The Potential of Fermented Food from Southeast Asia as Biofertiliser
Abstract
:1. Introduction
2. Current Advances of Biofertilizer and Future Directions
3. Seafood-Based Biofertiliser
4. Plant-Based Biofertiliser
5. Animal-Based Biofertilisers
6. Current Biofertiliser Fermented Food (BFF) Practice and Concluding Remark
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, H.-Q.; Xu, M.-G.; Lü, J.-L.; He, X.-H.; Li, J.-W.; Shi, X.-J.; Peng, C.; Wang, B.-R.; Zhang, H.-M. Soil pH Dynamics and Nitrogen Transformations Under Long-Term Chemical Fertilization in Four Typical Chinese Croplands. J. Integr. Agric. 2013, 12, 2092–2102. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.-H.; Chung, R.-S.; Tsai, Y.-H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 2007, 53, 132–140. [Google Scholar] [CrossRef]
- Wallace, A. Soil acidification from use of too much fertilizer. Commun. Soil Sci. Plant Anal. 1994, 25, 87–92. [Google Scholar] [CrossRef]
- Kundu, M.C.; Mandal, B.; Sarkar, D. Assessment of the potential hazards of nitrate contamination in surface and groundwater in a heavily fertilized and intensively cultivated district of India. Environ. Monit. Assess. 2007, 146, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Jiao, W.; Chen, W.; Chang, A.C.; Page, A.L. Environmental risks of trace elements associated with long-term phosphate fertilizers applications: A review. Environ. Pollut. 2012, 168, 44–53. [Google Scholar] [CrossRef]
- Roberts, T.L. Cadmium and Phosphorous Fertilizers: The Issues and the Science. Procedia Eng. 2014, 83, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef]
- Zhou, X.; Passow, F.H.; Rudek, J.; Von Fisher, J.C.; Hamburg, S.P.; Albertson, J.D. Estimation of methane emissions from the U.S. ammonia fertilizer industry using a mobile sensing approach. Elem. Sci. Anth. 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, A.D.S.; Junqueira, J.B.; Reis, R.A.; Ruggieri, A.C. How do greenhouse gas emissions vary with biofertilizer type and soil temperature and moisture in a tropical grassland? Pedosphere 2020, 30, 607–617. [Google Scholar] [CrossRef]
- Tansupo, P.; Suwannasom, P.; Luthria, D.L.; Chanthai, S.; Ruangviriyachai, C. Optimised separation procedures for the simultaneous assay of three plant hormones in liquid biofertilisers. Phytochem. Anal. 2009, 21, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Factories 2014, 13, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohler, J.; Caravaca, F.; Carrasco, L.; Roldán, A. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag. 2006, 22, 298–304. [Google Scholar] [CrossRef]
- Riveracruz, M.; Trujillonarcia, A.; Cordovaballona, G.; Kohler, J.; Caravaca, F.; Roldan, A. Poultry manure and banana waste are effective biofertilizer carriers for promoting plant growth and soil sustainability in banana crops. Soil Biol. Biochem. 2008, 40, 3092–3095. [Google Scholar] [CrossRef]
- Gandois, L.; Perrin, A.-S.; Probst, A. Impact of nitrogenous fertiliser-induced proton release on cultivated soils with contrasting carbonate contents: A column experiment. Geochim. Cosmochim. Acta 2011, 75, 1185–1198. [Google Scholar] [CrossRef] [Green Version]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Saxena, R.; Tomar, R.S. Endophytic Microorganisms: Promising Candidate as Biofertilizer; Springer: Singapore, 2017; pp. 77–85. [Google Scholar] [CrossRef]
- Brahmaprakash, G.P.; Sahu, P.K. Biofertilizers for Sustainability. J. Indian Inst. Sci. 2012, 92, 37–62. [Google Scholar]
- Herrmann, L.; Lesueur, D. Challenges of formulation and quality of biofertilizers for successful inoculation. Appl. Microbiol. Biotechnol. 2013, 97, 8859–8873. [Google Scholar] [CrossRef]
- Arora, N.K.; Maheshwari, D.K.; Khare, E. Plant growth promoting rhizobacteria: Constraints in bioformulation, commercialization and future strategies. In Bacteria and Plant Health; Maheshwari, D.K., Ed.; Springer: Berlin, Germany, 2010; pp. 97–116. [Google Scholar]
- Hoe, P.C.K.; Rahim, K.A. Multifunctional liquid bio fertilizer as an innovative agronomic input for modern agriculture. In RnD Seminar 2010; Research and Development Seminar: Bangi, Malaysia, 2010. [Google Scholar]
- Aezach, A. Natural Fertilizer. In Farm: Lets Plant Ourselves (Kebun: Jom Tanam Sendiri); Facebook Inc.: Serdang, Malaysia, 2015; Available online: https://www.facebook.com/groups/jomtanamsendiri/permalink/768151126648415/ (accessed on 1 December 2021).
