulation and production of coriander in plant factory. Agronomy 2019, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Al-Rawahy, M.; Al-Rawahy, S.; Al-Mulla, Y.; Nadaf, S. Effect of cooling root-zone temperature on growth, yield and nutrient uptake in cucumber grown in hydroponic system during summer season in cooled greenhouse. J. Agric. Sci. 2019, 11, 47–60. [Google Scholar] [CrossRef]
- Sakamoto, M.; Suzuki, T. Effect of root-zone temperature on growth and quality of hydroponically grown red leaf lettuce (Lactuca sativa L. cv. Red Wave). Amer. J. Plant Sci. 2015, 6, 2350–2360. [Google Scholar] [CrossRef] [Green Version]
- Cometti, N.; Bremenkamp, D.; Galon, K.; Hell, L.; Zanotelli, M. Cooling and concentration of nutrient solution in hydroponic lettuce crop. Hortic. Bras. 2013, 31, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Holmes, S.C.; Wells, D.E.; Pickens, J.M.; Kemble, J.M. Selection of heat tolerant lettuce (Lactuca sativa L.) cultivars grown in deep water culture and their marketability. Horticulturae 2019, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Liao, F.; Lo, H. Temperature, daylength, and cultivar interact to affect the growth and yield of lettuce grown in high tunnels in subtropical regions. HortScience 2015, 50, 1412–1418. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Johkan, M.; Hohjo, M.; Tsukagoshi, S.; Maruo, T. A correlation analysis on chlorophyll content and SPAD value in tomato leaves. HortResearch 2017, 71, 37–42. [Google Scholar]
- Wang, Q.; Chen, J.; Stamps, R. Correlation of visual quality grading and SPAD reading of green-leaved foliage plants. J. Plant Nutr. 2005, 28, 1215–1225. [Google Scholar] [CrossRef]
- Gazula, A.; Kleinhenz, M.D.; Streeter, J.G.; Miller, A.R. Temperature and cultivar effects on anthocyanin and chlorophyll b concentrations in three related Lollo Rosso lettuce cultivars. HortScience 2005, 40, 1731–1733. [Google Scholar] [CrossRef] [Green Version]
- Reay, P.F. The role of low temperatures in the development of the red blush on apple fruit (‘Granny Smith’). Sci. Hort. 1999, 79, 113–119. [Google Scholar] [CrossRef]
- Dela, D.; Or, E.; Ovadia, R.; Nissim-Levi, A.; Weiss, D.; Oren-Shamir, M. Changes in anthocyanin concentration and composition in ‘Jaguar’ rose flowers due to transient high temperature conditions. Plant Sci. 2003, 164, 333–340. [Google Scholar] [CrossRef]
- Anderson, A. Farming for Health. Food Quality, Nutrient Density & Crop Brix. Acres USA. 2009. Available online: http://www.acresusa.com/toolbox/reprints/July09_Andersen.pdf (accessed on 7 September 2021).
- Frank, J. Quest for Nutrient Density. 2013. Available online: http://www.highbroxgardens.com/foods/quest.html (accessed on 7 September 2021).
- Sullivan, C. A Closer Look at Nutrient Density. 2012. Available online: http://www.examiner.com/article/a-closer-look-at-nutrient-density-3 (accessed on 7 September 2021).
