Evaluation of Color, Phytochemical Compounds and Antioxidant Activities of Mulberry Fruit (Morus alba L.) during Ripening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Sample Preparation
2.2. Color Determination
2.3. Total Phenolic Contents (TPC) and Total Flavonoids Contents (TFC)
2.4. Vitamin C by HPLC
2.5. Sugar Contents
2.6. Phenolic Acid and Flavonoid Compounds by HPLC
2.7. Amino Acid Contents by LC/MS/MS
2.8. γ-Aminobutyric (GABA) and Anthocyanin by LC/MS/MS
2.9. Antioxidant Activity
- DPPH free-radical scavenging
- Ferric reducing/antioxidant power assay (FRAP)
2.10. Statistical Analysis
3. Results and Discussion
3.1. Changes in Color, Total Phenolic Content, Total Flavonoid Content and Vitamin C of Mulberry Fruit during Ripening
3.2. Sugar Contents
3.3. Phenolic Acid and Flavonoid Compounds by HPLC
3.4. Amino Acid Contents by LC/MS/MS
3.5. Change in γ-Aminobutyric and Anthocyanin in Different Ripening Stages of Mullberry Fruit
3.6. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, I.; Lee, J. Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and Their Changes during Processing. Antioxidants 2020, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Shreelakshmi, S.V.; Nazareth, M.S.; Kumar, S.S.; Giridhar, P.; Prashanth, K.V.H.; Shetty, N.P. Physicochemical Composition and Characterization of Bioactive Compounds of Mulberry (Morus indica L.) Fruit During Ontogeny. Plant Foods Hum. Nutr. 2021, 76, 304–310. [Google Scholar] [CrossRef]
- Butkhup, L.; Samappito, W.; Samappito, S. Phenolic Composition and Antioxidant Activity of White Mulberry (Morus alba L.) Fruits. Int. J. Food Sci. Technol. 2013, 48, 934–940. [Google Scholar] [CrossRef]
- Yu, Y.; Li, H.; Zhang, B.; Wang, J.; Shi, X.; Huang, J.; Yang, J.; Zhang, Y.; Deng, Z. Nutritional and Functional Components of Mulberry Leaves from Different Varieties: Evaluation of Their Potential as Food Materials. Int. J. Food Prop. 2018, 21, 1495–1507. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, M.; Miłek, M.; Sidor, E.; Kapusta, I.; Litwińczuk, W.; Puchalski, C.; Dżugan, M. The Effect of Adding the Leaves and Fruits of Morus alba to Rape Honey on Its Antioxidant Properties, Polyphenolic Profile, and Amylase Activity. Molecules 2019, 25, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohela, G.K.; Shukla, P.; Muttanna; Kumar, R.; Chowdhury, S.R. Mulberry (Morus spp.): An Ideal Plant for Sustainable Development. Trees For. People 2020, 2, 100011. [Google Scholar] [CrossRef]
- Ramappa, V.K.; Srivastava, D.; Singh, P.; Kumar, U.; Kumar, D.; Gosipatala, S.B.; Saha, S.; Kumar, D.; Raj, R. Mulberries: A Promising Fruit for Phytochemicals, Nutraceuticals, and Biological Activities. Int. J. Fruit Sci. 2020, 20, S1254–S1279. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Lay, H.-L. Characteristics of Fruit Growth, Component Analysis and Antioxidant Activity of Mulberry (Morus spp.). Sci. Hortic. 2013, 162, 285–292. [Google Scholar] [CrossRef]
