Peach Flower Density Detection Based on an Improved CNN Incorporating Attention Mechanism and Multi-Scale Feature Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Workflow of the Proposed Method
2.2. Data Acquisition and Preprocessing Based on RGBD Camera
2.3. Convolutional Neural Network for Peach Flower Counting
2.3.1. Overall Architecture of the Proposed Network
2.3.2. Multi-Scale Feature Fusion (MSFF) Module
2.3.3. ECA Module
2.4. Dataset Preparation
2.4.1. Data Acquisition
2.4.2. Dataset Augmentation and Labeling
2.5. Model Training
2.6. Evaluation Metrics
3. Results and Discussion
3.1. Ablation Study
3.2. Comparison with State-of-the-Art Networks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sobierajski, G.d.R.; Silva, T.S.; Hernandes, J.L.; Pedro, M.J. Y-Shaped and Fruiting Wall Peach Orchard Training System in Subtropical Brazil. Bragantia 2019, 78, 229–235. [Google Scholar] [CrossRef]
- Costa, G.; Vizzotto, G. Fruit Thinning of Peach Trees. Plant Growth Regul. 2000, 31, 113–119. [Google Scholar] [CrossRef]
- Link, H. Significance of Flower and Fruit Thinning on Fruit Quality. Plant Growth Regul. 2000, 31, 17–26. [Google Scholar] [CrossRef]
- Tromp, J. Lower-Bud Formation in Pome Fruits as Affected by Fruit Thinning. Plant Growth Regul. 2000, 31, 27–34. [Google Scholar] [CrossRef]
- Davis, C.C.; Champ, J.; Park, D.S.; Breckheimer, I.; Lyra, G.M.; Xie, J.; Joly, A.; Tarapore, D.; Ellison, A.M.; Bonnet, P. A New Method for Counting Reproductive Structures in Digitized Herbarium Specimens Using Mask R-CNN. Front. Plant Sci. 2020, 11, 1129. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lv, S.; Jiang, M.; Song, H. Using Channel Pruning-Based YOLO v4 Deep Learning Algorithm for the Real-Time and Accurate Detection of Apple Flowers in Natural Environments. Comput. Electron. Agric. 2020, 178, 105742. [Google Scholar] [CrossRef]
- Juntao, X.; Bolin, L.; Zhuo, Z.; Shumian, C.; Zhenhui, Z. Segmentation and Recognition of Litchi Mosaic and Leaf Based on Deep Semantic Segmentation Network. J. Agric. Mach. 2021, 52, 252–258. [Google Scholar]
- Lin, P.; Chen, Y. Detection of Strawberry Flowers in Outdoor Field by Deep Neural Network. In Proceedings of the 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018; pp. 482–486. [Google Scholar]
- Lempitsky, V.; Zisserman, A. Learning to Count Objects in Images. Adv. Neural Inf. Process. Syst. 2010, 23, 1324–1332. [Google Scholar]
- Guo, D.; Li, K.; Zha, Z.-J.; Wang, M. Dadnet: Dilated-Attention-Deformable Convnet for Crowd Counting. In Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 1823–1832. [Google Scholar]
- Cao, X.; Wang, Z.; Zhao, Y.; Su, F. Scale Aggregation Network for Accurate and Efficient Crowd Counting. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750. [Google Scholar]
- Bai, S.; He, Z.; Qiao, Y.; Hu, H.; Wu, W.; Yan, J. Adaptive Dilated Network with Self-Correction Supervision for Counting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4594–4603. [Google Scholar]
- Li, Y.; Zhang, X.; Chen, D. CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1091–1100. [Google Scholar]
- Wenxia, B.; Xin, Z.; Gensheng, H.; Linsheng, H.; Dong, L.; Ze, L. Field wheat ear density estimation and counting based on deep convolutional neural network. Chin. J. Agric. Eng. 2020, 36, 186–193, 323. [Google Scholar]
- Jinfeng, W.; Kai, H.; Fan, J.; Gengqian, W.; Donglin, L.; Zifeng, Z. Experimental Research on Fish Density Detection Based on Improved Deep Learning Model. Fish. Mod. 2021, 48, 77–82. [Google Scholar]
- Tian, Y.; Yang, G.; Wang, Z.; Li, E.; Liang, Z. Instance Segmentation of Apple Flowers Using the Improved Mask R–CNN Model. Biosyst. Eng. 2020, 193, 264–278. [Google Scholar] [CrossRef]
- Zhou, Q.-Y.; Park, J.; Koltun, V. Open3D: A Modern Library for 3D Data Processing. arXiv 2018, arXiv:1801.09847. [Google Scholar]
- Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.F.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Du, Y.; Song, W.; He, Q.; Huang, D.; Liotta, A.; Su, C. Deep Learning with Multi-Scale Feature Fusion in Remote Sensing for Automatic Oceanic Eddy Detection. Inf. Fusion 2019, 49, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Zhong, G.; Yu, H. A Review on the Attention Mechanism of Deep Learning. Neurocomputing 2021, 452, 48–62. [Google Scholar] [CrossRef]
- Zhu, H.; Xie, C.; Fei, Y.; Tao, H. Attention Mechanisms in CNN-Based Single Image Super-Resolution: A Brief Review and a New Perspective. Electronics 2021, 10, 1187. [Google Scholar] [CrossRef]
- Jung, A. Imgaug Documentation, Release 0.4.0. 2020. Available online: https://imgaug.readthedocs.io/en/latest/ (accessed on 11 August 2022).