- Popko, M.; Michalak, I.; Wilk, R.; Gramza, M.; Chojnacka, K.; Górecki, H. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules 2018, 23, 470. [Google Scholar] [CrossRef] [Green Version]
- Sairi, F.; Ismail, N.; Ibrahim, N. The effect of FRAW towards the growth of chilli seedlings and its associated microorganisms. Malays. J. Microbiol. 2018, 14, 606–610. [Google Scholar] [CrossRef]
- Man, Y.; Wang, B.; Wang, J.; Slaný, M.; Yan, H.; Li, P.; El-Naggar, A.; Shaheen, S.M.; Rinklebe, J.; Feng, X. Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. Environ. Int. 2021, 153, 106527. [Google Scholar] [CrossRef] [PubMed]
- Istiqomah, N. Influence of Brown Rice Water on Growth and Products of Green Beans (Phaseolus radiatus L.) in Lebak Swamp Land. Ziraa’ah 2012, 33, 99–108. [Google Scholar]
- Wulandari, C.; Muhartini, S. The Influence of Red Pigmented and White Rice Extract on Growth and Yield Lettuce (Lactuca sativa L.). Vegetalika 2011, 1, 24–35. [Google Scholar] [CrossRef]
- Linda, W.; Rahmatan, H. The Capacity of Rice Water as Organic Liquid Fertilizer for The Growth of Pakchoy (Brassica rapa L.). J. Biol. Edukasi Ed. 2014, 6, 34–38. [Google Scholar]
- Bahar, A.E.; Setiawan, R.B.; Ferawasni. Pengaruh Pemberian Limbah Air Cucian Beras Terhadap Pertumbuhan Tanaman Kangkung Darat (Ipomoea reptans Poir). Diploma Thesis, Universitas Pasir Pengaraian, Banda Aceh, Indonesia, 2016. [Google Scholar]
- Khan, M.S.; Zaidi, A.; Ahemad, M.; Oves, M.; Wani, P.A. Plant growth promotion by phosphate solubilizing fungi—Current perspective. Arch. Agron. Soil Sci. 2010, 56, 73–98. [Google Scholar] [CrossRef]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef] [Green Version]
- Lamont, J.R.; Wilkins, O.; Bywater-Ekegärd, M.; Smith, D.L. From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biol. Biochem. 2017, 111, 1–9. [Google Scholar] [CrossRef]
- Sharma, A.; Saha, T.N.; Arora, A.; Shah, R.; Nain, L. Efficient Microorganism Compost Benefits Plant Growth and Improves Soil Health in Calendula and Marigold. Hortic. Plant J. 2017, 3, 67–72. [Google Scholar] [CrossRef]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef] [Green Version]
- Chilton, S.N.; Burton, J.P.; Reid, G. Inclusion of Fermented Foods in Food Guides around the World. Nutrients 2015, 7, 390–404. [Google Scholar] [CrossRef] [Green Version]
- Vassilev, N.; Vassileva, M.; Lopez, A.; Martos, V.; Reyes, A.; Maksimovic, I.; Eichler-Löbermann, B.; Malusà, E. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl. Microbiol. Biotechnol. 2015, 99, 4983–4996. [Google Scholar] [CrossRef]
- Ellyzatul, A.B.; Yusoff, N.; Mat, N.; Khandaker, M.M. Effects of Fish Waste Extract on the Growth, Yield and Quality of Cucumis sativus L. J. Agrobiotechnology 2018, 9, 250–259. [Google Scholar]
- Roeswitawati, D.; Ningsih, Y.U.; Muhidin. The Effect of Local Microorganism (MOL) Concentration of Banana Hump and Fruit Waste on the Growth and Yield of Broccoli Plants (Brassica oleracea). Adv. Eng. Res. 2018, 172, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Wazir, A.; Gul, Z.; Hussain, M. Comparative Study of Various Organic Fertilizers Effect on Growth and Yield of Two Economically Important Crops, Potato and Pea. Agric. Sci. 2018, 9, 703–717. [Google Scholar] [CrossRef] [Green Version]
- Voidarou, C.; Antoniadou, Μ.; Rozos, G.; Tzora, A.; Skoufos, I.; Varzakas, T.; Lagiou, A.; Bezirtzoglou, E. Fermentative Foods: Microbiology, Biochemistry, Potential Human Health Benefits and Public Health Issues. Foods 2021, 10, 69. [Google Scholar] [CrossRef]
- Du, C.; Abdullah, J.J.; Greetham, D.; Fu, D.; Yu, M.; Ren, L.; Li, S.; Lu, D. Valorization of food waste into biofertiliser and its field application. J. Clean. Prod. 2018, 187, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Paleckienė, R.; Sviklas, A.; Šlinkšienė, R. Physicochemical properties of a microelement fertilizer with amino acids. Russ. J. Appl. Chem. 2007, 80, 352–357. [Google Scholar] [CrossRef]
- Smith, A.G.; Croft, M.T.; Moulin, M.; Webb, M. Plants need their vitamins too. Curr. Opin. Plant Biol. 2007, 10, 266–275. [Google Scholar] [CrossRef]
- Murray, J.; Burt, J.R. The Composition of Fish; Torry Advis. Note No. 38; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Tamang, J.P.; Watanabe, K.; Holzapfel, W.H. Review: Diversity of Microorganisms in Global Fermented Foods and Beverages. Front. Microbiol. 2016, 7, 377. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; He, Y.; Ren, L.; Zhang, M. Study on the Production of Liquid Biofertilizer by Food Wastewater. Fresenius Environ. Bull. 2016, 25, 4929–4936. [Google Scholar]