- Huang, G.; Zeng, Y.; Wei, L.; Yao, Y.; Dai, J.; Liu, G.; Gui, Z. Comparative Transcriptome Analysis of Mulberry Reveals Anthocyanin Biosynthesis Mechanisms in Black (Morus atropurpurea Roxb.) and White (Morus alba L.) Fruit Genotypes. BMC Plant Biol. 2020, 20, 279. [Google Scholar] [CrossRef] [PubMed]
- Coklar, H.; Akbulut, M. Changes in Phenolic Acids, Flavonoids, Anthocyanins, and Antioxidant Activities of Mahonia Aquifolium Berries during Fruit Development and Elucidation of the Phenolic Biosynthetic Pathway. Hortic. Environ. Biotechnol. 2021, 62, 785–794. [Google Scholar] [CrossRef]
- Kapoor, L.; Simkin, A.J.; George Priya Doss, C.; Siva, R. Fruit Ripening: Dynamics and Integrated Analysis of Carotenoids and Anthocyanins. BMC Plant Biol. 2022, 22, 27. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Afzal, N.; Kausar, R.; Ilyas, S.; Shoaib, M. Influence of Ripening Stages and Drying Methods on Polyphenolic Content and Antioxidant Activities of Mulberry Fruits. J. Food Meas. Charact. 2017, 11, 2171–2179. [Google Scholar] [CrossRef]
- Lee, Y.; Hwang, K.T. Changes in Physicochemical Properties of Mulberry Fruits (Morus alba L.) during Ripening. Sci. Hortic. 2017, 217, 189–196. [Google Scholar] [CrossRef]
- Wang, R.-S.; Dong, P.-H.; Shuai, X.-X.; Chen, M.-S. Evaluation of Different Black Mulberry Fruits (Morus nigra L.) Based on Phenolic Compounds and Antioxidant Activity. Foods 2022, 11, 1252. [Google Scholar] [CrossRef] [PubMed]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. The Diversity of Biologically Active Compounds in the Rhizomes of Recently Discovered Zingiberaceae Plants Native to North Eastern Thailand. Pharmacogn. J. 2019, 11, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Siriamornpun, S.; Kaisoon, O.; Meeso, N. Changes in Colour, Antioxidant Activities and Carotenoids (Lycopene, b-Carotene, Lutein) of Marigold FLower (Tagetes erecta L.) Resulting from Different Drying Processes. J. Funct. Foods 2012, 10, 757–766. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Saensouk, S. Taxonomy, Phytochemical and Bioactive Compounds and Potential Use as Material with Different Drying Methods of Alpinia Latilabris Ridl. New Record from Thailand. Not. Bot. Horti Agrobo. 2022, 50, 12619. [Google Scholar] [CrossRef]
- Kubola, J.; Siriamornpun, S.; Meeso, N. Phytochemicals, Vitamin C and Sugar Content of Thai Wild Fruits. Food Chem. 2011, 126, 972–981. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Q.; Xia, L.; Hui, J.; Li, J.; Feng, Y.; Chen, Y. Preliminarily Exploring of the Association between Sugars and Anthocyanin Accumulation in Apricot Fruit during Ripening. Sci. Hortic. 2019, 248, 112–117. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Somboonwatthanakul, I.; Saensouk, S.; Siriamornpun, S. Changes in Curcuminoids and Chemical Components of Turmeric (Curcuma longa L.) under Freeze-Drying and Low-Temperature Drying Methods. Food Chem. 2021, 339, 128121. [Google Scholar] [CrossRef]
