Partial Elimination of Viruses from Traditional Potato Cultivar ‘Brinjak’ by Chemotherapy and Its Impact on Physiology and Yield Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Culture Establishment on Media Containing Ribavirin and Micropropagation
2.3. Microtuberization
2.4. Acclimatization and Minituber Production of R0 Plants
2.5. Production of R1 Clones from Microtubers and Minitubers
2.6. Verification of Virus Status by DAS-ELISA and RT-PCR
2.7. Chlorophyll Fluorescence and Multispectral Analysis
2.8. Data Analysis
3. Results and Discussion
3.1. Culture Establishment and Micropropagation
3.2. The Influence of The Sanitary Status of Plants on Microtuberization
3.3. Acclimatization and Plant Growth
3.4. Virus Detection and Efficiency of Virus Elimination
3.5. The Influence of Sanitary Status of Plants on Chlorophyll Fluorescence and Multispectral Parameters
3.6. The Influence of the Sanitary Status of Plants on Yield Components
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. 2022. Available online: https://www.fao.org/3/nj015en/nj015en.pdf (accessed on 15 September 2022).
- FAOSTAT. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 September 2022).
- Raggi, L.; Pacicco, L.C.; Caproni, L.; Álvarez-Muñiz, C.; Annamaa, K.; Barata, A.M.; Batir-Rusu, D.; Díez, M.J.; Heinonen, M.; Holubec, V.; et al. Analysis of landrace cultivation in Europe: A means to support in situ conservation of crop diversity. Biol. Conserv. 2022, 267, 109460. [Google Scholar] [CrossRef]
- Jovović, Z.; Stešević, D.; Meglič, V.; Dolničar, P. Old Potato Varieties in Montenegro; University of Montenegro Biotechnical Faculty Podgorica: Podgorica, Montenegro, 2013. [Google Scholar]
- Bradshaw, J.E. Review and Analysis of Limitations in Ways to Improve Conventional Potato Breeding. Potato Res. 2017, 60, 117–193. [Google Scholar] [CrossRef]
- Jones, R.A.C.; Naidu, R.A. Global Dimensions of Plant Virus Diseases: Current Status and Future Perspectives. Annu. Rev. Virol. 2019, 6, 387–409. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.-O.; Li, J.H.; Liu, Q.; Wang, Y.; Han, C.G. Molecular detection and identification of eight potato viruses in Gansu province of China. Curr. Plant Biol. 2021, 25, 100184. [Google Scholar] [CrossRef]
- Rubio, L.; Galipienso, L.; Ferriol, I. Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Front. Plant Sci. 2020, 11, 1092. [Google Scholar] [CrossRef]
- Bettoni, J.C.; Mathew, L.; Pathirana, R.; Wiedow, C.; Hunter, D.A.; McLachlan, A.; Khan, S.; Tang, J.; Nadarajan, J. Eradication of Potato Virus S, Potato Virus A, and Potato Virus M From Infected in vitro Grown Potato Shoots Using in vitro Therapies. Front. Plant Sci. 2022, 13, 878733. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.C.; Spetz, C.; Blystay, D.R. In vitro therapies for virus elimination of potato-valuable germplasm in Norway. Sci. Hortic. 2019, 249, 7–14. [Google Scholar] [CrossRef]
- Kolychikhina, M.S.; Beloshapkina, O.O.; Phiri, C. Change in potato productivity under the impact of viral diseases. Earth Environ. Sci. 2021, 663, 012035. [Google Scholar] [CrossRef]
- Oyesola, O.L.; Aworunse, O.S.; Oniha, M.I.; Obiazikwor, O.H.; Bello, O.; Atolagbe, O.M.; Sobowale, A.A.; Popoola, J.O.; Obembe, O.O. Impact and Management of Diseases of Solanum tuberosum. In Solanum Tuberosum: A Promising Crop for Starvation Problem; Yildiz, M., Ozgen, Y., Eds.; IntechOpen: London, UK, 2021. [Google Scholar]
- Jayashige, U.; Chuquilllanqui, C.; Salazar, L.F. Modified expression of virus resistance in potato in mixed virus infections. Am. J. Potato Res. 1989, 66, 137–144. [Google Scholar]