- Hanapi, S.Z.; Awad, H.M.; Ali, S.I.S.; Sarip, S.H.M.; Sarmidi, M.R.; Aziz, R. Malaysian Journal of Microbiology Agriculture wastes conversion for biofertilizer production using beneficial microorganisms for sustainable agriculture applications. Malays. J. Microbiol. 2013, 9, 60–67. [Google Scholar]
- Nyoki, D. Effects of Phosphorus and Bradyrhizobium japonicum on Growth and Chlorophyll Content of Cowpea (Vigna unguiculata (L) Walp). Am. J. Exp. Agric. 2014, 4, 1120–1136. [Google Scholar] [CrossRef]
- Jangiam, W.; Sangthong, N.; Soontrapiromsook, K. Screening of Microorganisms from Homemade Biofertilizers to Promote Plant Growth. Am. J. Sustain. Agric. 2018, 12, 1–7. [Google Scholar] [CrossRef]
- Doğan, G.; Ertan, O. Determination of amino acid and fatty acid composition of goldband goatfish [Upeneus moluccensis (Bleeker, 1855)] fishing from the Gulf of Antalya (Turkey). Int. Aquat. Res. 2017, 9, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Moe, L.A. Amino acids in the rhizosphere: From plants to microbes. Am. J. Bot. 2013, 100, 1692–1705. [Google Scholar] [CrossRef]
- Egalili, G.; Eavin-Wittenberg, T.; Eangelovici, R.; Fernie, A.R. The role of photosynthesis and amino acid metabolism in the energy status during seed development. Front. Plant Sci. 2014, 5, 447. [Google Scholar] [CrossRef]
- Tatjana, M.H.; Nesi, A.N.; Wagner, L.A.; Braun, H.-P. Amino Acid Catabolism in Plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, P.C. Fish paste (bagoong) and fish sauce (patis). In Philippine Fermented Foods: Principles and Technology; The University of Philippines Press: Quezon City, Philippines, 2008; pp. 409–411. [Google Scholar]
- Kim, Y.-B.; Choi, Y.-S.; Ku, S.-K.; Jang, D.-J.; Ibrahim, H.H.B.; Moon, K.B. Comparison of quality characteristics between belacan from Brunei Darussalam and Korean shrimp paste. J. Ethn. Foods 2014, 1, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, P.C. Lactic-acid-fermented fish and fishery products. In Philippine Fermented Foods: Principles and Technology; The University of Philippines Press: Quezon City, Philippines, 2008; pp. 260–261. [Google Scholar]
- Rentsch, D.; Schmidt, S.; Tegeder, M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett. 2007, 581, 2281–2289. [Google Scholar] [CrossRef] [Green Version]
- Paungfoo-Lonhienne, C.; Schenk, P.M.; Lonhienne, T.G.A.; Brackin, R.; Meier, S.; Rentsch, R.; Schmidt, S. Nitrogen affects cluster root formation and expression of putative peptide transporters. J. Exp. Bot. 2009, 60, 2665–2676. [Google Scholar] [CrossRef]
- Yanar, Y.; Çelik, M. Seasonal amino acid profiles and mineral contents of green tiger shrimp (Penaeus semisulcatus De Haan, 1844) and speckled shrimp (Metapenaeus monoceros Fabricus, 1789) from the Eastern Mediterranean. Food Chem. 2006, 94, 33–36. [Google Scholar] [CrossRef]
- Dayal, J.S.; Ponniah, A.G.; Khan, H.I.; Babu, E.P.M.; Ambasankar, K.; Vasagam, K.P.K. Shrimps-a Nutritional Perspective. Curr. Sci. 2013, 104, 1487–1491. [Google Scholar]
- Huda, N. Indonesian Fermented Fish Products. In Handbook of Animal-Based Fermented Foods and Beverage Technology; Hui, Y.H., Evranuz, E.Ö., Eds.; Taylor and Francis: Boca Raton, FL, USA, 2012; pp. 717–732. [Google Scholar]
- Salampessy, J.; Kailasapathy, K.; Thapa, N. Fermented Foods and Beverages of the World. In Fermented Fish Products; Tamang, J.P., Kailasapathy, K., Eds.; Routledge, Taylor and Francis Group: Boca Raton, FL, USA, 2010; pp. 289–307. [Google Scholar]
- Alexandraki, V.; Tsakalidou, E.; Papadimitriou, K.; Holzapfel, W. Status and Trends of the Conservation and Sustainable Use of Micro-Organisms in Food Processes; FAO: Rome, Italy, 2013. [Google Scholar]
- Ijong, F.G.; Ohta, Y. Physicochemical and Microbiological Changes Associated with Bakasang Processing—A Traditional Indonesian Fermented Fish Sauce. J. Sci. Food Agric. 1996, 71, 69–74. [Google Scholar] [CrossRef]
- Sakai, H.; Caldo, G.A.; Kozaki, M. Yeast-flora in red burong-isda a fermented fish food from the Philippines. J. Agric. Sci. 1983, 28, 181–185. [Google Scholar]
- Steinkraus, K. Handbook of Indigenous Fermented Foods, Revised and Expanded; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Saisithi, P. Traditional fermented fish products with special reference to Thai products. Asean Food J. 1987, 3, 3–10. [Google Scholar]
- Saithong, P.; Panthavee, W.; Boonyaratanakornkit, M.; Sikkhamondhol, C. Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. J. Biosci. Bioeng. 2010, 110, 553–557. [Google Scholar] [CrossRef]
