Composition of Zingiber officinale Roscoe (Ginger), Soil Properties and Soil Enzyme Activities Grown in Different Concentration of Mineral Fertilizers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurement of Plant Nutrients
2.3. Analysis of Soil Nutrients
2.4. Analysis of Soil Enzymes
2.5. Statistical Analyses
3. Results
3.1. Measurement of Plant Nutrients
3.2. Analysis of Soil Nutrients
3.3. Analysis of Soil Enzymes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Trends and Challenges; FAO: Rome, Italy, 2017; p. 296. [Google Scholar]
- Fouad, A.; Hegazy, A.E.; Azab, E.; Khojah, E.; Kapiel, T. Boosting of Antioxidants and Alkaloids in Catharanthus roseus Suspension Cultures Using Silver Nanoparticles with Expression of CrMPK3 and STR Genes. Plants 2021, 10, 2202. [Google Scholar] [CrossRef] [PubMed]
- Egamberdieva, D.; Jabborova, D. Medicinal plants of Uzbekistan and their traditional uses. In Vegetation of Central Asia and Environs; Egamberdieva, D., Öztürk, M., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 211–237. [Google Scholar] [CrossRef]
- Jabborova, D.; Wirth, S.; Halwani, M.; Ibrahim, M.F.M.; El Azab, I.H.; El-Mogy, M.M.; Elkelish, A. Growth Response of Ginger (Zingiber officinale), Its Physiological Properties and Soil Enzyme Activities after Biochar Application under Greenhouse Conditions. Horticulturae 2021, 7, 250. [Google Scholar] [CrossRef]
- Jabborova, D.; Ma, H.; Bellingrath-Kimura, S.D.; Wirth, S. Impacts of biochar on basil (Ocimum basilicum) growth, root morphological traits, plant biochemical and physiological properties and soil enzymatic activities. Sci. Hortic. 2021, 290, 110518. [Google Scholar] [CrossRef]
- Jabborova, D.; Sayyed, R.Z.; Azimova, A.; Jabbarov, Z.; Matchanov, A.; Baazeeme, A.; Sabagh, A.E.; Danish, S.; Datta, R. Impact of mineral fertilizers on mineral nutrients in the ginger rhizome and on soil enzymes activities and soil properties. Saudi J. Biol. Sci. 2021, 28, 5268–5274. [Google Scholar] [CrossRef] [PubMed]
- Jabborova, D.; Enakiev, Y.; Sulaymanov, K.; Kadirova, D.; Ali, A.; Annapurna, K. Plant growth promoting bacteria Bacillus subtilis promote growth and physiological parameters of Zingiber officinale Roscoe. Plant Sci. Today 2021, 8, 66–71. [Google Scholar] [CrossRef]
- Ahmed, H.I.S.; Badr, A.; El-Shazly, H.H.; Watson, L.; Fouad, A.S.; Ellmouni, F.Y. Molecular Phylogeny of Trifolium L. Section Trifolium with Reference to Chromosome Number and Subsections Delimitation. Plants 2021, 10, 1985. [Google Scholar] [CrossRef]
- Jabborova, D.; Davranov, K.; Egamberdieva, D. Antibacterial, antifungal and antivirul properties of medicinal plants. In Medically Important Plant Biomes: Source of Secondary Metabolites; Egamberdieva, D., Tiezzi, A., Eds.; Springer Nature: Singapore, 2019; pp. 51–65. [Google Scholar]
