In Vitro Floral Emergence and Improved Formation of Saffron Daughter Corms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Disinfection and the Establishment of Aseptic Culture
2.2. Saffron Flowering in In Vitro Culture and Hydroponic Culture
2.3. Effects of Explant Type and Solid/Liquid Culture on Saffron Daughter Corm Formation
2.4. Effects of Salicylic Acid, Glutamine, and Jasmonic Acid on Saffron Daughter Corm Formation In Vitro
2.5. Experimental Design and Data Analysis
3. Results and Discussion
3.1. In Vitro Establishment of Saffron Aseptic Culture and Flower Emergence
3.2. Effects of Explant Type and Solid/Liquid Culture on Saffron Daughter Corm Formation
3.3. Effects of Salicylic Acid, Glutamine, and Jasmonic Acid on Saffron Daughter Corm Formation In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basker, D.; Negbi, M. The use of Saffron. Eco. Bot. 1983, 37, 228–236. [Google Scholar] [CrossRef]
- Nemati, Z.; Harpke, D.; Gemicioglu, A.; Kerndorff, H.; Blattner, F.R. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol. Phylogenet. Evol. 2019, 136, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Douglas, M.H.; Smallfield, B.M.; Wallace, A.R.; McGimpsey, J.A. Saffron (Crocus sativus L.): The effect of mother corm size on progeny multiplication, flower and stigma production. Sci. Hortic. 2014, 166, 50–58. [Google Scholar] [CrossRef]
- Molina, R.; Valero, M.; Navarro, Y.; Guardiola, J.L.; Garcia-Luis, A. Temperature effects on flower formation in saffron (Crocus sativus L.). Sci. Hortic. 2005, 103, 361–379. [Google Scholar] [CrossRef]
- Gohari, A.R.; Saeidnia, S.; Mahmoodabadi, M.K. An overview on saffron, phytochemicals, and medicinal properties. Pharmacogn. Rev. 2013, 7, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Dhar, A.; Sapru, R. Studies on saffron in Kashmir and in vitro production of corm and shoot-like structures. Indian J. Genet. 1993, 53, 193–196. [Google Scholar]
- Raja, W.; Zaffer, G.; Wani, S.A. In vitro microcorm formation in saffron (Crocus sativus L). Acta Hortic. 2007, 739, 291–296. [Google Scholar] [CrossRef]
- Sharifi, G.; Ebrahimzadeh, H.; Ghareyazie, B.; Karimi, M. Globular embryo-like structures and highly efficient thidiazuron-induced multiple shoot formation in saffron (Crocus sativus L.). Vitr. Cell. Dev. Biol.-Plant 2010, 46, 274–280. [Google Scholar] [CrossRef]
- Zeybek, E.; Önde, S.; Kaya, Z. Improved in vitro micropropagation method with adventitious corms and roots for endangered saffron. Cent. Eur. J. Biol. 2012, 7, 138–145. [Google Scholar] [CrossRef]
- Mehrotra, S.; Goel, M.K.; Kukreja, A.K.; Mishra, B.N. Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. Afr. J. Biotechnol. 2007, 6, 1684–5315. [Google Scholar]
- Paek, K.Y.; Hahn, E.J.; Son, S.H. Application of bioreactors of large scale micropropagation systems of plants. Vitr. Cell. Dev. Biol.-Plant 2001, 37, 149–157. [Google Scholar] [CrossRef]
- Milyaeva, E.L.; Azizbekova, N.S.; Komarova, E.N.; Akhundova, D.D. In vitro formation of regenerant corms of saffron crocus (Crocus sativus L.). Russ. J. Plant Physiol. 1995, 42, 112–119. [Google Scholar]
- Chauhan, R.S.; Sharma, T.R.; Chahota, R.K.; Singh, B.M. In vitro cormlet production from micropropagated shoots of saffron (Crocus sativus L.). Indian Perfum. 1999, 43, 150–155. [Google Scholar]
- Sharma, K.D.; Rathour, R.; Sharma, R.; Goel, S.; Sharma, T.R.; Singh, B.M. In vitro cormlet development in Crocus sativus. Biol. Plant. 2008, 52, 709–712. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Alsadon, A. Effects of Nutrient Solution Electrical Conductivity on the Leaf Gas Exchange, Biochemical Stress Markers, Growth, Stigma Yield, and Daughter Corm Yield of Saffron in a Plant Factory. Horticulturae 2022, 8, 673. [Google Scholar] [CrossRef]