- Kobayashi, T.; Taguchi, C.; Kida, K.; Matsuda, H.; Terahara, T.; Imada, C.; Moe, N.K.T.; Thwe, S.M. Diversity of the bacterial community in Myanmar traditional salted fish yegyo ngapi. World J. Microbiol. Biotechnol. 2016, 32, 166. [Google Scholar] [CrossRef]
- Lopetcharat, K.; Choi, Y.J.; Park, J.W.; Daeschel, M.A. Fish sauce products and manufacturing: A review. Food Rev. Int. 2001, 17, 65–88. [Google Scholar] [CrossRef]
- Sim, K.Y.; Chye, F.Y.; Antón, A. Chemical composition and microbial dynamics ofbudufermentation, a traditional Malaysian fish sauce. Acta Aliment. 2015, 44, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Lord Abbey, J.; Abbey, A.; Leke-aladekoba, E.; Iheshiulo, M.; Ijenyo, M.; Biopesticides, M. Biopesticides and Biofertilizers: Types, Production, Benefits, and Utilization; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 479–500. [Google Scholar]
- Roy, R.N.; Finck, A.; Blair, G.J. Plant nutrition for food security: A guide for integrated nutrient management. Exp. Agric. 2006, 43, 132. [Google Scholar]
- Tveterås, S.; Asche, F.; Bellemare, M.F.; Smith, M.; Guttormsen, A.G.; Lem, A.; Lien, K.; Vannuccini, S. Fish Is Food—The FAO’s Fish Price Index. PLoS ONE 2012, 7, e36731. [Google Scholar] [CrossRef] [PubMed]
- Murni, R.R. Dumping of Mackerel Worries the Fishermen; Sinar Harian: Shah Alam, Malaysia, 2020. [Google Scholar]
- FAO. World Fisheries and Aquaculture; FAO: Rome, Italy, 2018. [Google Scholar]
- Dastager, S.G.; Deepa, C.; Pandey, A. Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. Plant Physiol. Biochem. 2010, 48, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Kannaiyan, S.; Kumar, K. Handbook of Microbial Biofertilizers; Rai, M., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 107–108. [Google Scholar]
- Saeid, A.; Chojnacka, K. Chapter 4—Fertilizers: Need for New Strategies. In Organic Farming: Global Perspectives and Methods; Chandran, S., Unni, M.R., Thomas, S.B.T., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 91–116. [Google Scholar]
- Giri, S.; Pati, B.R. A comparative study on phyllosphere nitrogen fixation by newly isolatedCorynebacteriumsp. &Flavobacteriumsp. and their potentialities as biofertilizer. Acta Microbiol. Immunol. Hung. 2004, 51, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Asadi Rahmani, H.; Lakzian, A.; Ghaderi, J.; Keshavarz, P.; Haghighatnia, H.; Mirzashahi, K.; Ramezanpour, M.R.; Charati Arayi, A.; Mohammadi Torkashvand, A. Potential of Flavobacterium as Biofertilizer to Increase Wheat Yield. Water Soil 2016, 30, 125–135. [Google Scholar]
- Schütz, L.; Gattinger, A.; Meier, M.; Müller, A.; Boller, T.; Mäder, P.; Mathimaran, N. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis. Front. Plant Sci. 2018, 8, 2204. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, D.; Nema, P.; Dhakephalkar, P.; Zinjarde, S.; Chopade, B. Assessment of 16S rRNA gene-based phylogenetic diversity and promising plant growth-promoting traits of Acinetobacter community from the rhizosphere of wheat. Microbiol. Res. 2010, 165, 627–638. [Google Scholar] [CrossRef]
- Françoise, L. Occurrence and role of lactic acid bacteria in seafood products. Food Microbiol. 2010, 27, 698–709. [Google Scholar] [CrossRef] [Green Version]
- Sahu, B.B.; Barik, N.K.; Mohapatra, B.C.; Sahu, B.N.; Sahu, H.; Sahoo, P.; Majhi, D.; Biswal, N.C.; Mohanty, P.K.; Jayasankar, P. Section A: Environmental Science Valorization of Fish Processing Waste through Natural Fermentation with Molasses for Preparation of Bio Fertilizer and Bio Supplement. JECET Sec. A 2014, 33, 1849–1856. [Google Scholar]
- MOA. Gardening Tips (Tip Tanaman); Ministry of Agriculture Malaysia: Negeri Sembilan, Malaysia, 2017. [Google Scholar]
- Itelima, J.; Bang, W.; Sila, M.; Onyimba, I.; Egbere, O. A Review: Biofertilizer—A Key Player in Enhancing Soil Fertility and Crop Productivity; Pulsus Group: London, UK, 2018. [Google Scholar]
- Ebrahimji, A. An Idaho Farm Is Giving Away Two Million Potatoes Because Coronavirus Has Hurt Demand; CNN: Atlanta, GA, USA, 2020. [Google Scholar]
- Yi, N.X.; Wahid, R. Cameron Highlands Farmers Dump Hundreds of Tonnes of Vegetables; Malaysiakini: Washington, DC, USA, 2020. [Google Scholar]
- Swain, M.R.; Anandharaj, M.; Ray, R.C.; Rani, R.P. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnol. Res. Int. 2014, 2014, 1–19. [Google Scholar] [CrossRef]
- Endo, A.; Irisawa, T.; Dicks, L.; Tanasupawat, S. FERMENTED FOODS|Fermentations of East and Southeast Asia. Encycl. Food Microbiol. 2014, 1, 846–851. [Google Scholar] [CrossRef]
- ASA, SOYSTATS 2018. 2018. Available online: https://ndsoygrowers.com/wp-content/uploads/2018/09/2018ASA-SoyStats.pdf (accessed on 21 October 2021).