- Choenkwan, S. Mysterious ginger: Enclaves of a boom crop in Thailand. For. Soc. 2017, 1, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.M.P.; Asish, G.R.; Sabu, M.; Balachandran, I. Significance of gingers (Zingiberaceae) in Indian system of medicine-Ayurveda: An overview. Anc. Sci. Life 2013, 32, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Asafa, R.F.; Akanbi, W.B. Growth and Rhizome Yield of Ginger (Zingiber officinale L.) as Influenced by Propagule Size and Nitrogen Levels in Ogbomoso, Southwestern Nigeria. Int. Lett. Nat. Sci. 2018, 67, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Schwertner, H.A.; Rio, D.C. High performance liquid chromatographic analysis of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in ginger containing dietary supplements, spices teas and beverages. J. Chromatogr. B 2007, 856, 41–47. [Google Scholar] [CrossRef]
- Rafiq, A.; Mohammad, A.; Naeem, A. Productivity of ginger (Zingiber officinale) by amendment of vermicompost and biogas slurry in Saline soils. Pak. J. Bot. 2009, 41, 3107–3116. [Google Scholar]
- Chamani, G.; Zarei, M.R.; Mehrabani, M.; Taghiabadi, Y. Evaluation of Effects of Zingiber officinale on salivation in rats. Acta Med. Iran. 2011, 49, 336–340. [Google Scholar] [PubMed]
- Moustafa-Farag, M.; Mahmoud, A.; Arnao, M.B.; Sheteiwy, M.S.; Dafea, M.; Soltan, M.; Elkelish, A.; Hasanuzzaman, M.; Ai, S. Melatonin-Induced Water Stress Tolerance in Plants: Recent Advances. Antioxidants 2020, 9, 809. [Google Scholar] [CrossRef] [PubMed]
- Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020, 25, 5447. [Google Scholar] [CrossRef]
- Sharar, M.; Saied, E.M.; Rodriguez, M.C.; Arenz, C.; Montes-Bayón, M.; Linscheid, M.W. Elemental Labelling and Mass Spectrometry for the Specific Detection of Sulfenic Acid Groups in Model Peptides: A Proof of Concept. Anal. Bioanal. Chem. 2017, 409, 2015–2027. [Google Scholar] [CrossRef] [PubMed]
- Gaber, A.; Refat, M.S.; Belal, A.A.M.; El-Deen, I.M.; Hassan, N.; Zakaria, R.; Alhomrani, M.; Alamri, A.S.; Alsanie, W.F.; Saied, M.E. New Mononuclear and Binuclear Cu(II), Co(II), Ni(II), and Zn(II) Thiosemicarbazone Complexes with Potential Biological Activity: Antimicrobial and Molecular Docking Study. Molecules 2021, 26, 2288. [Google Scholar] [CrossRef] [PubMed]
- Newerli-Guz, J.; Pych, A. Antixodiant properties of ginger (Zingiber officinale Roscoe). Zesz. Nauk. AMG 2012, 73, 28–33. (In Polish) [Google Scholar]
- Abdou, R.H.; Abdel-Daim, M.M. Alpha-Lipoic Acid Improves Acute Deltamethrin-Induced Toxicity in Rats. Can. J. Physiol. Pharmacol. 2014, 92, 773–779. [Google Scholar] [CrossRef]
- NAIR, K.P.P. The Agronomy and Economy of Turmeric and Ginger: The Invaluable Medicinal Spice Crops; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Abdel-Daim, M.M.; El-Tawil, O.S.; Bungau, S.G.; Atanasov, A.G. Applications of Antioxidants in Metabolic Disorders and Degenerative Diseases: Mechanistic Approach. Oxid. Med. Cell. Longev. 2019, 2019, 4179676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, F.; Capasso, R.; Pinto, A.; A Izzo, A. Inhibitory effect of ginger (Zingiber officinale) on rat ileal motility in vitro. Life Sci. 2004, 74, 2889–2896. [Google Scholar] [CrossRef]
- Singh, M.; Masroor, A.M.; Naeem, K.M. Effect of nitrogen on growth, nutrient assimilation, essential oil content, yield and quality attributes in Zingiber officinale Rosc. J. Saudi Soc. Agric. Sci. 2016, 15, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Ippoushi, K.; Azuma, K.; Ito, H.; Horie, H.; Higashio, H. [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life Sci. 2003, 73, 3427–3437. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.C.; Lokesh, B.R. Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol. Cell. Biochem. 1992, 111, 117–124. [Google Scholar] [PubMed]