- Chadirin, Y.; Hidaka, K.; Takahashi, T.; Sago, Y.; Takahiro, W.; Kitano, M. Application of temperature stress to roots of spinach I. effect of the low temperature stress on quality. Environ. Control. Biol. 2011, 49, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physio. Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [Green Version]
- Guinn, G.; Hunter, R.E. Root temperature and carbohydrate status of young cotton plants. Crop Sci. 1968, 8, 67–70. [Google Scholar] [CrossRef]
- Bunning, M.L.; Kendall, P.A.; Stone, M.B.; Stonaker, F.H.; Stushnoff, C. Effects of seasonal variation on sensory properties and total phenolic content of 5 lettuce cultivars. J. Food Sci. 2010, 75, 750–3841. [Google Scholar] [CrossRef]
Cultivar | Temperature | Cultivar × Temperature | |
---|---|---|---|
CO2 assimilation | *** z | NS | * |
SPAD | *** | NS | NS |
Height | *** | NS | NS |
Width | *** | ** | NS |
°Brix | * | *** | NS |
Root fresh wt. | *** | *** | NS |
Shoot fresh wt. | *** | ** | NS |
Root dry wt. | *** | *** | NS |
Shoot dry wt. | *** | ** | NS |
Types | Cultivars | Water Temperature (°C) | CO2 Assimilation (μmol/m−2/s−1) |
---|---|---|---|
Loose leaf | B.S. Simpson | 18.3 | 18.9 abcdefgh z |
21.1 | 19.8 abcdefg | ||
Ambient y | 19.7 abcdefgh | ||
Waldman’s Dark Green | 18.3 | 18.7 abcdefgh | |
21.1 | 18.8 abcdefgh | ||
Ambient | 18.1 bcdefgh | ||
Panisse | 18.3 | 16.5 gh | |
21.1 | 16.2 h | ||
Ambient | 15.3 h | ||
Butterhead | Buttercrunch | 18.3 | 20.3 abcde |
21.1 | 19.0 abcdefgh | ||
Ambient | 18.1 abcdefgh | ||
Optima | 18.3 | 18.5 abcdefgh | |
21.1 | 18.8 abcdefgh | ||
Ambient | 20.6 abc | ||
Nancy | 18.3 | 18.8 abcdefgh | |
21.1 | 19.3 abcdefgh | ||
Ambient | 18.9 abcdefgh | ||
Romaine | Jericho | 18.3 | 18.2 abcdefgh |
21.1 | 20.6 abc | ||
Ambient | 19.8 abcdefgh | ||
Coastal Star | 18.3 | 19.3 abcdefgh | |
21.1 | 19.1 abcdefgh | ||
Ambient | 19.3 abcdefgh | ||
Parris Island | 18.3 | 20.2 abcdef | |
21.1 | 18.3 abcdefgh | ||
Ambient | 21.5 a | ||
Batavian | Cherokee | 18.3 | 19.7 abcdefgh |
21.1 | 21.3 ab | ||
Ambient | 19.8 abcdefgh | ||
Sierra | 18.3 | 19.4 abcdefgh | |
21.1 | 20.4 abcde | ||
Ambient | 20.5 abcd | ||
Nevada | 18.3 | 19.8 abcdefgh | |
21.1 | 19.7 abcdefgh | ||
Ambient | 18.9 abcdefgh | ||
Salanova | Oakleaf Red | 18.3 | 17.6 bcdefgh |
21.1 | 17.1 efgh | ||
Ambient | 16.8 fgh | ||
Oakleaf Green | 18.3 | 16.5 gh | |
21.1 | 17.7 bcdefgh | ||
Ambient | 16.2 h | ||
Sweet Crisp Green | 18.3 | 19.4 abcdefgh | |
21.1 | 18.5 abcdefgh | ||
Ambient | 17.1 defgh | ||
Sweet Crisp Red | 18.3 | 18.2 abcdefgh | |
21.1 | 17.7 bcdefgh | ||
Ambient | 17.6 bcdefgh | ||
Butter | 18.3 | 17.4 cdefgh | |
21.1 | 18.9 abcdefgh | ||
Ambient | 17.2 cdefgh |
Temperature (°C) | °Brix | Width (cm) | Shoot Fresh wt. (g) | Root Fresh wt. (g) | Shoot Dry wt. (g) | Root Dry wt. (g) |
---|---|---|---|---|---|---|
18.3 | 5.7 a z | 22.5 a | 86.8 ab | 22.7 b | 5.2 b | 0.8 b |
21.1 | 4.5 b | 23.3 a | 96.8 a | 26.8 a | 5.9 a | 1.1 a |
Ambient | 4.3 c | 20.7 b | 84.1 b | 22.5 b | 5.0 b | 0.9 b |
