Using Sigmoid Growth Models to Simulate Greenhouse Tomato Growth and Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Establishment of the Sigmoid Growth Models
2.3. Model Performance Evaluation
2.4. Critical Points of the Logistic and Gompertz Models
2.5. Statistical Analysis
3. Results and Discussion
3.1. Verifying the Model Assumptions
3.2. Evaluation of the Fitted and Predictive Performance of the Models
3.3. Inferences in Critical Points
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Hsieh, C.-Y.; Fang, S.-L.; Wu, Y.-F.; Chu, Y.-C.; Kuo, B.-J. Using sigmoid growth curves to establish growth models of tomato and eggplant stems suitable for grafting in subtropical countries. Horticulturae 2021, 7, 537. [Google Scholar] [CrossRef]
- Streck, N.; Bosco, L.C.; Lucas, D.D.P.; Lago, I. Modelagem da emissão de folhas em arrozvermelho. Pesqui. Agropecu. Bras. 2008, 43, 559–567. [Google Scholar] [CrossRef]
- Acock, B.; Reynolds, J.F. The rationale for adopting a modular generic structure for crop simulators. Acta Hortic. 1989, 248, 391–400. [Google Scholar] [CrossRef]
- Challa, H. Report of the working party on crop growth models. Acta Hortic. 1985, 174, 169–176. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Heuvelink, E.; Goudriaan, J. Modelling biomass production and yield of horticultural crops: A review. Sci. Hortic. 1998, 74, 83–111. [Google Scholar] [CrossRef]
- Hou, P.; Liu, Y.; Xie, R.; Ming, B.; Ma, D.; Li, S.; Mei, X. Temporal and spatial variation in accumulated temperature requirements of maize. Field Crop. Res. 2014, 158, 55–64. [Google Scholar] [CrossRef]
- Liu, Y.; Su, L.; Wang, Q.; Zhang, J.; Shan, Y.; Deng, M. Comprehensive and quantitative analysis of growth characteristics of winter wheat in China based on growing degree days. Adv. Agron. 2020, 159, 237–273. [Google Scholar] [CrossRef]
- Perry, K.B.; Wu, Y.; Sanders, D.C.; Garrett, J.T.; Decoteau, D.R.; Nagata, R.T.; Dufault, R.J.; Batal, K.D.; Granberry, D.M.; Mclaurin, W.J. Heat units to predict tomato harvest in the southeast USA. Agric. Forest Meteorol. 1997, 84, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Gramig, G.G.; Stoltenberg, D.E. Leaf appearance base temperature and phyllochron for common grass and broadleaf weed species. Weed Technol. 2007, 21, 249–254. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W.W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Wannasek, L.; Ortner, M.; Amon, B.; Amon, T. Sorghum, a sustainable feedstock for biogas production? Impact of climate, variety and harvesting time on maturity and biomass yield. Biomass Bioenerg. 2017, 106, 137–145. [Google Scholar] [CrossRef]
- Narayanan, S.; Aiken, R.M.; Prasad, P.V.; Xin, Z.; Paul, G.; Yu, J. A simple quantitative model to predict leaf area index in sorghum. Agron. J. 2014, 106, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.M.; Pohanková, E.; Fischer, M.; Orság, M.; Trnka, M.; Klem, K.; Marek, M.V. The evaluation of radiation use efficiency and leaf area index development for the estimation of biomass accumulation in short rotation poplar and annual field crops. Forests 2018, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Montero, J.I. Evaluation and modelling of greenhouse cucumber crop transpiration under high and low radiation conditions. Sci. Hortic. 2005, 105, 163–175. [Google Scholar] [CrossRef]
- Ta, T.H.; Shin, J.H.; Ahn, T.I.; Son, J.E. Modeling of transpiration of paprika (Capsicum annuum L.) plants based on radiation and leaf area index in soilless culture. Hortic. Environ. Biotechnol. 2011, 52, 265–269. [Google Scholar] [CrossRef]
- Carmassi, G.; Bacci, L.; Bronzini, M.; Incrocci, L.; Maggini, R.; Bellocchini, G.; Massa, D.; Pardossi, A. Modelling transpiration of greenhouse gerbera (Gerbera jamesonii H. Bolus) grown in substrate with saline water in a Mediterranean climate. Sci. Hortic. 2013, 156, 9–18. [Google Scholar] [CrossRef]