- Vimala, S.; Norhanom, A.W.; Yadav, M. Anti-tumor promoter activity in Malaysian ginger rhizome used in traditional medicine. Br. J. Cancer. 1999, 80, 110–116. [Google Scholar] [CrossRef]
- Akoachere, J.-F.T.K.; Ndip, R.N.; Chenwi, E.B.; Ndip, L.M.; Njock, T.E.; Anong, D.N. Antibacterial effect of Zingiber officinale and Garcinia kola on respiratory tract pathogens. East Afr. Med. J. 2002, 79, 588–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, A.K.; Banerjee, S.; Mullick, H.I.; Banerjee, J. Zingiber officinale: A natural gold. Int. J. Pharma Bio Sci. 2011, 2, 283–294. [Google Scholar]
- Baliga, M.S.; Haniadka, R.; Pereira, M.M.; D’Souza, J.J.; Pallaty, P.L.; Bhat, H.P.; Popuri, S. Update on the chemopreventive effects of ginger and its phytochemicals. Crit. Rev. Food Sci. Nutr. 2011, 51, 499–523. [Google Scholar] [CrossRef]
- Akhani, S.P.; Vishwakarma, S.L.; Goyal, R.K. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J. Pharm. Pharmacol. 2011, 56, 101–105. [Google Scholar] [CrossRef]
- Gupta, S.K.; Sharma, A. Medicinal properties of Zingiber officinale Roscoe—A Review. IOSR J. Pharm. Biol. Sci. 2014, 9, 124–129. [Google Scholar] [CrossRef]
- Singh, M. Influence of Triacontanol, Nitrogen and Phosphorus on the Growth, Yield and Quality of Ginger (Zingiber officinale Rosc.) and Turmeric (Curcuma longa L.). Ph.D. Thesis, Aligarh Muslim University, Aligarh, India, 2009. [Google Scholar]
- Tursunov, L. Soil Physics. In Determination of the Mechanical Composition of Soils by the Kachinsky Method; National Unversity of Uzbekistan Press: Tashkent, Uzbekistan, 2010; pp. 1–358. [Google Scholar]
- GOST 26261-84; Soils. Methods for Determining Total Phosphorus and Total Potassium; Publishing House of Standards: Minsk, Belarus, 2005. [Google Scholar]
- GOST 26107-84; Soils. Methods for Determination of Total Nitrogen; Publishing House of Standards: Minsk, Belarus, 2005. [Google Scholar]
- Pancu, M.; Gautheyrou, J. Handbook of Soil Analysis Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006; p. 800. [Google Scholar]
- Guo, H.; Yao, J.; Cai, M.; Qian, Y.; Guo, Y.; Richnow, H.; Blake, R.E.; Doni, S.; Ceccanti, B. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere 2012, 87, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Xaziev, F.X. Methods of Soil Enzymology; Publishing Nauka: Moscow, Russia, 2005; p. 252. ISBN 5020339407. [Google Scholar]
- Egamberdieva, D.; Jabborova, D.; Berg, G. Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth and nodulation of soybean under salt stress. Plant. Soil. 2016, 405, 35–45. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.; Jabborova, D.; Räsänen, L.A.; Liao, H. Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress ins oybean through altering root system architecture. J. Plant. Interact 2017, 12, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Egamberdieva, D.; Jabborova, D.; Wirth, S.; Pravej, A.; Alyemeni, M.N.; Parvaiz, A. Interaction of magnesium with nitrogen and phosphorus modulates symbiotic performance of soybean with Bradyrhizobium japonicum, and its root architecture. Front. Microbiol. 2018, 9, 1000. [Google Scholar] [CrossRef] [Green Version]