- Onditi, J.; Nyongesa, M.; Vlugt, R. Prevalence, distribution and control of six major potato viruses in Kenya. Trop. Plant Pathol. 2021, 46, 311–323. [Google Scholar] [CrossRef]
- Kreuze, J.F.; Souza-Dias, J.A.C.; Jeevalatha, A.; Figueira, A.R.; Valkonen, J.P.T.; Jones, R.A.C. Viral diseases in potato. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020; pp. 389–430. [Google Scholar]
- Wang, B.; Ma, Y.; Zhang, Z.; Wu, Z.; Wu, Y.; Wang, Q.; Li, M. Potato viruses in China. Crop Prot. 2011, 30, 1117–1123. [Google Scholar] [CrossRef]
- Hlaoui, A.; Boukhris-Bouhachem, S.; Sepúlveda, D.A.; Correa, M.C.G.; Briones, L.M.; Souissi, R.; Figueroa, C.C. Spatial and Temporal Genetic Diversity of the Peach Potato Aphid Myzus persicae (Sulzer) in Tunisia. Insects 2019, 10, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bragard, C.; Dehnen-Schmutz, K.; Gonthier, P.; Jacques, M.; Miret, J.A.J.; Justesen, A.F.; MacLeod, A.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest categorisation of potato virus M (non-EU isolates). EFSA J. 2020, 18, e05854. [Google Scholar] [PubMed]
- Bradshaw, J.E. Improving resistance to diseases and pests: A dynamic situation. In Potato Breeding: Theory and Practice; Bradshaw, J.E., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 247–337. [Google Scholar]
- Mosahebi, G.; Koohi-Habibi, M.; Okhovvat, S.M. Study on potato virus M (PVM) occurrence in potato fields in Iran. Commun. Agric. Appl. Biol. Sci. 2005, 70, 441–443. [Google Scholar]
- Wang, X.M.; Jin, L.P.; Yin, J. Progress in Breeding for Virus Resistance in Potatoes. Chin. Potato J. 2005, 19, 285–289. [Google Scholar]
- Huang, P.; Yan, Q.; Ding, Y. Occurrence and Control of Potato Virus S in Guizhou. Guizhou Agricul. Sci. 2009, 37, 88–89. [Google Scholar]
- Mutka, A.M.; Bart, R.S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 2015, 5, 734. [Google Scholar] [CrossRef] [Green Version]
- Kuska, M.T.; Mahlein, A.K. Aiming at decision making in plant disease protection and phenotyping by the use of optical sensors. Eur. J. Plant. Pathol 2018, 152, 987–992. [Google Scholar] [CrossRef]
- Synkova, H.; Semoradova, S.; Schnablova, R.; Muller, K.; Pospísilova, J.; Ryslava, H.; Malbeck, J.; Serovska, N. Effects of biotic stress caused by Potato virus Y on photosynthesis in ipt transgenic and control Nicotiana Tableacum L. Plant Sci. 2006, 171, 607–616. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Peng, Y.H.; Lei, J.L.; Zou, L.Y.; Zheng, J.H.; Yu, J.Q. Effects of potato virus YNTN infection on gas exchange and Photosystem II function in leaves of Solanum tuberosum L. Photosynthetica 2004, 42, 417–423. [Google Scholar] [CrossRef]
- Maxwell, M.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Zhang, Q.; Huang, D. A Review of Imaging Techniques for Plant Phenotyping. Sensors 2014, 14, 20078–20111. [Google Scholar] [CrossRef] [PubMed]
- Panattoni, A.; Luvisi, A.; Triolo, E. Review: Elimination of viruses in plants: Twenty years of progress. Span. J. Agric. Res. 2013, 11, 173–188. [Google Scholar] [CrossRef]
- Wang, B.; Wang, R.R.; Li, J.W.; Ma, Y.L.; Sheng, W.M.; Li, M.F.; Wang, Q.C. Development of Three-vitrification-based cryopreservation procedures for shoot tips of China’s potato. Cryoletters 2013, 34, 369–380. [Google Scholar]