- Chin, D.A.; Fan, X.H.; Li, Y.C. Validation of growth and nutrient uptake models for tomato on a gravelly South Florida soil under greenhouse conditions. Pedosphere 2011, 21, 46–55. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Bibbiani, C.; Carmassi, G.; Malorgio, F.; Pardossi, A. Simulation of crop water and mineral relations in greenhouse soilless culture. Environ. Model. Softw. 2011, 26, 711–722. [Google Scholar] [CrossRef]
- Medrano, E.; Alonso, F.J.; Sanchez-Guerrero, M.C.; Lorenzo, P. Incorporation of a model to predict crop transpiration in a commercial irrigation equipment as a control method for water supply to soilless horticultural crops. Acta Hortic. 2008, 801, 1325–1330. [Google Scholar] [CrossRef]
- Xu, R.; Dai, J.; Luo, W.; Yin, X.; Li, Y.; Tai, X.; Han, L.; Chen, Y.; Lin, L.; Li, G.; et al. A photothermal model of leaf area index for greenhouse crops. Agric. For. Meteorol. 2010, 150, 541–552. [Google Scholar] [CrossRef]
- Dai, J.; Luo, W.; Li, Y.; Yuan, C.; Chen, Y.; Ni, J. A simple model for prediction of biomass production and yield of three greenhouse crops. Acta Hort. 2006, 718, 81–88. [Google Scholar] [CrossRef]
- Gong, X.; Qiu, R.; Sun, J.; Ge, J.; Li, Y.; Wang, S. Evapotranspiration and crop coefficient of tomato grown in a solar greenhouse under full and deficit irrigation. Agric. Water Manag. 2020, 235, 106154. [Google Scholar] [CrossRef]
- Confalonieri, R.; Bregaglio, S.; Rosenmund, A.S.; Acutis, M.; Savin, I. A model for simulating the height of rice plants. Eur. J. Agron. 2011, 34, 20–25. [Google Scholar] [CrossRef]
- Bem, C.M.; Cargnelutti Filho, A.; Chaves, G.G.; Kleinpaul, J.A.; Lavezo, A. Gompertz and Logistic models to the productive traits of sunn hemp. J. Agric. Sci. 2018, 10, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Bem, C.M.; Cargnelutti Filho, A.; Facco, G.; Schabarum, D.E.; Silveira, D.L.; Simões, F.M.; Uliana, D.B. Growth models for morphological traits of sunn hemp. Semin. Cienc. Agrar. 2017, 38, 2933–2944. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, M.; Fernández, M.D.; Giménez, C.; Padilla, F.M.; Thompson, R.B. Revised VegSyst model to calculate dry matter production, critical N uptake and ETc of several vegetable species grown in Mediterranean greenhouses. Agric. Syst. 2016, 146, 30–43. [Google Scholar] [CrossRef]
- Jiang, T.; Liu, J.; Gao, Y.; Sun, Z.; Chen, S.; Yao, N.; Ma, H.; Feng, H.; Yu, Q.; He, J. Simulation of plant height of winter wheat under soil water stress using modified growth functions. Agric. Water Manag. 2020, 232, 106066. [Google Scholar] [CrossRef]
- Singh, S.K.; Verma, C.L.; Sharma, D.K. Plant height model for eucalyptus plantations for biodrainage use. Int. J. Eng. Res. Technol. 2014, 3, 250–259. [Google Scholar]
- Cao, L.; Shi, P.J.; Li, L.; Chen, G. A new flexible sigmoidal growth model. Symmetry 2019, 11, 204. [Google Scholar] [CrossRef] [Green Version]
- Zeide, B. Analysis of growth equations. For. Sci. 1993, 39, 594–616. [Google Scholar] [CrossRef]
- Korkmaz, M.; Oda, V.; Basustaoglu, E.O. A study over determination of asymptotic deceleration and absolute acceleration points in logistic growth model. Turk. J. Math. Comput. Sci. 2018, 10, 33–37. [Google Scholar]
- Filliben, J.J. The probability plot correlation coefficient test for normality. Technometrics 1975, 17, 111–117. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J.; Li, W. Applied Linear Statistical Models, 5th ed.; McGraw-Hill: New York, NY, USA, 2004. [Google Scholar]
- Elzhov, T.V.; Mullen, K.M.; Spiess, A.-N.; Bolker, B.; Mullen, M.K.M.; Suggests, M. Package ‘minpack.lm.’ Title R Interface Levenberg-Marquardt Nonlinear Least-Sq. Algorithm Found MINPACK Plus Support Bounds’. 2016. Available online: https://cran.r-project.org/web/packages/minpack.lm/minpack.lm.pdf (accessed on 22 October 2022).