- Plessner, O.; Ziv, M.; Negbi, M. In vitro corm production in the saffron crocus (Crocus sativus L). Plant Tissue Organ Cult. 1990, 20, 89–94. [Google Scholar] [CrossRef]
- Parray, J.A.; Kamili, A.N.; Hamid, R.; Husaini, A.M. In vitro cormlet production of saffron (Crocus sativus L. ashmirianus) and their flowering response under greenhouse. GM Crops Food Biotechnol. Agric. Food Chain. 2012, 3, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Cavusoglu, A.; Sulusoglu, M.; Erkal, S. Plant regeneration and corm formation of saffron (Crocus sativus L.) in vitro. Res. J. Biotech. 2013, 8, 128–133. [Google Scholar]
- Teixeira da Silva, J.A.; Kulus, D.; Zhang, X.; Zeng, S.; Ma, G.; Piqueras, A. Disinfection of explants for saffron (Crocus sativus) tissue culture. Environ. Exp. Biol. 2016, 14, 183–198. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Paek, K.Y. The control of in vitro flowering and association of glutathione metabolism. In Plant Tissue Culture and Applied Plant Biotechnology; Kumar, A., Roy, S., Eds.; Aavishkar Publishers, Distributors: Rajasthan, India, 2011; pp. 77–108. [Google Scholar]
- Teixeira da Silva, J.A.; Tan Nhut, D. Thin cell layers and floral morphogenesis, floral genetics and in vitro flowering. In Thin cell Layer Culture System: Regeneration and Transformation Application; Tan Nhut, D., Van Le, B., Tran Thanh Van, K., Thorpe, T., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2003; pp. 285–342. [Google Scholar]
- Sudhakaran, S.; Teixeira da Silva, J.A.; Sreeramanan, S. Test tube bouquets: In vitro flowering. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues, 1st ed.; Teixeira da Silva, J.A., Ed.; Global Science Books: London, UK, 2006; Volume 2, pp. 336–346. [Google Scholar]
- Dole, J.M. Research approaches for determining cold requirements for forcing and flowering of geophytes. HorScience 2003, 38, 341–346. [Google Scholar] [CrossRef]
- Rees, A.R. Ornamental Bulbs, Corms and Tubers; CAB International: Wallingford, UK, 1992. [Google Scholar]
- Amooaghaie, R. Low temperature storage of corms extends the flowering season of saffron (Crocus sativus L.). Acta Hortic. 2007, 739, 41–47. [Google Scholar] [CrossRef]
- Mollafilabi, A.; Koocheki, A.; Moghaddam, P.R.; Mahallati, M.N. Effects of bed type, corm weight and lifting time on quantitative and qualitative criteria of saffron (Crocus sativus L.). J. Agroecol. 2017, 9, 607–617. [Google Scholar] [CrossRef]
- Kafi, M.; Mohassel, M.H.R.; Koocheki, A.; Molafilabi, M. Saffron: Production and Processing; Ferdowsi University of Mashhad Press: Mashhad, Iran, 2002. [Google Scholar]
- Molina, R.V.; Valero, M.; Navarro, Y.; Garcia-Luis, A.; Guardiola, J. Low temperature storage of corms extends the flowering season of saffron (Crocus sativus L.). J. Hortic. Sci. Biotechnol. 2005, 80, 319–326. [Google Scholar] [CrossRef]
- Liang, O.P.; Keng, C.L. In vitro plant regeneration, flowering and fruiting of Phyllanthus niruri L. (Euphorbiaceae). Int. J. Bot. 2006, 2, 409–414. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Chakrabarty, D.; Ali, M.B.; Singh, N.; Hahn, E.-J.; Paek, K.-Y. Influence of GA3, sucrose and solid medium/bioreactor culture on in vitro flowering of Spathiphyllum and association of glutathione metabolism. Plant Cell Tissue Organ Cult. 2007, 90, 225–235. [Google Scholar] [CrossRef]