- Kidulile, C.E.; Ateka, E.M.; Alankonya, A.E.; Ndunguru, J.C. Efficacy of chemotherapy and thermotherapy in elimination of East African cassava mosaic virus from Tanzanian cassava landrace. J. Phytopathol. 2018, 166, 739–745. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Igiraneza, C.; Dusengemungu, L. Major in vitro techniques for potato virus elimination and post eradication detection methods. A review. Am. J. Potato Res. Vol. 2019, 96, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Kereša, S.; Kurtović, K.; Goreta Ban, S.; Vončina, D.; Habuš Jerčić, I.; Bolarić, S.; Lazarević, B.; Godena, S.; Ban, D.; Bošnjak Mihovilović, A. Production of Virus-Free Garlic Plants through Somatic Embryogenesis. Agronomy 2021, 11, 876. [Google Scholar] [CrossRef]
- Danci, O.; Erdei, L.; Vidacs, L.; Danci, M.; Anca, B.; Baciu, A.; David, I.; Berbentea, F. Influence of ribavirin on potato plants regeneration and virus eradication. J. Hortic. For. Biotechnol. 2009, 13, 421–425. [Google Scholar]
- Kushnarenko, S.; Romadanova, N.; Aralbayeva, M.; Zholamanova, S.; Alexandrova, A.; Karpova, O. Combined ribavirin treatment and cryotherapy for efficient Potato virus M and Potato virus S eradication in potato (Solanum tuberosum L.) in vitro shoots. Vitr. Cell. Dev. Biol. Plant 2017, 53, 425–432. [Google Scholar] [CrossRef]
- Wambugu, F.M.; Secor, G.A.; Gudmestad, N.C. Eradication of potato virus Y and S from potato by chemotherapy of cultured axillary bud tips. Am. Potato J. Vol. 1985, 62, 667–672. [Google Scholar] [CrossRef]
- Bittner, H.; Schenk, G.; Schuster, G.; Kluge, S. Elimination by chemotherapy of potato virus S from potato plants grown in vitro. Potato Res. Vol. 1989, 32, 175–179. [Google Scholar] [CrossRef]
- Zapata, C.; Miller, J.C.; Smith, R.H. An In vitro Procedure to Eradicate Potato Viruses X, Y, and S from Russet Norkotah and Two of Its Strains. Vitr. Cell. Dev. Biol. Plant 1995, 31, 153–159. [Google Scholar] [CrossRef]
- Faccioli, G. Control of Potato Viruses using Meristem and Stem-cutting Cultures, Thermotheraphy and Chemotherapy. In Virus and Viruslike Diseases of Potatoes and Production of Seed-Potatoes; Loebenstein, G., Berger, P.H., Brunt, A.A., Lawson, R.H., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 365–390. [Google Scholar]
- Faccioli, G.; Colalongo, M.C. Eradication of potato virus Y and potato leafroll virus by chemotherapy of infected potato stem cuttings. Phytopathol. Mediterr. 2002, 41, 76–78. [Google Scholar]
- Nascimento, L.C.; Pio-Ribeiro, G.; Willadino, L.; Andrade, G.P. Stock indexing and potato virus y elimination from potato plants cultivated in vitro. Sci. Agric. 2003, 60, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Gopal, J.; Garg, I.D. An efficient protocol of chemo-cum-thermotherapy for elimination of potato (Solanum tuberosum L.) virus by meristem-tip culture. Indian J. Agric. Sci. 2011, 81, 544–549. [Google Scholar]
- Yang, L.; Nie, B.; Liu, J.; Song, B. A Reexamination of the Effectiveness of Ribavirin on Eradication of Viruses in Potato Plantlets in vitro Using ELISA and Quantitative RT-PCR. Am. J. Potato Res. 2014, 91, 304–311. [Google Scholar] [CrossRef]
- Smyda-Daymund, P. Virus elimination from in vitro potato plants. Plant Breed. Seed Sci. 2017, 78, 81–85. [Google Scholar] [CrossRef]
- Shoala, T.; Eid, K.E.; El-Fiki, I.A.I. Impact of Chemotherapy and Thermotherapy Treatments on The Presence of Potato Viruses Pvy, Pvx and Plrv in Tissue-Cultured Shoot Tip Meristem. J. Plant Prot. Pathol. 2019, 10, 581–585. [Google Scholar] [CrossRef]
- Karjadi, A.K.; Kardjadi; Gunaeni, N. The Effect Of Antiviral Ribavirin, Explant Size, Varieties On Growth And Development In Potato Meristematic. IOP Conf. Ser. Earth Environ. Sci. 2021, 985, 012022. [Google Scholar] [CrossRef]