- Archontoulis, S.A.; Miguez, F.E. Nonlinear regression models and applications in agricultural research. Agron. J. 2015, 107, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Meade, K.A.; Cooper, M.; Beavis, W.D. Modeling biomass accumulation in maize kernels. Field Crops Res. 2013, 151, 92–100. [Google Scholar] [CrossRef]
- Thornley, J.H.M.; France, J. Mathematical Models in Agriculture: Quantitative Methods for the Plant, Animal and Ecological Sciences, 2nd ed.; CAB International: Wallingford, UK, 2007. [Google Scholar]
- Franses, P.H. A method to select between Gompertz and logistic trend curves. Technol. Forecast. Soc. Chang. 1994, 46, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Vieira, S.; Hoffmann, R. Comparison of the logistic and the Gompertz growth functions considering additive and multiplicative error terms. Appl. Statist. 1977, 26, 143–148. [Google Scholar] [CrossRef]
- Bonhomme, R. Bases and limits to using ‘degree.day’ units. Eur. J. Agron. 2000, 13, 1–10. [Google Scholar] [CrossRef]
- Liu, L.W.; Lu, C.T.; Wang, Y.M.; Lin, K.H.; Ma, X.; Lin, W.S. Rice (Oryza sativa L.) growth modeling based on growth degree day (GDD) and artificial intelligence algorithms. Agriculture 2022, 12, 59. [Google Scholar] [CrossRef]
- Doan, C.C.; Tanaka, M. Relationships between tomato cluster growth indices and cumulative environmental factors during greenhouse cultivation. Sci. Hortic. 2022, 295, 110803. [Google Scholar] [CrossRef]
- Bem, C.M.; Cargnelutti Filho, A.; Carini, F.; Pezzini, R.V. Univariate and multivariate nonlinear models in productive traits of the sunn hemp. Rev. Ciên. Agron. 2020, 51, e20196673. [Google Scholar] [CrossRef]
- Silva, É.M.; Fruhauf, A.C.; Silva, E.M.; Muniz, J.A.; Fernandes, T.J.; Silva, V.F. Evaluation of the critical points of the most adequate nonlinear model in adjusting growth data of ‘green dwarf’ coconut fruits. Rev. Bras. Frutic. 2021, 43, e726. [Google Scholar] [CrossRef]
- Diel, M.I.; Lúcio, A.D.; Valera, O.V.S.; Sari, B.G.; Olivoto, T.; Pinheiro, M.V.M.; Melo, P.J.; Tartaglia, F.L.; Schmidt, D. Production of biquinho pepper in different growing seasons characterized by the logistic model and its critical points. Ciênc. Rural 2020, 50, e20190477. [Google Scholar] [CrossRef]
- Sari, B.G.; Olivoto, T.; Diel, M.I.; Krysczun, D.K.; Lúcio, A.D.; Savian, T.V. Nonlinear modeling for analyzing data from multiple harvest crops. Agron. J. 2018, 110, 2331–2342. [Google Scholar] [CrossRef] [Green Version]
- Sari, B.G.; Lúcio, A.D.C.; Santana, C.S.; Olivoto, T.; Diel, M.I.; Krysczun, D.K. Nonlinear growth models: An alternative to ANOVA in tomato trials evaluation. Eur. J. Agron. 2019, 104, 21–36. [Google Scholar] [CrossRef]