- Borriss, R. Use of Plant-Associated Bacillus Strains as Biofertilizers and Biocontrol Agents in Agriculture BT—Bacteria in Agrobiology: Plant Growth Responses; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 41–76. [Google Scholar]
- ICMSF. Microorganisms in Foods 6: Microbial Ecology of Food Commodities. In Microorganisms in Foods 6: Microbial Ecology of Food Commodities; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2005; pp. 383–385. [Google Scholar]
- Ali, M.W.; Shahzad, R.; Bilal, S.; Adhikari, B.; Kim, I.-D.; Lee, J.-D.; Lee, I.-J.; Kim, B.O.; Shin, D.-H. Comparison of antioxidants potential, metabolites, and nutritional profiles of Korean fermented soybean (Cheonggukjang) with Bacillus subtilis KCTC 13241. J. Food Sci. Technol. 2018, 55, 2871–2880. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H. Bacteria-Based Processes and Products. In Fundamentals of Food Biotechnology, 2nd ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2015; pp. 278–279. [Google Scholar]
- Anbu, P.; Kang, C.-H.; Shin, Y.-J.; So, J.-S. Formations of calcium carbonate minerals by bacteria and its multiple applications. SpringerPlus 2016, 5, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogbo, F.C. Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresour. Technol. 2010, 101, 4120–4124. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.M.; Yadav, L.S.; Singh, S.K.; Singh, P.; Singh, P.N.; Ravindra, R. Phosphate solubilizing ability of two ArcticAspergillus nigerstrains. Polar Res. 2011, 30, 7283. [Google Scholar] [CrossRef]
- Seshadri, S.; Ignacimuthu, S.; Lakshminarasimhan, C. Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by differentaspergillus nigerstrains. Chem. Eng. Commun. 2004, 191, 1043–1052. [Google Scholar] [CrossRef]
- Owamah, H.; Dahunsi, S.; Oranusi, U.; Alfa, M. Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. Waste Manag. 2014, 34, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, C.K.; Parihar, J.; Verma, R.K. Potential of Aspergillus niger and Trichoderma viride as biocontrol agents of wood decay fungi. J. Indian Acad. Wood Sci. 2011, 8, 169–172. [Google Scholar] [CrossRef]
- Boughalleb-M’Hamdi, N.; Ben Salem, I.; M’Hamdi, M. Evaluation of the efficiency of Trichoderma, Penicillium, and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egypt. J. Biol. Pest Control. 2018, 28, 25. [Google Scholar] [CrossRef] [Green Version]
- Lonhienne, T.; Mason, M.G.; Ragan, M.A.; Hugenholtz, P.; Schmidt, S.; Paungfoo-Lonhienne, C. Yeast as a Biofertilizer Alters Plant Growth and Morphology. Crop Sci. 2014, 54, 785–790. [Google Scholar] [CrossRef]
- Alami, N.H. Effect of Yeast Based Biofertilizer combined with bacteria on Mustard Plant Growth. Int. J. Appl. Biol. 2017, 1, 46–57. [Google Scholar] [CrossRef]
- Ali, S.M.; Hamza, M.A.; Amin, G.; Fayez, M.; El-Tahan, M.; Monib, M.; Hegazi, N.A. Production of biofertilizers using baker’s yeast effluent and their application to wheat and barley grown in north Sinai deserts. Arch. Agron. Soil Sci. 2005, 51, 589–604. [Google Scholar] [CrossRef]
- Mekki, B.B.; Ahmed, A.G. Growth Yield and Seed Quality of Soybean (Glycine max L.) As Affected by Organic, Biofertilizer and Yeast Application. Res. J. Agric. Biol. Sci. 2005, 1, 320–324. [Google Scholar]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wassermann, B.; Rybakova, D.; Müller, C.; Berg, G. Harnessing the microbiomes of Brassica vegetables for health issues. Sci. Rep. 2017, 7, 17649. [Google Scholar] [CrossRef] [Green Version]
- Trias, R.; Bañeras, L. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 2008, 11, 231–236. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.-M.; Radhakrishnan, R.; You, Y.-H.; Khan, A.L.; Park, J.-M.; Lee, S.-M.; Lee, I.-J. Cucumber performance is improved by inoculation with plant growth-promoting microorganisms. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2014, 65, 36–44. [Google Scholar] [CrossRef]
- Alfonzo, A.; Miceli, C.; Nasca, A.; Franciosi, E.; Ventimiglia, G.; Di Gerlando, R.; Tuohy, K.; Francesca, N.; Moschetti, G.; Settanni, L. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation. Food Microbiol. 2017, 62, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Corsetti, A.; Settanni, L.; López, C.C.; Felis, G.E.; Mastrangelo, M.; Suzzi, G. A taxonomic survey of lactic acid bacteria isolated from wheat (Triticum durum) kernels and non-conventional flours. Syst. Appl. Microbiol. 2007, 30, 561–571. [Google Scholar] [CrossRef]
- Minervini, F.; Celano, G.; Lattanzi, A.; Tedone, L.; De Mastro, G.; Gobbetti, M.; De Angelis, M. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle. Appl. Environ. Microbiol. 2015, 81, 6736–6748. [Google Scholar] [CrossRef] [Green Version]
- Yu, A.O.; Leveau, J.H.J.; Marco, M.L. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environ. Microbiol. Rep. 2019, 12, 16–29. [Google Scholar] [CrossRef]