- Chumroenphat, T.; Saensouk, S. Amino Acids, Bioactive Compounds and Biological Activities of Ten Species from Family Commelinaceae in Thailand. Not. Bot. Horti Agrobot. 2021, 49, 12391. [Google Scholar] [CrossRef]
- Jorjong, S.; Butkhup, L.; Samappito, S. Phytochemicals and Antioxidant Capacities of Mao-Luang (Antidesma bunius L.) Cultivars from Northeastern Thailand. Food Chem. 2015, 181, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.S.; Lee, J.H.; Yoon, S.H.; Oh, C.H. Characterization and Quantification of Anthocyanins in Grape Juices Obtained from the Grapes Cultivated in Korea by HPLC/DAD, HPLC/MS, and HPLC/MS/MS. Food Chem. 2008, 73, C378–C389. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, T.; Carretero, M.E.; Arce, C.; Gómez-Serranillos, M.P. Methanol Extract of Nigella Sativa Seed Induces Changes in the Levels of Neurotransmitter Amino Acids in Male Rat Brain Regions. Pharm. Biol. 2017, 55, 1415–1422. [Google Scholar] [CrossRef] [Green Version]
- Contessa, C.; Mellano, M.G.; Beccaro, G.L.; Giusiano, A.; Botta, R. Total Antioxidant Capacity and Total Phenolic and Anthocyanin Contents in Fruit Species Grown in Northwest Italy. Sci. Hortic. 2013, 160, 351–357. [Google Scholar] [CrossRef]
- Tinebra, I.; Sortino, G.; Inglese, P.; Fretto, S.; Farina, V. Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. Cv Kokuso 21). Int. J. Food Sci. 2021, 2021, 8844502. [Google Scholar] [CrossRef]
- Lou, H.; Hu, Y.; Zhang, L.; Sun, P.; Lu, H. Nondestructive Evaluation of the Changes of Total Flavonoid, Total Phenols, ABTS and DPPH Radical Scavenging Activities, and Sugars during Mulberry (Morus alba L.) Fruits Development by Chlorophyll Fluorescence and RGB Intensity Values. LWT—Food Sci. Technol. 2012, 47, 19–24. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Abbas, M.; Saari, N. Effect of Maturity on Phenolics (Phenolic Acids and Flavonoids) Profile of Strawberry Cultivars and Mulberry Species from Pakistan. Int. J. Mol. Sci. 2012, 13, 4591–4607. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.-H.; Suh, H.-J. Antioxidant Activities of Five Different Mulberry Cultivars in Korea. LWT—Food Sci. Technol. 2007, 40, 955–962. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Serali, O.; Unal, N.; Capanoglu, E. Antioxidant Activity and Polyphenol Composition of Black Mulberry (Morus nigra L.) Products. J. Berry Res. 2013, 3, 41–51. [Google Scholar] [CrossRef]
- Robards, K.; Antolovich, M. Analytical Chemistry of Fruit BioflavonoidsA Review. Analyst 1997, 122, 11R–34R. [Google Scholar] [CrossRef]
- Zadernowski, R.; Naczk, M.; Nesterowicz, J. Phenolic Acid Profiles in Some Small Berries. J. Agric. Food Chem. 2005, 53, 2118–2124. [Google Scholar] [CrossRef] [PubMed]