- Prusiner, P.; Sundaralingam, M. A New Class of Synthetic Nucleoside Analogues with Broad-spectrum Antiviral Properties. Nat. New Biol. 1973, 244, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Bougie, I.; Bisaillon, M. The Broad Spectrum Antiviral Nucleoside Ribavirin as a Substrate for a Viral RNA Capping Enzyme. J. Biol. Chem. 2004, 279, 22124–22130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.-R.; Cui, Z.-H.; Li, J.-W.; Hao, X.-Y.; Zhao, L.; Wang, Q.-C. In vitro thermotherapy-based methods for plant virus eradication. Plant Methods 2019, 14, 87. [Google Scholar] [CrossRef] [Green Version]
- Crotty, S.; Cameron, C.; Andino, R. Ribavirin’s antiviral mechanism of action: Lethal mutagenesis? J. Mol. Med. 2002, 80, 86–95. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Lazarević, B.; Šatović, Z.; Nimac, A.; Vidak, M.; Gunjača, J.; Politeo, O.; Carović-Stanko, K. Application of phenotyping methods in detection of drought and salinity stress in basil (Ocimum basilicum L.). Front. Plant Sci. 2021, 12, 174. [Google Scholar] [CrossRef]
- Kitajima, M.; Butler, W. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta. 1975, 376, 105–115. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Gen. Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Bilger, W.; Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990, 25, 173–185. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Non-destructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38–45. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In NASA. Goddard Space Flight Center 3d ERTS-1 Symp; NASA: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- SAS/STAT®Software, version [9.4] 2002–2012; SAS Institute Inc.: Cary, NC, USA, 2013.
- Singh, B. Effect of antiviral chemicals on in vitro regeneration response and production of PLRV-free plants of potato. J. Crop. Sci. Biotechnol. 2015, 18, 341–348. [Google Scholar] [CrossRef]
- De Clercq, E. Antiviral Agents: Characteristic Activity Spectrum Depending on the Molecular Target With Which They Interact. Adv. Virus Res. 1993, 42, 1–55. [Google Scholar] [PubMed]
- Nyalugwe, E.P.; Wilson, C.R.; Coutts, B.A.; Jones, R.A.C. Biological properties of potato virus X in potato: Effects of mixed infection with potato virus S and resistance phenotypes in cultivars from three continents. Plant Dis. 2012, 96, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.B.; López-Moya, J.J. When viruses play team sports: Mixed infections in plants. Phytopathology 2020, 110, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.P. Synergistic effect of potato virus Y (PVY) and potato spindle tuber viroid (PSTV) on tuber yield of potato. J. Heilongjiang August First Land Reclam. Uni. 2007, 19, 40–43. [Google Scholar]
- Lemaga, B.; Caesar, K. Relationships between numbers of main stems and yield components of potato (Solanum tuberosum L. cv. Erntestolz) as influenced by different daylengths. Potato Res. 1990, 33, 257–267. [Google Scholar] [CrossRef]
Abbrev | Trait | Wavelength/Equation |
---|---|---|
Fv/Fm | Maximum Efficiency of Photosystem Two | Fv/Fm = (Fm − F0)/Fm [54] |
Fq′/Fm′ | Effective Quantum Yield of Photosystem Two | Fq′/Fm′ = (Fm′ − Fs′)/Fm′ [55] |
ETR | Electron Transport Rate | ETR = Fq′/Fm′ × PPFD × (0.5) [55] |
NPQ | Non-Photochemical Quenching | NPQ = (Fm − Fm′)/Fm′ [56] |
Abbrev. | Trait | Wavelength/Equation |
---|---|---|
RRed, | Reflectance in Red | 640 nm |
RGreen | Reflectance in Green | 550 nm |
RBlue | Reflectance in Blue | 475 nm |
RSpcGrn | Reflectance in Specific Green | 510–590 nm |
RFarRed | Reflectance in Far-Red | 710 nm |
RNIR | Reflectance in Near Infra-Red | 769 nm |
RChl | Reflectance Specific to Chlorophyll | 730 nm |