- Ho, L.-H.; Bhat, R. Exploring the potential nutraceutical values of durian (Durio zibethinus L.)—An exotic tropical fruit. Food Chem. 2015, 168, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Denter, J.; Bisping, B. Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. Int. J. Food Microbiol. 1994, 22, 23–31. [Google Scholar] [CrossRef]
- Keuth, S.; Bisping, B. Formation of vitamins by pure cultures of tempe moulds and bacteria during the tempe solid substrate fermentation. J. Appl. Bacteriol. 1993, 75, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Steinkraus, K.H. Bio-Enrichment: Production of Vitamins in Fermented Foods; CRC Press: Boca Raton, FL, USA, 1998; pp. 603–621. [Google Scholar]
- Tamang, J.P. Plant-Based Fermented Foods and Beverages of Asia. In Handbook of Plant-Based Fermented Food and Beverage Technology; Hui, Y.H., Evranuz, E.O., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 49–90. [Google Scholar]
- Chuah, L.-O.; Shamila-Syuhada, A.K.; Liong, M.T.; Rosma, A.; Thong, K.L.; Rusul, G. Physio-chemical, microbiological properties of tempoyak and molecular characterisation of lactic acid bacteria isolated from tempoyak. Food Microbiol. 2016, 58, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Merican, Z.; Quee-Lan, Y. Tapai Processing. In Industrialization of Indigenous Fermented Foods; Revised and Expanded; Steinkraus, K., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 247–269. [Google Scholar]
- Soni, S.K. Microbes: A Source of Energy for 21st Century; New India Pub. Agency: New Delhi, India, 2007. [Google Scholar]
- Nuraida, L. Fermented Protein-Rich Products. In Fermented Food Products; Sankaranarayanan, A., Amaresan, N., Dhanasekaran, D., Eds.; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- USDA. Agricultural Research Service; U.S. Department of Agriculture: Petaling Jaya, Malaysia, 2020. [Google Scholar]
- Tamang, J.P.; Kailasapathy, K. Fermented Foods and Beverages of the World; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Edward, F. Handbook of Fermented Functional Foods, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Mongkontanawat, N.W. Lertnimitmongkol Product Development of Sweet Fermented Rice (Khao-Mak) from Germinated Native Black Glutinous Rice. Int. J. Agric. Technol. 2015, 11, 501–515. [Google Scholar]
- Sridevi, J.; Halami, P.M.; Vijayendra, S.V.N. Selection of starter cultures for idli batter fermentation and their effect on quality of idlis. J. Food Sci. Technol. 2010, 47, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.; Chattopadhyay, P. Preparation of idli batter, its properties and nutritional improvement during fermentation. J. Food Sci. Technol. 2010, 48, 610–615. [Google Scholar] [CrossRef] [Green Version]
- Tamang, J.P. Animal-Based Fermented Foods of Asia. In Handbook of Animal-Based Fermented Food and Beverage Technology; Hui, Y.H., Evranuz, E.O., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 61–64. [Google Scholar]
- Medeiros, F.H.; Bettiol, W.; Souza, R.M.; Alves, E.; Pinto, Z.V.; Iost, R. Microorganisms, application timing and fractions as players of the milk-mediated powdery mildew management. Crop Prot. 2012, 40, 8–15. [Google Scholar] [CrossRef]
- Nguyen, H.; Elegado, F.; Librojo-Basilio, N.; Mabesa, R.; Dizon, E. Isolation and characterisation of selected lactic acid bacteria for improved processing ofNem chua, a traditional fermented meat from Vietnam. Benef. Microbes 2010, 1, 67–74. [Google Scholar] [CrossRef]
- Chokesajjawatee, N.; Pornaem, S.; Zo, Y.-G.; Kamdee, S.; Luxananil, P.; Wanasen, S.; Valyasevi, R. Incidence of Staphylococcus aureus and associated risk factors in Nham, a Thai fermented pork product. Food Microbiol. 2009, 26, 547–551. [Google Scholar] [CrossRef]
- Shamsudin, S. Biofertiliser production from food waste. In Farm: Lets Plant Ourselves (Kebun: Jom Tanam Sendiri); Facebook Inc.: Serdang, Malaysia, 2015; Available online: https://www.facebook.com/groups/jomtanamsendiri/?post_id=737170549746473 (accessed on 1 December 2021).
- Lema, A.; Degebassa, A. Comparison of chemical fertilizer, fish offals fertilizer and manure applied to tomato and onion. Afr. J. Agric. Res. 2013, 8, 274–278. [Google Scholar] [CrossRef]
- Haz, I. Biofertiliser production from pineapple. In Farm: Lets Plant Ourselves (Kebun: Jom Tanam Sendiri); Facebook Inc.: Serdang, Malaysia, 2016; Available online: https://www.facebook.com/groups/jomtanamsendiri/?post_id=880985948698265 (accessed on 1 December 2021).
- Hjkimli, A.I. Biofertiliser production from rice. In Farm: Lets Plant Ourselves (Kebun: Jom Tanam Sendiri); Facebook Inc.: Serdang, Malaysia, 2019; Available online: https://www.facebook.com/groups/jomtanamsendiri/?post_id=1637926109670908 (accessed on 1 December 2021).
- Ismail, N. Biofertiliser production from fish. In Farm: Lets Plant Ourselves (Kebun: Jom Tanam Sendiri); Facebook Inc.: Serdang, Malaysia, 2018; Available online: https://www.facebook.com/groups/jomtanamsendiri/?post_id=1520273154769538 (accessed on 1 December 2021).