- Aherne, S.A.; O’Brien, N.M. Dietary Flavonols: Chemistry, Food Content, and Metabolism. Nutrition 2002, 18, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Kader, A.A. Preharvest and Postharvest Factors Influencing Vitamin C Content of Horticultural Crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Romero Rodriguez, M.A.; Vazquez Oderiz, M.L.; Lopez Hernandez, J.; Lozano, J.S. Determination of Vitamin C and Organic Acids in Various Fruits by HPLC. J. Chromatogr. Sci. 1992, 30, 433–437. [Google Scholar] [CrossRef]
- Wang, K.; Kang, S.; Li, F.; Wang, X.; Xiao, Y.; Wang, J.; Xu, H. Relationship between Fruit Density and Physicochemical Properties and Bioactive Composition of Mulberry at Harvest. J. Food Compos. Anal. 2022, 106, 104322. [Google Scholar] [CrossRef]
- Aly, A.A.; Ali, H.G.M.; Eliwa, N.E.R. Phytochemical Screening, Anthocyanins and Antimicrobial Activities in Some Berries Fruits. Food Meas. 2019, 13, 911–920. [Google Scholar] [CrossRef]
- Tariq, S.A. Role of Ascorbic Acid in Scavenging Free Radicals and Lead Toxicity from Biosystems. Mol. Biotechnol. 2007, 37, 62–65. [Google Scholar] [CrossRef]
- Marriott, J.; Robinson, M.; Karikari, S.K. Starch and Sugar Transformation during the Ripening of Plantains and Bananas. J. Sci. Food Agric. 1981, 32, 1021–1026. [Google Scholar] [CrossRef]
- Braun, D.M.; Wang, L.; Ruan, Y.-L. Understanding and Manipulating Sucrose Phloem Loading, Unloading, Metabolism, and Signalling to Enhance Crop Yield and Food Security. J. Exp. Bot. 2014, 65, 1713–1735. [Google Scholar] [CrossRef]
- Durán-Soria, S.; Pott, D.M.; Osorio, S.; Vallarino, J.G. Sugar Signaling During Fruit Ripening. Front. Plant Sci. 2020, 11, 564917. [Google Scholar] [CrossRef]
- Castrillo, M.; Kruger, N.J.; Whatley, F.R. Sucrose Metabolism in Mango Fruit during Ripening. Plant Sci. 1992, 84, 45–51. [Google Scholar] [CrossRef]
- Mokhtar, M.; Bouamar, S.; Di Lorenzo, A.; Temporini, C.; Daglia, M.; Riazi, A. The Influence of Ripeness on the Phenolic Content, Antioxidant and Antimicrobial Activities of Pumpkins (Cucurbita moschata Duchesne). Molecules 2021, 26, 3623. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Meng, S.; Ma, B.; He, W.; He, N. Mulberry Genes MnANR and MnLAR Confer Transgenic Plants with Resistance to Botrytis Cinerea. Plant Sci. 2020, 296, 110473. [Google Scholar] [CrossRef] [PubMed]
- Miean, K.H.; Mohamed, S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef]
- Agrawal, A.D. Pharmacological Activities of Flavonoids: A Review. Int. J. Pharm. Sci. Nanotech. 2011, 4, 1394–1398. [Google Scholar] [CrossRef]
- Allegro, G.; Pastore, C.; Valentini, G.; Filippetti, I. The Evolution of Phenolic Compounds in Vitis vinifera L. Red Berries during Ripening: Analysis and Role on Wine Sensory—A Review. Agronomy 2021, 11, 999. [Google Scholar] [CrossRef]
- Gevrenova, R.; Kitanov, G.; Ilieva, D. Ontogenetic and Seasonal Variation in the Flavonoid Composition of Sophora japonica. Cultivated in Bulgaria. Pharm. Biol. 2007, 45, 149–155. [Google Scholar] [CrossRef]