Types | Cultivars | °Brix | SPAD | Height (cm) | Width (cm) | Shoot Fresh wt. (g) | Root Fresh wt. (g) | Shoot Dry wt. (g) | Root Dry wt. (g) |
---|---|---|---|---|---|---|---|---|---|
Loose leaf | B.S. Simpson | 4.5 b z | 17.5 gh | 25.2 a | 20.5 bcd | 109.3 a | 27.1 a | 6.7 abc | 1.0 abc |
Waldman’s Dark Green | 4.8 ab | 22.3 gf | 21.9 ab | 27.5 a | 118.3 a | 27.3 a | 7.5 ab | 1.1 ab | |
Panisse | 4.9 ab | 15.5 h | 13.2 def | 21.9 bcd | 65.1 bcd | 21.8 abcd | 4.7 cdefg | 0.9 abcd | |
Butter head | Buttercrunch | 4.9 ab | 30.5 bc | 12.7 def | 22.1 bcd | 82.8 abc | 21.9 abcd | 4.9 cdefg | 0.9 abcd |
Nancy | 5.1 ab | 22.8 efg | 14.7 cdef | 25.6 ab | 104.8 a | 24.8 ab | 5.9 abcde | 1.0 abcd | |
Optima | 5.1 ab | 28.9 bcd | 15.2 bcde | 24.4 ab | 92.2 abc | 26.6 ab | 6.2 abcd | 1.2 a | |
Romaine | Jericho | 4.5 b | 24.3 def | 20.4 abc | 25.2 ab | 122.9 a | 28.9 a | 7.5 abc | 1.1 abc |
Parris Island | 5.4 a | 31.4 abc | 17.3 bcd | 22.7 abcd | 91.2 abc | 24.7 ab | 5.6 abcdef | 1.1 abc | |
Coastal Star | 4.7 ab | 31.7 abc | 21.7 ab | 25.4 ab | 123.0 a | 27.9 a | 7.4 abc | 1.1 ab | |
Batavian | Cherokee | 5.0 ab | 25.7 def | 14.7 cdef | 21.7 bcd | 97.6 ab | 26.8 ab | 5.0 cdef | 1.0 abcd |
Nevada | 4.6 ab | 23.1 defg | 14.9 bcdef | 18.9 bcd | 80.8 abcd | 21.5 abcd | 4.5 cdefg | 0.9 abcd | |
Sierra | 5.3 a | 24.5 def | 14.5 cdef | 21.5 bcd | 85.2 abc | 24.5 abc | 4.4 defg | 1.0 abcd | |
Salanova | Oakleaf Green | 4.9 ab | 27.2 cde | 7.2 f | 18.7 cd | 51.3 d | 18.9 d | 3.5 g | 0.8 d |
Oakleaf Red | 4.7 ab | 32.6 ab | 9.2 ef | 19.8 bcd | 63.7 cd | 20.9 bcd | 4.0 fg | 0.8 d | |
Sweet Crisp Green | 4.7 ab | 33.5 ab | 16.3 bcd | 23.4 abc | 123.0 a | 22.9 abcd | 7.7 a | 0.9 bcd | |
Sweet Crisp Red | 4.9 ab | 31.9 ab | 13.5 cdef | 20.6 bcd | 89.7 abc | 22.5 abcd | 5.4 bcdef | 0.9 abcd | |
Butter | 5.0 ab | 35.2 a | 9.1 ef | 17.9 d | 61.8 cd | 19.1 cd | 4.2 efg | 0.8 cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thakulla, D.; Dunn, B.; Hu, B.; Goad, C.; Maness, N. Nutrient Solution Temperature Affects Growth and °Brix Parameters of Seventeen Lettuce Cultivars Grown in an NFT Hydroponic System. Horticulturae 2021, 7, 321. https://doi.org/10.3390/horticulturae7090321
Thakulla D, Dunn B, Hu B, Goad C, Maness N. Nutrient Solution Temperature Affects Growth and °Brix Parameters of Seventeen Lettuce Cultivars Grown in an NFT Hydroponic System. Horticulturae. 2021; 7(9):321. https://doi.org/10.3390/horticulturae7090321
Chicago/Turabian StyleThakulla, Dharti, Bruce Dunn, Bizhen Hu, Carla Goad, and Niels Maness. 2021. "Nutrient Solution Temperature Affects Growth and °Brix Parameters of Seventeen Lettuce Cultivars Grown in an NFT Hydroponic System" Horticulturae 7, no. 9: 321. https://doi.org/10.3390/horticulturae7090321
APA StyleThakulla, D., Dunn, B., Hu, B., Goad, C., & Maness, N. (2021). Nutrient Solution Temperature Affects Growth and °Brix Parameters of Seventeen Lettuce Cultivars Grown in an NFT Hydroponic System. Horticulturae, 7(9), 321. https://doi.org/10.3390/horticulturae7090321