- Sarabekov, A.; Matchanov, A.; G’ofurov, M.B.; Xamidova, G.; Maulyanov, S.; Babaev, B.; Jabborova, D. Element analysis of Helichrysum maracandicum collected in different regions of Uzbekistan. Plant. Cell Biotechnol. Mol. Biol. 2021, 22, 53–59. [Google Scholar]
- Jabborova, D.; Enakiev, Y.I.; Kakhramon, D.; Begmatov, S. Effect of coinoculation with Bradyrhizobium japonicum and Pseudomonas putida on root morph-architecture traits, nodulation and growth of soybean in response to phosphorus supply under hydroponic conditions. Bulg. J. Agric. Sci. 2018, 24, 1004–1011. [Google Scholar]
- Jabborova, D.; Annapurna, K.; Al-Sadi, A.M.; Alharbi, S.A.; Datta, R.; Zuan, A.T.K. Biochar and Arbuscular mycorrhizal fungi mediated enhanced drought tolerance in Okra (Abelmoschus esculentus) plant growth, root morphological traits and physiological properties. Saudi J. Biol. Sci. 2021, 28, 5490–5499. [Google Scholar] [CrossRef] [PubMed]
- Obiajunwa, E.I.; Adebajo, A.C.; Omobuwajo, O.R. Essential and trace element contents of some Nigerian medicinal plants. J. Radioanal. Nucl. Chem. 2002, 252, 473–476. [Google Scholar] [CrossRef]
- Ogunwandea, I.A.; Olawore, N.O. Heavy trace metals and macronutrients status in herbal plants of Nigeria. Food Chem. 2004, 85, 67–71. [Google Scholar]
- Aiwonegbe, A.E.; Ikhuoria, E.U. Levels of selected heavy metals in some Nigerian vegetables. Trends App. Sci. Res. 2007, 2, 76–79. [Google Scholar]
- Devi, K.N.; Sarma, H.N.; Kumar, S. Estimation of essential and trace elements in some medicinal plants by PIXE and PIGE techniques. Nucl. Instr. Methods Phys. Res. B 2008, 266, 1605–1610. [Google Scholar] [CrossRef]
- Al-Eed, M.A.; Assubaie, F.N.; El-Garawany, M.M.; El-Hamshary, H.; Eltayeb, Z.M. Determination of heavy metal levels in common spices. J. Appl. Sci. 2002, 17, 87–98. [Google Scholar]
- Alwakeel, S.S. Microbial and heavy metals accumulation of herbal medicines. Res. J. Microbiol. 2008, 3, 683–691. [Google Scholar] [CrossRef]
- Wagesho, Y.; Chandravanshi, B.S. Levels of essential and non-essential metals in ginger (Zingiber officinale) cultivated in Ethiopia. SpringerPlus 2015, 4, 107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanthan, L.; Singh, A.K.; Singh, V.B. Effect of INM on yield, quality, and uptake of N. P. and K by ginger. Agropedology 2010, 20, 74–79. [Google Scholar]
- Thakur, S.K.; Sharma, S.K. Response of ginger to N and P in sub-tropical zone of H.P. Ind. J. Agric. Res. 1997, 3195–3198. [Google Scholar]
- Majumdar, B.; Venkatesh, M.S.; Kumar, K. Effect of nitrogen and farmyard manure on yield and nutrient uptake of turmeric (Curcuma longa) and different forms of inorganic N build up in an acidic alfisol of Meghalaya. Ind. J. Agric. Sci. 2002, 72, 528–531. [Google Scholar]
- Lujiu, L.; Fang, C.; Jiajia, W.; Dianli, Y.; Pingping, W. Ginger Yield and Quality Influenced by Potassium Fertilization. Better Crops Plant Food 2015, 99, 14–15. [Google Scholar]