- Sari, B.G.; Lúcio, A.D.C.; Santana, C.S.; Savian, T.V. Describing tomato plant production using growth models. Sci. Hortic. 2019, 246, 146–154. [Google Scholar] [CrossRef]
- Whisler, F.D.; Acock, B.; Baker, D.N.; Fye, R.E.; Hodges, H.F.; Lambert, J.R.; Lemmon, H.E.; McKinion, J.M.; Reddy, V.R. Crop simulation models in agronomic systems. Adv. Agron. 1986, 40, 141–208. [Google Scholar] [CrossRef]
- Shi, P.J.; Chen, L.; Hui, C.; Grissino-Mayer, H.D. Capture the time when plants reach their maximum body size by using the beta sigmoid growth equation. Ecol. Modell. 2016, 320, 177–181. [Google Scholar] [CrossRef]
- Kocian, A.; Carmassi, G.; Cela, F.; Incrocci, L.; Milazzo, P.; Chessa, S. Bayesian sigmoid-type time series forecasting with missing data for greenhouse crops. Sensors 2020, 20, 3246. [Google Scholar] [CrossRef]
Model | AAP | MAP | IP | MDP | ADP |
---|---|---|---|---|---|
Logistic | |||||
Gompertz |
Variable | λ |
---|---|
PH | 0.88 |
SDM | 0.63 |
LDM | 0.72 |
FDM | 0.84 |
LAI | 0.81 |
Trait | Independent Variable | Logistic | Gompertz | ||||
---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | R2 | MAE | RMSE | ||
PH (cm) | DAT | 0.97 | 5.28 | 8.04 | 0.96 | 5.75 | 9.06 |
GDD | 0.97 | 4.94 | 7.44 | 0.97 | 5.61 | 8.88 | |
SDM (g/plant) | DAT | 0.94 | 0.73 | 1.14 | 0.94 | 0.71 | 1.09 |
GDD | 0.95 | 0.72 | 1.11 | 0.94 | 0.71 | 1.06 | |
LDM (g/plant) | DAT | 0.90 | 1.56 | 2.51 | 0.89 | 1.58 | 2.52 |
GDD | 0.89 | 1.55 | 2.49 | 0.89 | 1.58 | 2.50 | |
FDM (g/plant) | DAT | 0.89 | 3.60 | 7.68 | 0.88 | 3.45 | 7.69 |
GDD | 0.89 | 3.53 | 7.68 | 0.88 | 3.47 | 7.72 | |
LAI | DAT | 0.82 | 0.18 | 1.15 | 0.83 | 0.17 | 1.18 |
GDD | 0.82 | 0.17 | 1.15 | 0.83 | 0.17 | 1.17 |
Trait | Independent Variable | Logistic | Gompertz | ||||
---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | R2 | MAE | RMSE | ||
PH (cm) | DAT | 0.95 | 6.12 | 8.78 | 0.95 | 6.01 | 8.57 |
GDD | 0.95 | 5.89 | 8.50 | 0.95 | 6.06 | 8.52 | |
SDM (g/plant) | DAT | 0.89 | 0.77 | 1.20 | 0.89 | 0.73 | 1.18 |
GDD | 0.89 | 0.75 | 1.19 | 0.89 | 0.74 | 1.18 | |
LDM (g/plant) | DAT | 0.83 | 1.59 | 2.40 | 0.84 | 1.51 | 2.36 |
GDD | 0.84 | 1.56 | 2.38 | 0.84 | 1.50 | 2.36 | |
FDM (g/plant) | DAT | 0.81 | 3.24 | 6.31 | 0.81 | 3.10 | 6.27 |
GDD | 0.81 | 3.20 | 6.32 | 0.81 | 3.11 | 6.29 | |
LAI | DAT | 0.77 | 0.22 | 0.25 | 0.79 | 0.21 | 0.25 |
GDD | 0.78 | 0.21 | 0.25 | 0.80 | 0.21 | 0.25 |
Trait | Independent Variable | Logistic | Gompertz | ||||
---|---|---|---|---|---|---|---|
R2 | MAE | RMSE | R2 | MAE | RMSE | ||
PH (cm) | DAT | 0.68 | 17.86 | 28.00 | 0.67 | 17.50 | 27.67 |