- Lim, P.O.; Woo, H.R.; Nam, H.G. Molecular Genetics of Leaf Senescence in Arabidopsis. Trends Plant Sci. 2003, 8, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Boggio, S.B.; Palatnik, J.F.; Heldt, H.W.; Valle, E.M. Changes in Amino Acid Composition and Nitrogen Metabolizing Enzymes in Ripening Fruits of Lycopersicon Esculentum Mill. Plant Sci. 2000, 159, 125–133. [Google Scholar] [CrossRef]
- Sorrequieta, A.; Ferraro, G.; Boggio, S.B.; Valle, E.M. Free Amino Acid Production during Tomato Fruit Ripening: A Focus on l-Glutamate. Amino Acids 2010, 38, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Ruiz, R.; Poirot, E.; Flores-Mosquera, M. GABA, a Non-Protein Amino Acid Ubiquitous in Food Matrices. Cogent Food Agric. 2018, 4, 1534323. [Google Scholar] [CrossRef]
- Akihiro, T.; Koike, S.; Tani, R.; Tominaga, T.; Watanabe, S.; Iijima, Y.; Aoki, K.; Shibata, D.; Ashihara, H.; Matsukura, C.; et al. Biochemical Mechanism on GABA Accumulation During Fruit Development in Tomato. Plant Cell Physiol. 2008, 49, 1378–1389. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Dou, N.; Zhang, H.; Wu, C. The Versatile GABA in Plants. Plant Signal. Behav. 2021, 16, 1862565. [Google Scholar] [CrossRef]
- Takayama, M.; Ezura, H. How and Why Does Tomato Accumulate a Large Amount of GABA in the Fruit? Front. Plant Sci. 2015, 6, 612. [Google Scholar] [CrossRef] [Green Version]
- Ham, T.-H.; Chu, S.-H.; Han, S.-J.; Ryu, S.-N. γ-Aminobutyric Acid Metabolism in Plant under Environment Stressses. Korean J. Crop Sci. 2012, 57, 144–150. [Google Scholar] [CrossRef]
- Ngo, D.-H.; Vo, T.S. An Updated Review on Pharmaceutical Properties of Gamma-Aminobutyric Acid. Molecules 2019, 24, 2678. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and Anthocyanins: Colored Pigments as Food, Pharmaceutical Ingredients, and the Potential Health Benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ma, Z.; Luo, X.; Li, X. Effects of Mulberry Fruit (Morus alba L.) Consumption on Health Outcomes: A Mini-Review. Antioxidants 2018, 7, 69. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Xu, T.; Lu, B.; Liu, R. Guidelines for Antioxidant Assays for Food Components. Food Front. 2020, 1, 60–69. [Google Scholar] [CrossRef]
Date of Collection | Ripening Stage | Temperature Minimum (°C) | Temperature Maximum (°C) | Relative Humidity (%) |
---|---|---|---|---|
17 December 2021 | M0 | 28 | 29 | 58 |
24 December 2021 | M1 | 27 | 29 | 66 |
31 December 2021 | M2 | 25 | 26 | 57 |
7 January 2022 | M3 | 27 | 28 | 54 |
14 January 2022 | M4 | 25 | 25 | 61 |
16 January 2022 | M5 | 26 | 27 | 58 |
18 January 2022 | M6 | 25 | 25 | 54 |
20 January 2022 | M7 | 24 | 25 | 65 |
Sample Name | Color | TPC | TFC | Vitamin C | |||
---|---|---|---|---|---|---|---|
L* | a* | b* | ΔE | (mgGAE/gDW) | (mgRE/gDW) | (mg/gDW) | |
M0 | 53.62 ± 0.07 a | −6.38 ± 0.07 f | 17.53 ± 0.17 a | - | 23.21 ± 0.61 g | 2.95 ± 0.07 f | 1.86 ± 0.03 h |
M1 | 53.87 ± 0.34 a | −1.95 ± 0.15 e | 15.54 ± 0.06 b | 2.74 ± 0.14 f | 25.88 ± 0.28 f | 3.13 ± 0.02 e | 8.84 ± 0.91 b |
M2 | 50.69 ± 0.20 b | 5.79 ± 0.28 d | 11.47 ± 0.26 c | 17.51 ± 0.88 e | 27.10 ± 0.53 e | 3.19 ± 0.14 d | 12.30 ± 0.51 a |