HUE | Hue (0–360°) | HUE = 60 × (0 + (RGreen—RBlue)/(max-min)), if max = RRed; HUE = 60 × (2 + (RBlue—RRed)/(max-min)), if max = RGreen; HUE = 60 × (4 + (RRed—RGreen)/(max-min)) if max = RBlue; 360 was added in case HUE < 0 |
SAT | Saturation (0–1) | SAT = (max—min)/(max + min) if VAL > 0.5, or SAT = (max—min)/(2.0—max—min) if VAL < 0.5, where max and min are selected from the RRed, RGreen, RBlue |
VAL | Value (0–1) | VAL = (max + min)/2; where max and min are selected from the RRed, RGreen, RBlue |
ARI | Anthocyanin Index | ARI = (R550)−1—(R700)−1 [57] |
CHI | Chlorophyll Index | CHI = (R700)−1—(R769)−1 [58] |
NDVI | Normalized Differential Vegetation Index | NDVI = (RNIR − RRed)/(RNIR + RRed) [59] |
Virus Infection | Number of Microtubers Per Plant | Average Microtuber Weight (mg) |
---|---|---|
PVM | 1.3 a | 207 a |
PVM + PVS | 1.0 b | 199 a |
Ribavirin Concentration (mg L−1) | Plants Free of Virus after Chemotherapy | |
---|---|---|
PVM | PVS | |
50 | 0/6 (0%) | 2/6 (33%) |
100 | 0/3 (0%) | 1/3 (33%) |
Virus Infection | Fv/Fm | Fq′/Fm′ | ETR | NPQ |
---|---|---|---|---|
PVM | 0.81 a | 0.48 a | 5581 a | 0.38 b |
PVM + PVS | 0.79 a | 0.42 b | 5234 a | 0.50 a |
Virus Infection | RRed | RGreen | RBlue | RFarRed | RNIR | RSpcGrn | HUE | SAT | VAL | CHI | ARI | NDVI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PVM | 1975 a | 3019 a | 1581 a | 6046 b | 2831 a | 3394 a | 105 a | 0.05 a | 0.46 a | 3.8 a | 3.9 a | 0.85 a |
PVM + PVS | 2001 a | 3148 a | 1563 a | 6403 a | 2849 a | 3558 a | 104 a | 0.05 a | 0.49 a | 3.5 b | 3.8 a | 0.85 a |
Virus Infection | Number of Tubers per Plant | Tuber Weight per Plant (g) | Average Tuber Weight (g) |
---|---|---|---|
PVM | 4.0 a | 52.0 a | 15.6 a |
PVM + PVS | 4.7 a | 39.8 b | 9.5 b |
Virus Infection | Number of Tubers per Plant | Tuber Weight per Plant (g) | Average Tuber Weight (g) |
---|---|---|---|
PVM | 7.3 a | 65.0 a | 9.6 a |
PVM + PVS | 4.6 b | 45.1 b | 10.1 a |
Virus Infection | Number of Tubers per Plant | Tuber Weight per Plant (g) | Average Tuber Weight (g) |
---|---|---|---|
PVM | 9.8 a | 133.9 a | 16.1 a |
PVM + PVS | 7.2 b | 72.1 b | 12.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kereša, S.; Vončina, D.; Lazarević, B.; Bošnjak Mihovilović, A.; Pospišil, M.; Brčić, M.; Matković Stanković, A.; Habuš Jerčić, I. Partial Elimination of Viruses from Traditional Potato Cultivar ‘Brinjak’ by Chemotherapy and Its Impact on Physiology and Yield Components. Horticulturae 2022, 8, 1013. https://doi.org/10.3390/horticulturae8111013
Kereša S, Vončina D, Lazarević B, Bošnjak Mihovilović A, Pospišil M, Brčić M, Matković Stanković A, Habuš Jerčić I. Partial Elimination of Viruses from Traditional Potato Cultivar ‘Brinjak’ by Chemotherapy and Its Impact on Physiology and Yield Components. Horticulturae. 2022; 8(11):1013. https://doi.org/10.3390/horticulturae8111013
Chicago/Turabian StyleKereša, Snježana, Darko Vončina, Boris Lazarević, Anita Bošnjak Mihovilović, Milan Pospišil, Marina Brčić, Ana Matković Stanković, and Ivanka Habuš Jerčić. 2022. "Partial Elimination of Viruses from Traditional Potato Cultivar ‘Brinjak’ by Chemotherapy and Its Impact on Physiology and Yield Components" Horticulturae 8, no. 11: 1013. https://doi.org/10.3390/horticulturae8111013
APA StyleKereša, S., Vončina, D., Lazarević, B., Bošnjak Mihovilović, A., Pospišil, M., Brčić, M., Matković Stanković, A., & Habuš Jerčić, I. (2022). Partial Elimination of Viruses from Traditional Potato Cultivar ‘Brinjak’ by Chemotherapy and Its Impact on Physiology and Yield Components. Horticulturae, 8(11), 1013. https://doi.org/10.3390/horticulturae8111013