- Hassan, S.A.; Mijin, S.; Yusoff, U.K.; Ding, P.; Wahab, P.E. Nitrate, ascorbic acid, mineral and antioxidant activities of cosmos caudatus in response to organic and mineral-based fertilizer rates. Molecules 2012, 17, 7843–7853. [Google Scholar] [CrossRef]
- Kavitha, P.R. Nutrient Management for Yield and Quality Improvement in Kacholam (Kaempferia galanga L). Master’s Thesis, Kerala Agricultural University, Thrissur, India, 2012. [Google Scholar]
- Chhibba, I.M.; Nayyar, V.K.; Kanwar, J.S. Influence of mode and source of applied iron on fenugreek (Trigonella corniculata L.) in a Typic Ustochrept in Punjab, India. Int. J. Agric. Biol. 2007, 9, 254–256. [Google Scholar]
- Halder, N.K.; Shill, N.C.; Siddiky, M.A.; Sarkar, J.; Gomes, R. Response of turmeric to zinc and boron fertilization. J. Biol. Sci. 2007, 7, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Cahatterjee, R.; Hassan, A.; Maitra, S.K. Effect of Zn, Fe and B on growth, yield and nutrient content in leaf of ginger. Ind. Cocoa Arecanut Spices J. 1992, 15, 99–101. [Google Scholar]
- McDowell, W.H.; Magill, A.H.; Aitkenhead-Peterson, J.A.; Aber, J.D.; Merriam, J.L.; Kaushal, S.S. Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. Forest Ecol. Manag. 2004, 196, 29–41. [Google Scholar] [CrossRef]
- Fang, H.J.; Yu, G.R.; Cheng, S.L.; Mo, J.M.; Yan, J.H.; Li, S. 13C abundance, water-soluble, and microbial biomass carbon as potential indicators of soil organic carbon dynamics in subtropical forests at different successional stages and subject to different nitrogen loads. Plant. Soil. 2009, 320, 243–254. [Google Scholar] [CrossRef]
- Wang, Q.K.; Wang, S.L.; Liu, Y.X. Responses to N and P fertilization in a young Eucalyptus dunnii plantation: Microbial properties, enzyme activities and dissolved organic matter. Appl. Soil Ecol. 2008, 40, 484–490. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A.; Kumar, P.S. Short-term effects of nutrient management regimes on biochemical and microbial properties in soils under rainfed ginger (Zingiber officinale Rosc.). Geoderma 2012, 173, 192–198. [Google Scholar] [CrossRef]
- Srinivasan, V.; Thankamani, C.K.; Dinesh, R.; Kandiannan, K.; Hamza, S.; Leela, N.K.; Zachariah, T.J. Variations in soil properties, rhizome yield, and quality as influenced by different nutrient management schedules in rainfed ginger. Agric. Res. 2019, 8, 218–230. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, Y.; Yang, C.; Shen, Q.; Zhou, J.; Yang, L. Soil enzymatic activity and growth of rice and barley as influenced by organic manure in an anthropogenic soil. Geoderma 2003, 115, 149–160. [Google Scholar] [CrossRef]
- Zhang, T.; Wan, S.; Kang, Y.; Feng, H. Urease activity and its relationships to soil physiochemical properties in a highly saline-sodic soil. J. Soil Sci. Plant. Nutr. 2014, 14, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.P. Nutrient supplementation through organic manures for growth and yield of ginger (Zingiber officinale Rose). J. Eco-friendly Agric. 2015, 10, 28–31. [Google Scholar]