M3 | 46.73 ± 0.05 c | 13.30 ± 0.63 a | 7.88 ± 0.10 d | 28.42 ± 1.42 b | 27.32 ± 0.46 e | 3.54 ± 0.06 d | 3.22 ± 0.09 c |
M4 | 41.26 ± 0.25 d | 13.02 ± 0.16 a | 5.46 ± 0.07 e | 29.81 ± 1.49 a | 29.07 ± 0.87 d | 4.13 ± 0.35 c | 2.85 ± 0.02 d |
M5 | 36.88 ± 0.45 e | 10.63 ± 0.25 b | 3.11 ± 0.46 f | 29.41 ± 1.47 a | 37.22 ± 0.44 c | 4.21 ± 0.15 b | 2.57 ± 0.02 e |
M6 | 32.98 ± 0.03 f | 6.20 ± 0.14 c | 0.52 ± 0.05 g | 27.26 ± 1.36 c | 55.94 ± 1.69 b | 4.27 ± 0.13 b | 2.44 ± 0.01 f |
M7 | 32.25 ± 0.21 f | 5.17 ± 0.34 d | 0.04 ± 0.00 h | 26.93 ± 1.35 d | 64.76 ± 2.16 a | 4.75 ± 0.22 a | 2.37 ± 0.02 g |
Parameter | Mulberry Ripening Stage | |||||||
---|---|---|---|---|---|---|---|---|
M0 | M1 | M2 | M3 | M4 | M5 | M6 | M7 | |
Phenolic acid content (µg/g DW) | ||||||||
Gallic acid | 166.37 ± 7.45 b | 122.25 ± 0.24 b | 112.30 ± 0.15 b | 111.55 ± 0.47 d | 116.27 ± 1.00 e | 113.16 ± 0.71 f | 109.75 ± 1.13 g | 117.03 ± 0.44 d |
Protocatechuic acid | 22.47 ± 0.06 i | 22.98 ± 0.12 i | 24.61 ± 0.28 i | 30.08 ± 0.42 i | 53.36 ± 0.67 g | 80.57 ± 2.12 g | 134.84 ± 4.59 d | 135.03 ± 2.62 c |
P-hydroxybenzoic acid | 91.27 ± 0.49 d | 105.08 ± 1.50 c | 108.13 ± 2.90 c | 115.93 ± 2.39 c | 149.45 ± 0.54 d | 148.13 ± 3.89 d | 123.13 ± 0.11 f | 99.68 ± 4.66 e |
Chlorogenic acid | 285.39 ± 5.16 a | 226.55 ± 3.96 a | 213.46 ± 2.59 a | 212.45 ± 1.47 a | 165.78 ± 2.07 c | 143.64 ± 3.36 e | 129.06 ± 1.02 e | 100.51 ± 30.71 d |
Vanillic acid | 19.38 ± 0.46 j | 40.55 ± 2.57 f | 69.11 ± 1.94 f | 203.23 ± 2.41 b | 541.31 ± 0.73 a | 1341.45 ± 8.66 a | 1769.24 ± 2.16 a | 1741.74 ± 5.43 a |
Caffeic acid | 27.47 ± 0.20 h | 25.30 ± 1.07 h | 39.31 ± 0.74 h | 67.56 ± 2.01 f | 180.23 ± 6.97 b | 410.55 ± 5.74 b | 779.34 ± 5.11 b | 804.57 ± 12.12 b |
Syringic acid | 9.63 ± 0.20 k | 6.46 ± 0.14 j | 13.53 ± 0.88 j | 19.74 ± 0.31 j | 31.77 ± 1.60 h | 62.67 ± 2.02 h | 103.92 ± 3.01 h | 103.18 ± 1.20 d |
P-coumaric acid | 81.14 ± 0.28 e | 78.07 ± 0.14 e | 74.78 ± 0.88 e | 61.01 ± 0.31 h | 62.27 ± 3.37 f | 63.25 ± 5.39 h | 67.71 ± 3.94 i | 89.15 ± 1.56 f |
Ferulic acid | 63.79 ± 0.32 f | 66.25 ± 0.48 g | 67.13 ± 0.15 g | 65.78 ± 0.18 f | 64.60 ± 0.48 f | 63.36 ± 0.98 h | 64.21 ± 1.30 j | 103.87 ± 4.44 d |
Sinapic acid | 101.86 ± 0.75 c | 73.31 ± 0.21 f | 72.29 ± 0.15 f | 62.63 ± 0.15 g | 53.19 ± 0.41 g | 52.22 ± 3.75 i | 22.19 ± 1.39 k | 17.72 ± 1.67 h |
Cinnamic acid | 34.23 ± 2.01 g | 120.21 ± 9.63 d | 101.99 ± 2.39 d | 102.25 ± 1.24 e | 115.64 ± 4.21 c | 211.39 ± 8.11 c | 296.01 ± 0.90 c | 45.68 ± 0.81 g |
Total | 903.02 ± 18.32 F | 887.03 ± 22.03 G | 896.65 ± 17.16 G | 1052.22 ± 13.87 E | 1533.87 ± 22.04 D | 2690.38 ± 42.73 C | 3599.42 ± 24.66 A | 3358.15 ± 38.66 B |
Flavonoid content (µg/g DW) | ||||||||
Rutin | 354.88 ± 3.77 b | 195.22 ± 9.98 c | 110.05 ± 1.94 e | 86.78 ± 0.46 f | 98.75 ± 0.42 f | 93.31 ± 1.71 e | 99.34 ± 3.27 d | 155.56 ± 2.30 b |
Catechin | 1434.07 ± 22.69 a | 1162.55 ± 12.39 a | 1012.35 ± 22.31 a | 6315.53 ± 81.58 a | 7325.23 ± 54.45 a | 4145.41 ± 45.99 a | 7932.28 ± 38.61 a | 8069.68 ± 26.36 a |