- Kintzios, S.; Michaelakis, A. Induction of somatic embryogenesis and in vitro flowering from inflorescences of chamomile (Chamomilla recutita L.). Plant Cell Rep. 1999, 18, 684–690. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Chakrabarty, D.; Hahn, E.J.; Paek, K.Y. The effects of paclobutrazol, light emitting diodes (LEDs) and sucrose on flowering of Euphorbia millii plantlets in vitro. Eur. J. Hortic. Sci. 2006, 71, 240–244. [Google Scholar]
- Dewir, Y.H.; Chakrabarty, D.; Hahn, E.J.; Paek, K.Y. Reversion of inflorescence development in Euphorbia millii and its application to large-scale micropropagation in an air-lift bioreactor. J. Hortic. Sci. Biotechnol. 2005, 80, 581–587. [Google Scholar] [CrossRef]
- Dewir, Y.H. Mass Propagation of the Christ Plant Using Bioreactor and Hydroponics; Scholars’ Press: Newcastle upon Tyne, UK, 2016; p. 108. ISBN 978-3-659-84521-5. [Google Scholar]
- Dewir, Y.H.; Chakrabarty, D.; Hahn, E.J.; Paek, K.Y. A simple method for mass propagation of Spathiphyllum cannifolium using an airlift bioreactor. Vitr. Cell. Dev. Biol.-Plant 2006, 42, 291–297. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Singh, N.; Govender, S.; Pillay, P. In vitro flowering and shoot multiplication of Gentiana triflora in air-lift bioreactor cultures. J. Appl. Hortic. 2010, 12, 30–34. [Google Scholar] [CrossRef]
- Shaik, S.; Dewir, Y.H.; Singh, N.; Nicholas, A. Micropropagation and bioreactor studies of the medicinally important plant Lessertia (Sutherlandia) frutescens L. South Afr. J. Bot. 2010, 76, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Dewir, Y.H.; Moon, H.K. Large-scale plantlets conversion from cotyledonary somatic embryos of Kalopanax septemlobus tree using bioreactor cultures. J. Plant Biochem. Biotechnol. 2011, 20, 241–248. [Google Scholar] [CrossRef]
- Alawaadh, A.A.; Dewir, Y.H.; Alwihibi, M.S.; Aldubai, A.A.; El-Hendawy, S.; Naidoo, Y. Micropropagation of lacy tree Philodendron (Philodendron bipinnatifidum Schott ex Endl.). HortScience 2020, 55, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Piqueras, A.; Han, B.H.; Escribano, J.; Rubio, C.; Hellín, E.; Fernández, J.A. Development of cormogenic nodules and microcorms by tissue culture, a new tool for the multiplication and genetic improvement of saffron. Agronomie 1999, 19, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 2002, 69, 215–231. [Google Scholar] [CrossRef]
- Hwang, H.-D.; Kwon, S.-H.; Murthy, H.N.; Yun, S.-W.; Pyo, S.-S.; Park, S.-Y. Temporary Immersion Bioreactor System as an Efficient Method for Mass Production of In vitro Plants in Horticulture and Medicinal Plants. Agronomy 2022, 12, 346. [Google Scholar] [CrossRef]
- Arif, Y.; Sami, F.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environ. Exp. Bot. 2020, 175, 104040. [Google Scholar] [CrossRef]
- Kang, G.; Wang, C.; Sun, G.; Wang, Z. Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seed-lings. Environ. Exp. Bot. 2003, 50, 9–15. [Google Scholar] [CrossRef]
- Alwan, N.M.; Aziz, N.K.; Sadiq, S.M. Effect of the period of soaking and concentrations of salicylic acid in the growth and production of iris. IOSR J. Agric. Vet. Sci. (IOSR-JAVS) 2018, 11, 34–41. [Google Scholar]
- Tripathy, P. Effect of salicylic acid on growth and bulb yield of onion (Allium cepa L.). Int. J. Bio-Resour. Stress Manag. 2016, 7, 960–963. [Google Scholar]
- Khayyat, M.; Jabbari, M.; Fallahi, H.R.; Samadzadeh, A. Effects of corm dipping in salicylic acid or potassium nitrate on growth, flowering, and quality of saffron. J. Hortic. Res. 2018, 26, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Ansarian Mahabadi, S.; Alahdadi, I.; Ghorbani Javid, M.; Soltani, E. Effects of Salicylic Acid and Application Methods on Daughter Corm Yield and Physiological Characteristics of Saffron (Crocus sativus L). J. Saffron Res. 2019, 6, 203–218. [Google Scholar]