- Radha, T.; Karthikeyan, G. Hen Eggshell Waste as Fertilizer for The Growth of Phaseolus Vulgaris (Cow Pea Seeds). Res. J. Life Sci. Bioinform. Pharm. Chem. Sci. 2019, 5, 398. [Google Scholar]
- Fothergill, A.; Hughes, J.; Scholey, K. David Attenborough: A Life on Our Planet; WWF: Serdang, Malaysia, 2020. [Google Scholar]
- Saer, A.; Lansing, S.; Davitt, N.H.; Graves, R.E. Life cycle assessment of a food waste composting system: Environmental impact hotspots. J. Clean. Prod. 2013, 52, 234–244. [Google Scholar] [CrossRef]
- Peigné, J.; Girardin, P. Environmental Impacts of Farm-Scale Composting Practices. Water Air Soil Pollut. 2004, 153, 45–68. [Google Scholar] [CrossRef]
- Fagnano, M.; Adamo, P.; Zampella, M.; Fiorentino, N. Environmental and agronomic impact of fertilization with composted organic fraction from municipal solid waste: A case study in the region of Naples, Italy. Agric. Ecosyst. Environ. 2011, 141, 100–107. [Google Scholar] [CrossRef]
Current Biofertiliser Practice | Outcome | References |
---|---|---|
Fish waste | Increase vine length, number of leaves, chlorophyll content (SPAD), stomatal conductance, number of flowers, number of fruit, the weight of individual fruit, leaf chlorophyll content, carotenoids, TSS content and chlorophyll fluorescence | [37] |
Eggshell powder, wood ash, banana peel, used tea waste, eggshell tea | Give the minimum average number of days to germinate, contribute to greater plant height and higher average leaf area, give a positive effect on the overall growth of pea plant, show a positive effect on yield and cause larger tubers | [39] |
Efficient microorganism (EM) compost | Increase flower number and pigment content of plant and improve soil enzyme activities, reduction of the presence of pathogenic strains | [33] |
Anaerobic digestion (AD) | Generation of biogas, biofertiliser, compost and soil conditioner, increase nutrient contents and promote nutritional value of biofertiliser | [41] |
Aerobic composting | Generation of soil conditioner such as fertiliser, reduce pathogens and control germination of weeds | [41] |
Agriculture residues (Direct returning to soil) | Release nutrients during decomposition of soil microorganisms and the nutrients are transported back to the soil directly or stored in soil microbes as efficient long-term nutrient sources | [41] |
Direct burning crop residues | Directing some nutrient values of straw to the soil. Mineral elements, such as potassium exists in ash, which is then used as fertiliser | [41] |
Food waste chemical hydrolysis | Contain nitrogen, phosphorus and potassium. Increased growth and productivity and reduced plant disease | [41] |
Types | Typical Amino Acid (>1 mg/100 g) | Chemical Elements (>10 mg/100 g) | Country of Origin | Fermented Food | Typical Microbial Content |
---|---|---|---|---|---|
Prawn/ shrimp | Glu, Asp, Arg, Lys, Leu, Gly, Ala [59] | P, K, N, Ca, Mg [59,60] | Malaysia | Cencalok | Lactobacillus and Pediococcus sp. [61] |
Belacan | Bacillus, Pediococcus, Lactobacillus, Micrococcus, Sarcina, Clostridium, Brevibacterium, Flavobacterium, Corynebacteria [62] | ||||
Philippines | Balao balao | Leuconostoc, Pediococcus, Lactobacillus Enterococcus [63] | |||
Bagoong | Bacillus, Micrococcus, Lactobacillus and Staphylococcus [54] | ||||
Indonesia | Bakasang | Pseudomonas, Enterobacter, Moraxella, Micrococcus, Streptococcus, Lactobacillus, Pseudomonas, Moraxella, Staphylococcus, Pediococcus [64] | |||
Fish | Pro, Arg, Lys, Ala, His, Glu, Tau [44,50] | K, Cl, S, P, Ca, N, Mg [44] | Philippines | Burong isda | Pediococcus, Lactobacillus, Streptococcus, Micrococcus [65] |
Patis | Pediococcus, Micrococcus, Halobacterium, Halococcus, Bacillus [66] | ||||
Thailand | Nam pla | Micrococcus., Pediococcus, Staphylococcus., Streptococcus., Sarcina., Bacillus., Lactobacillus, Corynebacterium, Pseudomonas, Halococcus, Halobacterium [67] | |||
Plaa-som | Ped. cerevisiae, Lb. brevis, Staphylococcus sp., Bacillus sp. [68] | ||||
Myanmar | Ngapi | Lactic acid bacteria, Clostridium, Halaanaerobium [69] | |||
Indonesia | Kecap Ikan | Bacillus, Flavobacterium, Cladosporium, Aspergillus, Caudida [61] | |||
Peda | Acinetobacter, Flavobacterium., Cytophaga, Halobacterium., Micrococcus, Staphylococcus, Corynebacterium [61] | ||||
Vietnam | Nuoc Mam | Bacillus, Pseudomonas, Micrococcus, Staphylococcus, Halococcus, Halobacterium [70] | |||
Malaysia | Budu | Micrococcus, Staphylococcus, Lactobacillus, Pediococcus, Corynebacterium, Enterobacter, Saccharomyces, Candida [71] |
Fermented Food | Country of Origin | Microbial Flora | Nutritional Content | Potential Nutrients for Plant Growth |
---|---|---|---|---|
Tempoyak (Durian paste) | Malaysia | Bacillus, Acetobacter. Lb. plantarum, Lb. brevis, Fructobacillus durionis [63,121] | Carbohydrate (27%), protein (2%), fat (5%) [116] | Rich in vitamins and minerals, particularly potassium (up to 15,000 mg/kg) [116] |
Tapai pulut (Rice) | Malaysia | Hansenula, Saccharomycopsis, Chlamydomucor, Rhizopus [122] | Carbohydrate (21.5–31.1%), protein (16%) [122] | Increase in protein and amino acids, and vitamin B1 [122] |