Quercetin | 72.59 ± 6.63 c | 97.38 ± 5.24 e | 117.52 ± 4.68 d | 431.04 ± 7.28 d | 467.02 ± 10.30 d | 104.78 ± 5.16 d | 94.13 ± 4.21 d | 87.08 ± 2.13 c |
Apigenin | 63.32 ± 1.51 d | 137.22 ± 4.29 d | 168.19 ± 4.55 c | 353.01 ± 4.88 e | 391.61 ± 9.76 e | 127.37 ± 3.01 c | 106.90 ± 4.76 c | 72.12 ± 0.65 d |
Myricetin | 47.23 ± 1.25 e | 63.72 ± 0.67 f | 72.22 ± 1.12 f | 582.21 ± 4.18 c | 673.69 ± 11.28 b | 80.61 ± 4.14 f | 46.33 ± 0.44 e | 38.44 ± 0.24 f |
Kaempferol | 22.57 ± 0.79 f | 1033.56 ± 15.27 b | 1063.09 ± 49.92 b | 610.17 ± 10.81 b | 609.70 ± 8.35 c | 369.77 ± 4.93 b | 152.77 ± 3.71 b | 56.60 ± 1.72 e |
Total | 1994.69 ± 36.64 G | 2689.66 ± 47.83 E | 2543.42 ± 84.51 F | 8378.76 ± 109.19 C | 9566.01 ± 94.56 A | 4921.24 ± 64.93 D | 8431.77 ± 55.01 B | 8479.49 ± 33.41 B |
Parameter | Amino Acid Content (µg/gDW) | |||||||
---|---|---|---|---|---|---|---|---|
M0 | M1 | M2 | M3 | M4 | M5 | M6 | M7 | |
Ala | 27.64 ± 3.79 k | 41.01 ± 2.66 m | 50.61 ± 3.44 l | 51.08 ± 1.37 l | 62.29 ± 0.59 k | 88.69 ± 2.41 k | 131.77 ± 5.49 i | 95.70 ± 2.34 i |
Arg | 52.49 ± 2.52 h | 68.19 ± 2.08 i | 68.94 ± 1.41 k | 96.05 ± 2.00 k | 85.65 ± 0.66 i | 85.83 ± 0.46 k | 85.74 ± 1.07 k | 77.06 ± 0.68 j |
Asn | 465.55 ± 9.75 b | 719.18 ± 11.32 b | 1505.70 ± 20.27 a | 1690.35 ± 31.41 a | 1393.06 ± 30.19 a | 1556.81 ± 31.11 a | 1193.77 ± 13.58 a | 762.77 ± 6.52 a |
Asp | 43.71 ± 1.92 i | 56.18 ± 1.50 j | 86.59 ± 1.57 j | 99.80 ± 5.49 k | 85.11 ± 3.99 i | 104.03 ± 4.06 j | 100.68 ± 0.64 j | 78.30 ± 2.55 j |
Cys | ND | ND | ND | ND | ND | ND | ND | ND |
Gln | 39.33 ± 1.57 j | 52.30 ± 1.53 k | 96.26 ± 1.39 i | 159.48 ± 4.13 f | 227.71 ± 6.88 d | 403.18 ± 0.41 c | 460.47 ± 4.95 b | 277.93 ± 8.51 c |
Glu | 96.23 ± 1.80 f | 109.90 ± 3.46 g | 137.36 ± 3.39 g | 136.11 ± 3.67 h | 141.34 ± 0.56 h | 159.26 ± 3.35 h | 164.27 ± 2.93 h | 126.73 ± 2.97 g |
Gly | 0.77 ± 0.31 n | 0.68 ± 0.11 p | 0.37 ± 0.22 o | 0.40 ± 0.11 q | 0.24 ± 0.18 o | 0.49 ± 0.10 p | 0.53 ± 0.23 q | 0.70 ± 0.14 p |
His | 95.94 ± 8.97 f | 113.04 ± 2.20 g | 138.81 ± 0.77 g | 174.52 ± 25.26 e | 164.82 ± 4.95 f | 187.20 ± 4.77 g | 161.80 ± 2.62 h | 130.55 ± 8.66 g |
Ile | 222.46 ± 11.69 c | 239.29 ± 3.09 c | 184.09 ± 4.10 e | 124.27 ± 1.51 i | 87.96 ± 1.57 i | 87.30 ± 0.55 k | 71.64 ± 1.05 m | 53.54 ± 0.99 l |
Leu | 207.33 ± 3.05 d | 216.76 ± 3.09 d | 162.69 ± 3.64 f | 113.03 ± 2.12 j | 79.94 ± 0.98 j | 78.49 ± 0.48 l | 64.14 ± 1.80 n | 48.33 ± 0.91 m |
Lys | 36.96 ± 1.64 j | 48.71 ± 1.07 l | 88.16 ± 0.44 j | 149.29 ± 2.90 g | 205.57 ± 3.02 e | 367.61 ± 1.02 d | 421.29 ± 4.48 c | 254.32 ± 5.80 e |
Met | 74.20 ± 6.32 g | 99.42 ± 4.49 h | 129.95 ± 3.12 h | 157.57 ± 3.64 f | 153.60 ± 7.36 f | 252.11 ± 11.32 f | 229.81 ± 6.89 f | 149.70 ± 6.48 f |
Phe | 102.16 ± 6.33 e | 167.41 ± 3.39 e | 246.67 ± 7.86 c | 290.19 ± 2.00 e | 258.95 ± 7.20 c | 277.00 ± 7.19 e | 208.61 ± 1.42 g | 109.08 ± 3.01 h |