- Lu, H.; Cao, Z.; Xiao, Y.; Zhuang, B.; Shen, C. TasselNet: Counting Maize Tassels in the Wild via Local Counts Regression Network. Plant Methods 2017, 13, 79. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, D.; Chen, S.; Gao, S.; Ma, Y. Single-Image Crowd Counting via Multi-Column Convolutional Neural Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 589–597. [Google Scholar]
- Wu, J.; Yang, G.; Yang, X.; Xu, B.; Han, L.; Zhu, Y. Automatic Counting of in Situ Rice Seedlings from UAV Images Based on a Deep Fully Convolutional Neural Network. Remote Sens. 2019, 11, 691. [Google Scholar] [CrossRef] [Green Version]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Tian, Y.; Chu, X.; Wang, H. Cctrans: Simplifying and Improving Crowd Counting with Transformer. arXiv 2021, arXiv:2109.14483. [Google Scholar]
- Liang, D.; Xu, W.; Zhu, Y.; Zhou, Y. Focal Inverse Distance Transform Maps for Crowd Localization and Counting in Dense Crowd. arXiv 2021, arXiv:2102.07925. [Google Scholar]
- Wang, B.; Liu, H.; Samaras, D.; Nguyen, M.H. Distribution Matching for Crowd Counting. Adv. Neural Inf. Process. Syst. 2020, 33, 1595–1607. [Google Scholar]
- Liu, W.; Salzmann, M.; Fua, P. Context-Aware Crowd Counting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5099–5108. [Google Scholar]
- Chu, X.; Tian, Z.; Wang, Y.; Zhang, B.; Ren, H.; Wei, X.; Xia, H.; Shen, C. Twins: Revisiting the Design of Spatial Attention in Vision Transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 9355–9366. [Google Scholar]
Configuration | Details |
---|---|
Operating System | Microsoft Windows 10 64-bit |
CPU | 11th Gen Intel(R) Core(TM) i9-11900K @ 3.50 GHz |
GPU | NVIDIA GeForce RTX 3080Ti 12 G |
CUDA | 11.3 |
Pytorch | 1.10.0 |
Python | 3.6.8 |
No. | Model | MAE | RMSE | R2 | Er | Single-Image Process Time/s | Model Size/MB |
---|---|---|---|---|---|---|---|
0 | CSRNet | 5.45 | 7.14 | 0.95 | 2.77% | 0.13 | 62.04 |
1 | CSRNet-MSFF | 5.08 | 6.38 | 0.94 | 2.25% | 0.14 | 63.92 |
2 | FC-Net (CSRNet-ECA-MSFF, 5_Dilation rate = 2) | 4.30 | 5.65 | 0.95 | 0.02% | 0.12 | 54.92 |
3 | FC-Net (Part_Dilation rate = 1) | 5.76 | 7.65 | 0.93 | 2.23% | 0.10 | 54.92 |
No. | Network | MAE | RMSE | Single-Image Process Time/s | Model Size/MB |
---|---|---|---|---|---|
1 | MCNN | 10.52 | 12.21 | 0.24 | 155.52 |
2 | CCTrans | 3.73 | 4.62 | 0.28 | 368.78 |
3 | FIDTM | 4.36 | 5.30 | 0.21 | 254.00 |
4 | DM-Count | 5.27 | 6.45 | 0.19 | 82.01 |
5 | CAN | 4.39 | 5.67 | 0.22 | 72.07 |
6 | FC-Net | 4.30 | 5.65 | 0.12 | 54.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, K.; Wang, A.; Shen, Y.; Lu, Z.; Peng, F.; Wei, X. Peach Flower Density Detection Based on an Improved CNN Incorporating Attention Mechanism and Multi-Scale Feature Fusion. Horticulturae 2022, 8, 904. https://doi.org/10.3390/horticulturae8100904
Tao K, Wang A, Shen Y, Lu Z, Peng F, Wei X. Peach Flower Density Detection Based on an Improved CNN Incorporating Attention Mechanism and Multi-Scale Feature Fusion. Horticulturae. 2022; 8(10):904. https://doi.org/10.3390/horticulturae8100904
Chicago/Turabian StyleTao, Kun, Aichen Wang, Yidie Shen, Zemin Lu, Futian Peng, and Xinhua Wei. 2022. "Peach Flower Density Detection Based on an Improved CNN Incorporating Attention Mechanism and Multi-Scale Feature Fusion" Horticulturae 8, no. 10: 904. https://doi.org/10.3390/horticulturae8100904
APA StyleTao, K., Wang, A., Shen, Y., Lu, Z., Peng, F., & Wei, X. (2022). Peach Flower Density Detection Based on an Improved CNN Incorporating Attention Mechanism and Multi-Scale Feature Fusion. Horticulturae, 8(10), 904. https://doi.org/10.3390/horticulturae8100904