- Allison, V.J.; Condron, L.M.; Peltzer, D.A.; Richardson, S.J.; Turner, B.L. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol. Biochem. 2007, 39, 1770–1781. [Google Scholar] [CrossRef]
- Jabborova, D.; Choudhary, R.; Karunakaran, R.; Ercisli, S.; Ahlawat, J.; Sulaymanov, K.; Jabbarov, Z. The Chemical Element Composition of Turmeric Grown in Soil–Climate Conditions of Tashkent Region, Uzbekistan. Plants 2021, 10, 1426. [Google Scholar] [CrossRef] [PubMed]
- Jabborova, D.; Sulaymanov, K.; Sayyed, R.Z.; Alotaibi, S.H.; Enakiev, Y.; Azimov, A.; Datta, R. Effect of Different Mineral Fertilizers on Quality of Turmeric and Soil Properties. Sustainability 2021, 13, 9437. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, X.; Wang, X.; Shao, H.; Yang, J.; Wang, X. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agric. Ecosyst. Environ. 2017, 237, 274–279. [Google Scholar]
- Chen, H.W.; Huang, L. Correlation between long-term fertilization and soil enzyme activity in the rhizosphere of halophytes. Appl. Ecol. Environ. Res. 2020, 18, 2669–2685. [Google Scholar] [CrossRef]
Parameter | T-1 | T-2 | T-3 | T-4 |
---|---|---|---|---|
K | 11,232 ± 4.31 A | 13,322 ± 3.38 B | 15,406 ± 1.85 C | 27,474 ± 9.65 D |
Ca | 14,721 ± 2.39 A | 24,570 ± 10 B | 20,719 ± 4.15 C | 35,885 ± 7.21 D |
P | 5209.6 ± 6 A | 5544.2 ± 2.1 B | 6592.4 ± 10.3 C | 7542.7 ± 9.02 D |
Mg | 5534 ± 2.97 A | 5774.3 ± 8.71 B | 6374.3 ± 0.058 C | 9055 ± 4.58 D |
Na | 1555.7 ± 0.972 A | 1890 ± 0.998 B | 1923.4 ± 2.78 C | 3771.4 ± 3.46 D |
Parameter | T-1 | T-2 | T-3 | T-4 |
---|---|---|---|---|
Fe | 375.61 ± 0.995 A | 574.7 ± 7.9 B | 602.35 ± 0.568 C | 645.42 ± 3.06 D |
Mn | 69.146 ± 1.001 A | 113.93 ± 2.04 B | 134.18 ± 0.989 C | 171.41 ± 1.58 D |
Zn | 3.371 ± 0.04 A | 4.273 ± 0.115 B | 5.262 ± 0.106 C | 5.493 ± 0.005 D |
Cu | 2.779 ± 0.009 A | 6.413 ± 0.09 B | 5.242 ± 0.018 C | 5.905 ± 0.005 D |
Cr | 1.663 ± 0.095 A | 1.667 ± 0.015 A | 1.452 ± 0.011 B | 1.624 ± 0.005 A |
Mo | 0.16 ± 0.01 A | 0.161 ± 0.009 A | 0.261 ± 0.001 B | 0.21 ± 0.01 C |
Si | 0.155 ± 0.011 A | 0.213 ± 0.015 B | 0.212 ± 0.012 B | 0.309 ± 0.001 C |
Parameter | T-1 | T-2 | T-3 | T-4 |
---|---|---|---|---|
Li | 0.297 ± 0.012 A | 0.29 ± 0.01 A | 0.367 ± 0.002 B | 0.44 ± 0.001 C |
Be | 0.02 ± 0.01 A | 0.012 ± 0.002 A | 0.012 ± 0.001 A | 0.014 ± 0.004 A |
V | 0.332 ± 0.001 A | 0.489 ± 0.01 B | 0.568 ± 0.002 C | 0.625 ± 0.005 D |
Co | 0.119 ± 0.003 A | 0.144 ± 0.001 B | 0.135 ± 0.003 C | 0.155 ± 0.002 D |
Ga | 0.313 ± 0.005 A | 0.355 ± 0.005 B | 0.367 ± 0.003 B | 0.314 ± 0.017 A |
Ge | 0.002 ± 0.001 A | 0.002 ± 0.001 A | 0.002 ± 0.001 A | 0.002 ± 0.001 A |
Nb | 0.001 ± 0.001 A | 0.001 ± 0.001 A | 0.001 ± 0.001 A | 0.001 ± 0.001 A |
Ag | 0.015 ± 0.001 A | 0.025 ± 0.002 AB | 0.03 ± 0.01 B | 0.019 ± 0.001 AB |
Cd | 0.008 ± 0.001 A | 0.008 ± 0.001 A | 0.008 ± 0.001 A | 0.008 ± 0.001 A |
In | 0 ± 0 A | 0 ± 0 A | 0 ± 0 A | 0 ± 0 A |
Sn | 0.033 ± 0 A | 0.033 ± 0 A | 0.033 ± 0 A | 0.033 ± 0 A |
Sb | 0.013 ± 0.006 A | 0.013 ± 0.006 A | 0.013 ± 0.006 A | 0.013 ± 0.006 A |
Cs | 0.003 ± 0.001 A | 0.003 ± 0.001 A | 0.003 ± 0.001 A | 0.003 ± 0.001 A |
Ta | 0 ± 0 A | 0 ± 0 A | 0 ± 0 A | 0 ± 0 A |
W | 0.003 ± 0.001 A | 0.003 ± 0.001 A | 0.003 ± 0.001 A | 0.003 ± 0.001 A |