Pro | 12.83 ± 0.98 m | 18.08 ± 0.28 o | 19.06 ± 0.40 n | 20.29 ± 0.71 p | 27.51 ± 0.11 n | 83.04 ± 0.81 k | 262.78 ± 1.53 e | 317.77 ± 1.14 b |
Ser | 46.04 ± 2.31 i | 49.32 ± 0.73 k | 43.43 ± 0.43 m | 36.08 ± 2.26 n | 39.65 ± 1.31 l | 58.60 ± 0.59 m | 80.87 ± 1.39 l | 65.14 ± 2.90 k |
Thr | 16.86 ± 1.12 l | 19.36 ± 0.20 n | 23.63 ± 0.53 o | 27.52 ± 0.27 o | 26.81 ± 0.58 n | 33.61 ± 0.16 o | 36.99 ± 4.47 p | 25.93 ± 0.31 o |
Trp | 110.10 ± 12.55 e | 157.44 ± 0.41 f | 197.53 ± 5.86 d | 188.89 ± 0.62 d | 145.68 ± 1.97 g | 145.20 ± 0.97 i | 100.42 ± 0.82 j | 77.25 ± 1.15 j |
Tyr | 713.36 ± 27.54 a | 848.17 ± 13.32 a | 688.08 ± 2.46 b | 708.47 ± 9.79 b | 566.46 ± 12.21 b | 555.80 ± 10.86 b | 376.06 ± 3.19 d | 265.07 ± 1.06 d |
Val | 37.16 ± 1.04 j | 41.92 ± 2.93 m | 42.74 ± 1.01 m | 40.15 ± 1.03 m | 36.27 ± 0.34 m | 44.73 ± 1.03 n | 45.27 ± 1.34 o | 42.05 ± 0.15 n |
total | 2401.12 ± 103.56 F | 3066.36 ± 47.86 E | 3910.68 ± 62.31 C | 4263.54 ± 100.29 B | 3788.62 ± 84.65 D | 4568.98 ± 81.55 A | 4569.52 ± 59.89 A | 2958 ± 56.27 E |
Sample Name | γ-Aminobutyric Acid (μg/gDW) | Anthocyanin Content (mg/100 gDW) | |
---|---|---|---|
Cyaninin-3-O-glucoside | Peonidin-3 glucoside | ||
M0 | 94.53 ± 2.80 g | 2.06 ± 0.02 i | 0.28 ± 0.01 h |
M1 | 95.56 ± 4.76 g | 7.58 ± 0.29 h | 0.37 ± 0.01 g |
M2 | 100.75 ± 1.89 f | 46.04 ± 0.92 g | 0.55 ± 0.03 f |
M3 | 112.72 ± 4.69 e | 178.74 ± 0.50 f | 1.38 ± 0.07 e |
M4 | 122.97 ± 0.52 d | 494.43 ± 2.70 d,e | 2.22 ± 0.11 d |
M5 | 177.98 ± 1.50 c | 1070.12 ± 7.20 c | 3.38 ± 0.18 c |
M6 | 230.27 ± 1.91 b | 1902.02 ± 14.44 a | 4.61 ± 0.04 a |
M7 | 273.15 ± 1.17 a | 1671.22 ± 16.31 b | 3.75 ± 0.01 b |
TPC | TFC | DPPH | FRAP | |
---|---|---|---|---|
TPC | 1 | 0.810 ** | 0.974 ** | 0.936 * |
TFC | - | 1 | 0.792 ** | 0.813 * |
DPPH | - | - | 1 | 0.970 ** |
FRAP | - | - | - | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saensouk, S.; Senavongse, R.; Papayrata, C.; Chumroenphat, T. Evaluation of Color, Phytochemical Compounds and Antioxidant Activities of Mulberry Fruit (Morus alba L.) during Ripening. Horticulturae 2022, 8, 1146. https://doi.org/10.3390/horticulturae8121146
Saensouk S, Senavongse R, Papayrata C, Chumroenphat T. Evaluation of Color, Phytochemical Compounds and Antioxidant Activities of Mulberry Fruit (Morus alba L.) during Ripening. Horticulturae. 2022; 8(12):1146. https://doi.org/10.3390/horticulturae8121146
Chicago/Turabian StyleSaensouk, Surapon, Rattanavalee Senavongse, Chanakran Papayrata, and Theeraphan Chumroenphat. 2022. "Evaluation of Color, Phytochemical Compounds and Antioxidant Activities of Mulberry Fruit (Morus alba L.) during Ripening" Horticulturae 8, no. 12: 1146. https://doi.org/10.3390/horticulturae8121146
APA StyleSaensouk, S., Senavongse, R., Papayrata, C., & Chumroenphat, T. (2022). Evaluation of Color, Phytochemical Compounds and Antioxidant Activities of Mulberry Fruit (Morus alba L.) during Ripening. Horticulturae, 8(12), 1146. https://doi.org/10.3390/horticulturae8121146