- Koda, Y.; Takahashi, K.; Kikuta, I. Potato tuber inducing activities of salicylic acid and related compounds. J. Plant Growth Regul. 1992, 11, 215–221. [Google Scholar] [CrossRef]
- Alutbi SDAl-Saadi, S.A.A.M.; Madhi, Z.J. The effect of salicylic acid on the growth and Microtuberization of potato (Solanum tuberosum L.) cv. Arizona propagated in vitro. Am. J. Potato Res. 2017, 95, 395–412. [Google Scholar]
- George, E.F.; Hall, M.A.; Klerk, G.-J.D. Plant Propagation by Tissue Culture; The Background; Springer: Dordrecht, The Netherlands, 2008; Volume 1. [Google Scholar]
- Vasudevan, A.; Selvaraj, N.; Ganapathi, A.; Kasthurirengan, S.; Ramesh Anbazhagan, V.; Manickavasagam, M. Glutamine: A suitable nitrogen source for enhanced shoot multiplication in Cucumis sativus L. Biol. Plant. 2004, 48, 125–128. [Google Scholar] [CrossRef]
- Greenwell, Z.L.; Ruter, J.M. Effect of glutamine and arginine on growth of Hibiscus moscheutos “in vitro”. Ornam. Hortic. 2018, 24, 393–399. [Google Scholar] [CrossRef]
- Ravnikar, M.; Zel, J.; Plaper, I.; Spacapan, A. Jasmonic acid stimulates shoot and bulb formation of garlic in vitro. J. Plant Growth Regul. 1993, 12, 73–77. [Google Scholar] [CrossRef]
- Koda, Y. Possible involvement of jasmonates in various morphogenic events. Physiol. Plant. 1997, 100, 639–946. [Google Scholar] [CrossRef]
- Jasik, J.; Mantell, S.H. Effects of jasmonic acid and its methylester on in vitro microtuberisation of three food yam (Dioscorea) species. Plant Cell Rep. 2000, 19, 863–867. [Google Scholar] [CrossRef]
- Santos, I.; Salema, R. Promotion by jasmonic acid of bulb formation in shoot cultures of Narcissus triandrus L. Plant Growth Regul. 2000, 30, 133–138. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, B.; Yang, C.; Wang, W.; Xiang, L.; Wang, Y.; Chan, Z. Jasmonic acid biosynthetic genes TgLOX4 and TgLOX5 are involved in daughter bulb development in tulip (Tulipa gesneriana). Hortic. Res. 2022, 9, uhac006. [Google Scholar] [CrossRef]
Number of Flowers/Plant | Stigma Length (mm) | Stigma Fresh Weight (mg) | Stigma Dry Weight (mg) | |
---|---|---|---|---|
In vitro | 1.80 | 41.32 | 42.68 | 5.29 |
Hydroponic | 1.90 NS | 42.46 NS | 43.81 NS | 5.68 NS |
Treatments | Concentration (mg L−1) | Average Daughter Corm Diameter (mm) | Average Daughter Corm Fresh Weight (g) |
---|---|---|---|
Control | 0 | 9.93 d | 0.94 c |
Salicylic acid | 75 | 14.33 a | 1.99 a |
150 | 11.40 c | 1.28 bc | |
Glutamine | 600 | 13.89 ab | 1.89 a |
1200 | 11.83 abc | 1.73 ab | |
Jasmonic acid | 1 | 12.49 abc | 1.24 bc |
2 | 9.58 d | 0.82 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dewir, Y.H.; Alsadon, A.; Al-Aizari, A.A.; Al-Mohidib, M. In Vitro Floral Emergence and Improved Formation of Saffron Daughter Corms. Horticulturae 2022, 8, 973. https://doi.org/10.3390/horticulturae8100973
Dewir YH, Alsadon A, Al-Aizari AA, Al-Mohidib M. In Vitro Floral Emergence and Improved Formation of Saffron Daughter Corms. Horticulturae. 2022; 8(10):973. https://doi.org/10.3390/horticulturae8100973
Chicago/Turabian StyleDewir, Yaser Hassan, Abdulla Alsadon, Ahmed Ali Al-Aizari, and Mohaidib Al-Mohidib. 2022. "In Vitro Floral Emergence and Improved Formation of Saffron Daughter Corms" Horticulturae 8, no. 10: 973. https://doi.org/10.3390/horticulturae8100973
APA StyleDewir, Y. H., Alsadon, A., Al-Aizari, A. A., & Al-Mohidib, M. (2022). In Vitro Floral Emergence and Improved Formation of Saffron Daughter Corms. Horticulturae, 8(10), 973. https://doi.org/10.3390/horticulturae8100973