Tapai ubi (Cassava) | Malaysia | Saccharomycopsis, Chlamydomucor, Candida, Mucor [122] | Protein (4%) [122] | Increase in protein and amino acids, and vitamin B1 [122] |
Tauco (Soybean) | Indonesia | Aspergillus oryzae, Rhizopus oligosporus, R. oryzae, Lactobacillus, Hansenula, Zygosaccharomyces [63,123] | Carbohydrate (22.2%), protein (11.4%), fat (5.5%) [124] | Hydrolysis of protein by fungi, increase in amino acids, particularly sodium glutamate [124] |
Tempeh (Soybean) | Indonesia | Rhizopus, Mucor, Aurebasidium, Geotrichum, Alternaria, LAB [124] | Protein 18%, fat 10%, carbohydrate 3% [125] | Proteins are hydrolysed into peptides, amino acids and peptides. Presence of many vitamins and minerals [124] |
Oncom (peanut) | Indonesia | Rhizopus, Neurospora | Carbohydrate 22%, protein 13%, fat 6% [124] | Hydrolysis of protein, increase in riboflavin, niacin and thiamine [124]. |
Sayur asin (mustard leaves, cabbage, coconut) | Indonesia | Leuconostoc mesenteroides, Lb. plantarum, Lb. brevis, Lb. confuses, Ped. pentosaceus [45] | Carbohydrate 4.5%, Protein 0.5%, Fat 2.5% (based on the vegetable used) [125] | Rich in vitamins and minerals [125] |
Sieng (Soybean) | Cambodia/Laos | Bacillus [63] | 14% carbohydrate, 18% protein, fat 11% [125] | Rich in Mg, Ca, Fe and Vitamin C [125] |
Burong Mustasa (Mustard) | Philippines | Lb. brevis, Ped. cerevisae [45] | Carbohydrates 4% Protein 5% Total fat 1% [90] | Rich in vitamins and minerals [125] |
Pak-gard-dong (Vegetable) | Thailand | Lb. plantarum, Lb. brevis, Lb. cerevisae [126] | Carbohydrate 4.5%, Protein 0.5%, Fat 2.5% (based on the vegetable used) (USDA, 2020) | Rich in vitamin B, C and minerals [90] |
Thua nao (soybean) | Thailand | Bacillus subtilis, B. pumilus, Lactobacillus spp. [63] | 14% carbohydrate, 18% protein, fat 11% [125] | Rich in Mg, Ca, Fe and Vitamin C [125] |
Khao-mak, Khanom-jeen (Rice) | Thailand | A. oryzae, S. cerevisae, Candida, Saccharomyces, Saccharomycopsis fibuligera, Amylomyces rouxii, Rhizopus, Mucor [63,127] | 38% carbohydrate, 3.11% protein, 0.35% fat [128] | Rich in vitamin B, Mg, P and Zn [128] |
Idli (Rice) | Sri Lanka | Leuconostoc mesenteroides, Pediococcus, Candida, Lactobacillus, Ent. faecalis, S. cerevisae, Debaryomyces spp., Tor. Holmii, Tor. candida [63] | ~7% carbohydrate, ~3% protein, 0.1% fat [129] | Increased in vitamin B, C and minerals and hydrolysis of proteins into amino acids [130] |
Dhamuoi (Cabbage) | Vietnam | Lb. fermentum, Lb. pentosus, Lb. plantarum, Ped. Pentosaceus, Lb. brevis, Lb. paracasei, Lb. pantheris, Ped. Acidilactici [63] | Carbohydrates 5.8%, Protein 1.28% Fat 0.1% [90] | Rich in vitamin B, C and minerals [90] |
Local Practice | Method of Preparation (Simplified) | Method of Application (s) | Intended Outcome (s) |
---|---|---|---|
Fish MOL or FAA (Fish Amino Acid) | Ferment fish pieces with an equal amount of brown sugar for a month. Open the container to release the gas every day. The compound should smell sweet and sour. | Dilute the stock solution 1 in 100. Apply to soil or leaves twice a week | To provide nitrogen and essential plant nutrients [136] |
Vegetable MOL or FPJ (Fermented Plant Juice) | Ferment vegetable with an equal amount of brown sugar for a week. | Dilute the stock solution 1 in 100. Apply to soil or leaves twice a week | To increase yield, possibly by the action of LAB [32] and nutrients [43] |
Fruit MOL or FFJ (Fermented Fruit Juice) | Ferment fruits (in this case, ripe banana) with an equal amount of brown sugar for a week. | Dilute the stock solution 1 in 100. Apply to soil or leaves twice a week | To increase flowering and fruiting, possibly by the presence of P and K [30,72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohd Zaini, N.S.; Idris, H.; Yaacob, J.S.; Wan-Mohtar, W.A.A.Q.I.; Putra Samsudin, N.I.; Abdul Sukor, A.S.; Lim, E.J.; Abd Rahim, M.H. The Potential of Fermented Food from Southeast Asia as Biofertiliser. Horticulturae 2022, 8, 102. https://doi.org/10.3390/horticulturae8020102
Mohd Zaini NS, Idris H, Yaacob JS, Wan-Mohtar WAAQI, Putra Samsudin NI, Abdul Sukor AS, Lim EJ, Abd Rahim MH. The Potential of Fermented Food from Southeast Asia as Biofertiliser. Horticulturae. 2022; 8(2):102. https://doi.org/10.3390/horticulturae8020102
Chicago/Turabian StyleMohd Zaini, Nurul Solehah, Hamidah Idris, Jamilah Syafawati Yaacob, Wan Abd Al Qadr Imad Wan-Mohtar, Nik Iskandar Putra Samsudin, Arina Shairah Abdul Sukor, Elicia Jitming Lim, and Muhamad Hafiz Abd Rahim. 2022. "The Potential of Fermented Food from Southeast Asia as Biofertiliser" Horticulturae 8, no. 2: 102. https://doi.org/10.3390/horticulturae8020102
APA StyleMohd Zaini, N. S., Idris, H., Yaacob, J. S., Wan-Mohtar, W. A. A. Q. I., Putra Samsudin, N. I., Abdul Sukor, A. S., Lim, E. J., & Abd Rahim, M. H. (2022). The Potential of Fermented Food from Southeast Asia as Biofertiliser. Horticulturae, 8(2), 102. https://doi.org/10.3390/horticulturae8020102