Re | 0 ± 0 A | 0 ± 0 A | 0 ± 0 A | 0 ± 0 A |
Parameter | T-0 | T-1 | T-2 | T-3 | T-4 |
---|---|---|---|---|---|
Active P2O5 mg/kg | 31.33 ± 0.58 A | 35.3 ± 1 B | 37.6 ± 0.1 BC | 39.5 ± 1 C | 42.6 ± 1.1 D |
Active K2O mg/kg | 351.67 ± 0.76 D | 120.57 ± 1.03 C | 135.66 ± 1.88 B | 140.69 ± 0.09 B | 152.45 ± 1.05 A |
N-NO3 mg/kg | 89.13 ± 1.03 A | 10.25 ± 0.05 E | 28.483 ± 0.9 D | 33.44 ± 0.06 C | 35.12 ± 1.02 B |
Total P2O5% | 0.19 ± 0.02 A | 0.19 ± 0.01 D | 0.241 ± 0.001 C | 0.21 ± 0.01 B | 0.32 ± 0.02 B |
Total K2O% | 1.87 ± 0.02 CD | 0.837 ± 0.012 C | 0.92 ± 0.02 B | 0.96 ± 0.02 BC | 0.98 ± 0.02 A |
N% | 0.09 ± 0 A | 0.124 ± 0.002 D | 0.128 ± 0.001 C | 0.137 ± 0.012 BC | 0.195 ± 0.002 B |
Humus, % | 1.7 ± 0 CD | 1.996 ± 0.005 B | 2.02 ± 0.01 B | 2.013 ± 0.015 B | 2.41 ± 0.01 A |
C% | 0.98 ± 0 CD | 1.157 ± 0.004 B | 1.172 ± 0.002 B | 1.166 ± 0.006 B | 1.396 ± 0.005 A |
C/N | 10.4 ± 0.1 D | 9.367 ± 0.116 C | 9.1 ± 0.3 B | 8.9 ± 0.1 BC | 7.733 ± 0.153 A |
CO2% | 8.92 ± 0.07 A | 6.45 ± 0.05 B | 6.4 ± 0.01 BC | 6.01 ± 0.01 C | 6.013 ± 0.006 D |
Total HCO3% | 0.02 ± 0 A | 0.014 ± 0.004 B | 0.013 ± 0.001 B | 0.011 ± 0.002 C | 0.021 ± 0.001 C |
Cl% | 0.09 ± 0 A | 0.008 ± 0.001 B | 0.006 ± 0.001 D | 0.004 ± 0.001 D | 0.005 ± 0.001 C |
SO4% | 0.28 ± 0.01 C | 1.003 ± 0.006 A | 0.98 ± 0.01 B | 0.743 ± 0.006 C | 1.122 ± 0.001 C |
Ca% | 0.24 ± 0 A | 0.14 ± 0.01 A | 0.12 ± 0.01 B | 0.133 ± 0.058 B | 0.213 ± 0.006 C |
Mg% | 0.06 ± 0 A | 0.032 ± 0.002 B | 0.03 ± 0.01 C | 0.013 ± 0.006 D | 0.054 ± 0.001 C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabborova, D.; Choudhary, R.; Azimov, A.; Jabbarov, Z.; Selim, S.; Abu-Elghait, M.; Desouky, S.E.; Azab, I.H.E.; Alsuhaibani, A.M.; Khattab, A.; et al. Composition of Zingiber officinale Roscoe (Ginger), Soil Properties and Soil Enzyme Activities Grown in Different Concentration of Mineral Fertilizers. Horticulturae 2022, 8, 43. https://doi.org/10.3390/horticulturae8010043
Jabborova D, Choudhary R, Azimov A, Jabbarov Z, Selim S, Abu-Elghait M, Desouky SE, Azab IHE, Alsuhaibani AM, Khattab A, et al. Composition of Zingiber officinale Roscoe (Ginger), Soil Properties and Soil Enzyme Activities Grown in Different Concentration of Mineral Fertilizers. Horticulturae. 2022; 8(1):43. https://doi.org/10.3390/horticulturae8010043
Chicago/Turabian StyleJabborova, Dilfuza, Ravish Choudhary, Abdulahat Azimov, Zafarjon Jabbarov, Samy Selim, Mohammed Abu-Elghait, Said E. Desouky, Islam H. El Azab, Amnah Mohammed Alsuhaibani, Adel Khattab, and et al. 2022. "Composition of Zingiber officinale Roscoe (Ginger), Soil Properties and Soil Enzyme Activities Grown in Different Concentration of Mineral Fertilizers" Horticulturae 8, no. 1: 43. https://doi.org/10.3390/horticulturae8010043
APA StyleJabborova, D., Choudhary, R., Azimov, A., Jabbarov, Z., Selim, S., Abu-Elghait, M., Desouky, S. E., Azab, I. H. E., Alsuhaibani, A. M., Khattab, A., & ElSaied, A. (2022). Composition of Zingiber officinale Roscoe (Ginger), Soil Properties and Soil Enzyme Activities Grown in Different Concentration of Mineral Fertilizers. Horticulturae, 8(1), 43. https://doi.org/10.3390/horticulturae8010043