GDD | 0.66 | 18.74 | 29.63 | 0.64 | 18.14 | 29.09 | |
SDM (g/plant) | DAT | 0.90 | 0.76 | 1.12 | 0.91 | 0.76 | 1.07 |
GDD | 0.91 | 0.74 | 1.09 | 0.91 | 0.78 | 1.08 | |
LDM (g/plant) | DAT | 0.83 | 1.69 | 2.55 | 0.84 | 1.64 | 2.44 |
GDD | 0.84 | 1.62 | 2.48 | 0.85 | 1.59 | 2.37 | |
FDM (g/plant) | DAT | 0.92 | 3.09 | 5.42 | 0.92 | 3.06 | 5.51 |
GDD | 0.92 | 3.02 | 5.32 | 0.92 | 2.95 | 5.33 | |
LAI | DAT | 0.77 | 0.24 | 0.29 | 0.79 | 0.23 | 0.28 |
GDD | 0.78 | 0.23 | 0.29 | 0.80 | 0.22 | 0.28 |
Trait | Logistic | Gompertz | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AAP | MAP | IP | MDP | ADP | AAP | MAP | IP | MDP | ADP | |
PH | 3.1 | 15.3 | 40.0 | 64.8 | 83.1 | 17.5 | 0.1 | 31.6 | 63.2 | 90.3 |
SDM | 14.8 | 23.9 | 36.2 | 48.6 | 57.7 | 8.0 | 16.0 | 30.4 | 44.8 | 57.2 |
LDM | 14.4 | 22.2 | 32.6 | 43.1 | 50.9 | 8.5 | 15.4 | 27.7 | 40.0 | 50.6 |
FDM | 40.9 | 48.2 | 57.9 | 67.7 | 74.9 | 36.7 | 42.7 | 53.5 | 64.4 | 73.7 |
LAI | 12.9 | 20.7 | 31.3 | 41.8 | 49.6 | 7.2 | 14.0 | 26.2 | 38.4 | 48.9 |
Trait | Logistic | Gompertz | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AAP | MAP | IP | MDP | ADP | AAP | MAP | IP | MDP | ADP | |
PH | 29.1 | 292.7 | 648.6 | 1004.6 | 1268.2 | 227.9 | 71.5 | 606.6 | 1144.2 | 1605.2 |
SDM | 272.0 | 400.4 | 573.7 | 747.0 | 875.3 | 174.3 | 286.6 | 487.3 | 688.9 | 861.8 |
LDM | 256.2 | 370.9 | 525.9 | 680.8 | 795.6 | 176.5 | 276.3 | 454.7 | 633.9 | 787.6 |
FDM | 642.2 | 720.2 | 825.6 | 931.0 | 1009.0 | 604.0 | 667.4 | 780.8 | 894.6 | 992.2 |
LAI | 231.5 | 346.2 | 501.2 | 656.1 | 770.9 | 153.5 | 251.5 | 426.7 | 602.6 | 753.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, S.-L.; Kuo, Y.-H.; Kang, L.; Chen, C.-C.; Hsieh, C.-Y.; Yao, M.-H.; Kuo, B.-J. Using Sigmoid Growth Models to Simulate Greenhouse Tomato Growth and Development. Horticulturae 2022, 8, 1021. https://doi.org/10.3390/horticulturae8111021
Fang S-L, Kuo Y-H, Kang L, Chen C-C, Hsieh C-Y, Yao M-H, Kuo B-J. Using Sigmoid Growth Models to Simulate Greenhouse Tomato Growth and Development. Horticulturae. 2022; 8(11):1021. https://doi.org/10.3390/horticulturae8111021
Chicago/Turabian StyleFang, Shih-Lun, Yu-Hsien Kuo, Le Kang, Chu-Chung Chen, Chih-Yu Hsieh, Min-Hwi Yao, and Bo-Jein Kuo. 2022. "Using Sigmoid Growth Models to Simulate Greenhouse Tomato Growth and Development" Horticulturae 8, no. 11: 1021. https://doi.org/10.3390/horticulturae8111021
APA StyleFang, S.-L., Kuo, Y.-H., Kang, L., Chen, C.-C., Hsieh, C.-Y., Yao, M.-H., & Kuo, B.-J. (2022). Using Sigmoid Growth Models to Simulate Greenhouse Tomato Growth and Development. Horticulturae, 8(11), 1021. https://doi.org/10.3390/horticulturae8111021