Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Plant Growth and Image Data Collection
2.3. Model Structure
2.4. Data Preprocessing
2.5. Model Training, Validation, and Evaluation
2.6. Computation
3. Results and Discussion
3.1. Model Accuracy
3.2. t-SNE Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: Cambridge, MA, USA, 2019; ISBN 978-0-12-816692-5. [Google Scholar] [CrossRef]
- Marondedze, C.; Liu, X.; Huang, S.; Wong, C.; Zhou, X.; Pan, X.; An, H.; Xu, N.; Tian, X.; Wong, A. Towards a Tailored Indoor Horticulture: A Functional Genomics Guided Phenotypic Approach. Hortic. Res. 2018, 5, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buxbaum, N.; Lieth, J.H.; Earles, M. Non-Destructive Plant Biomass Monitoring with High Spatio-Temporal Resolution via Proximal RGB-D Imagery and End-to-End Deep Learning. Front. Plant Sci. 2022, 13, 758818. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Fu, R.; Ren, G.; Zhong, R.; Ying, Y.; Lin, T. Automatic Monitoring of Lettuce Fresh Weight by Multi-Modal Fusion Based Deep Learning. Front. Plant Sci. 2022, 13, 980581. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Aloysius, N.; Geetha, M. A Review on Deep Convolutional Neural Networks. In Proceedings of the 2017 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 6–8 April 2017; pp. 0588–0592. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A Review on the Practice of Big Data Analysis in Agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Dhillon, A.; Verma, G.K. Convolutional Neural Network: A Review of Models, Methodologies and Applications to Object Detection. Prog. Artif. Intell. 2020, 9, 85–112. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. A Review of the Use of Convolutional Neural Networks in Agriculture. J. Agric. Sci. Technol. 2018, 156, 312–322. [Google Scholar] [CrossRef]
- Hasan, A.S.M.M.; Sohel, F.; Diepeveen, D.; Laga, H.; Jones, M.G.K. A Survey of Deep Learning Techniques for Weed Detection from Images. Comput. Electron. Agric. 2021, 184, 106067. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks are Universal Approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Hornik, K. Approximation Capabilities of Multilayer Feedforward Networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Moon, T.; Park, J.; Son, J.E. Prediction of the Fruit Development Stage of Sweet Pepper (Capsicum Annum Var. Annuum) by an Ensemble Model of Convolutional and Multilayer Perceptron. Biosyst. Eng. 2021, 210, 171–180. [Google Scholar] [CrossRef]
- Medina, J.R.; Kalita, J. Parallel Attention Mechanisms in Neural Machine Translation. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 547–552. [Google Scholar] [CrossRef] [Green Version]
- Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; Ostrovski, G.; et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.; et al. Grandmaster Level in StarCraft II Using Multi-Agent Reinforcement Learning. Nature 2019, 575, 350–354. [Google Scholar] [CrossRef]
- Sonneveld, C.; Straver, N. Nutrient Solutions for Vegetables and Flowers Grown in Water or Substrates. Voedingspolossingen Glas. 1988, 8, 33. [Google Scholar]
- Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef]
- Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Crawshaw, M. Multi-Task Learning with Deep Neural Networks: A Survey. arXiv 2020, arXiv:2009.09796. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. ArXiv 2017, arXiv:1412.6980. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; USENIX Association: Savannah, GA, USA, 2016; pp. 265–283. [Google Scholar]
- Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Rousseeuw, P.J.; Van Aelst, S.; Van Driessen, K.; Gulló, J.A. Robust Multivariate Regression. Technometrics 2004, 46, 293–305. [Google Scholar] [CrossRef]
- Slovic, P.; Lichtenstein, S. Comparison of Bayesian and Regression Approaches to the Study of Information Processing in Judgment. Organ. Behav. Hum. Perform. 1971, 6, 649–744. [Google Scholar] [CrossRef]
- Noble, W.S. What Is a Support Vector Machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef] [PubMed]
- Patrício, D.I.; Rieder, R. Computer Vision and Artificial Intelligence in Precision Agriculture for Grain Crops: A Systematic Review. Comput. Electron. Agric. 2018, 153, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Moon, T.; Park, J.; Son, J.E. Estimation of Sweet Pepper Crop Fresh Weight with Convolutional Neural Network. J. Bioenviron. Contr. 2020, 29, 381–387. [Google Scholar] [CrossRef]
- Moon, T.; Kim, D.; Kwon, S.; Ahn, T.I.; Son, J.E. Non-Destructive Monitoring of Crop Fresh Weight and Leaf Area with a Simple Formula and a Convolutional Neural Network. Sensors 2022, 22, 7728. [Google Scholar] [CrossRef]
- Noh, K.; Jeong, B.R. Optimizing Temperature and Photoperiod in a Home Cultivation System to Program Normal, Delayed, and Hastened Growth and Development Modes for Leafy Oak-Leaf and Romaine Lettuces. Sustainability 2021, 13, 10879. [Google Scholar] [CrossRef]
Model | FFNN | BiLSTM | ConvNet |
---|---|---|---|
Input size | 49,152 × 1 | 128 × 384 | 128 × 128 × 3 |
Layers | Dense-256 | BiLSTM-512 | Conv3-32 |
Dense-256 | BiLSTM-512 | Waxpool | |
Dense-5 | Dense-32 | Conv3-64 | |
Dense-5 | MaxPool | ||
Conv3-128 | |||
MaxPool | |||
Conv3-128 | |||
MaxPool | |||
Conv3-256 | |||
MaxPool | |||
Conv3-512 | |||
MaxPool | |||
Flatten | |||
Dense-128 a | |||
Dense-5 b | |||
Output size | 5 × 1 |
Hyperparameter | Model | ||
---|---|---|---|
FFNN | BiLSTM | ConvNet | |
Nonlinearity function | - | ||
Normalization | Batch | Layer | Batch |
Batch size | 128 | 128 | 128 |
Kernel initializer | - | - | Glorot normal |
Learning rate | 0.001 | 0.001 | 0.0015 |
Epsilon | 10−8 | 10−8 | 10−8 |
β1 | 0.9 | 0.9 | 0.9 |
β2 | 0.999 | 0.999 | 0.999 |
Learning-rate decay | 0.1 | 0.1 | 0.1 |
Output size | 5 × 1 |
Target Output | Model | ||||
---|---|---|---|---|---|
LinReg | FFNN | BiLSTM | ConvNet | Multitask | |
Fresh weight | 0.67 | 0.72 | 0.73 | 0.77 | 0.77 |
Dry weight | 0.70 | 0.74 | 0.76 | 0.75 | 0.77 |
Number of leaves | 0.62 | 0.76 | 0.75 | 0.76 | 0.76 |
Leaf area | 0.75 | 0.80 | 0.81 | 0.84 | 0.83 |
SPAD | 0.48 | 0.79 | 0.76 | 0.86 | 0.85 |
Average | 0.64 | 0.76 | 0.76 | 0.80 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, T.; Choi, W.-J.; Jang, S.-H.; Choi, D.-S.; Oh, M.-M. Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction. Horticulturae 2022, 8, 1124. https://doi.org/10.3390/horticulturae8121124
Moon T, Choi W-J, Jang S-H, Choi D-S, Oh M-M. Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction. Horticulturae. 2022; 8(12):1124. https://doi.org/10.3390/horticulturae8121124
Chicago/Turabian StyleMoon, Taewon, Woo-Joo Choi, Se-Hun Jang, Da-Seul Choi, and Myung-Min Oh. 2022. "Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction" Horticulturae 8, no. 12: 1124. https://doi.org/10.3390/horticulturae8121124
APA StyleMoon, T., Choi, W. -J., Jang, S. -H., Choi, D. -S., & Oh, M. -M. (2022). Growth Analysis of Plant Factory-Grown Lettuce by Deep Neural Networks Based on Automated Feature Extraction. Horticulturae, 8(12), 1124. https://doi.org/10.3390/horticulturae8121124