Phytochemicals, Proximate Composition, Mineral Analysis and In Vitro Antioxidant Activity of Calligonum crinitum Boiss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Extracts
2.3. Preliminary Phytochemical Screening
2.4. Total Phenolic and Flavonoid Contents
2.5. Proximate Analysis
2.6. Microelements and Macro Elements
2.7. In Vitro Antioxidant Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Percentage Yield and Preliminary Phytochemical Screening
3.2. Total Phenolic and Flavonoid Contents
3.3. Proximate Analysis
3.4. Mineral Analysis
3.5. Microelements and Macroelements
3.6. In Vitro Antioxidant Activity
3.6.1. ABTS Radical Scavenging Activity
3.6.2. DPPH Free Radical Scavenging Activity
3.6.3. Hydroxyl Radical Scavenging Activity
3.6.4. Superoxide Radicals Scavenging Activity
3.6.5. Nitric Oxide Scavenging
3.6.6. Reducing Power
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Auddy, B.; Ferreira, M.; Blasina, F.; Lafon, L.; Arredondo, F.; Dajas, F.; Mukherjee, B. Screening of antioxidant activity of three Indian medicinal plants, traditionally used for the management of neurodegenerative diseases. J. Ethnopharmacol. 2003, 84, 131–138. [Google Scholar] [CrossRef]
- Cathrine, L.; Nagarajan, N.P. Preliminary phytochemical analysis and antibacterial activity of leaf extracts of Vitex leucoxylon LF. Int. J. Curr. Pharm. Res. 2011, 3, 71–73. [Google Scholar]
- Schippmann, U.; Leaman, D.J.; Cunningham, A.B. Impact of cultivation and gathering of medicinal plants on biodiversity: Global trends and issues. In Biodiversity and the Ecosystem Approach in Agriculture, Forestry and Fisheries; Inter-Department Working Group on Biology Diversity for Food and Agriculture, FAO: Rome, Italy, 2002. [Google Scholar]
- Falodun, A.; Irabor, E.E. Phytochemical, proximate, antioxidant and free radical scavenging evaluations of Calliandria surinamensis. Acta Pol. Pharm. Drug Res. 2008, 65, 571–575. [Google Scholar]
- Sivakumar, K.; Mohandass, S.; Devika, V. In vitro antioxidant and free radical scavenging activity of root extracts of Uraria lagopoides. Int. J. Pharma Bio. Sci. 2012, 3, B1–B9. [Google Scholar]
- Raj, X.J.; Chaurasia, O.P.; Vajpayee, P.K.; Murugan, M.P.; Bala, S.S. Antioxidative activity and phytochemical investigation on a high altitude medicinal plant Dracocephalum heterophyllum Benth. Pharmacogn. J. 2010, 2, 112–117. [Google Scholar]
- Potter, J.D. Vegetables, fruit, and cancer. Lancet 2005, 366, 527–530. [Google Scholar] [CrossRef]
- Marete, E.N.; Jacquier, J.C.; O’Riordan, D. Effects of extraction temperature on the phenolic and parthenolide contents, and colour of aqueous feverfew (Tanacetum parthenium) extracts. Food Chem. 2009, 117, 226–231. [Google Scholar] [CrossRef]
- Pandey, M.; Abidi, A.B.; Singh, S.; Singh, R.P. Nutritional evaluation of leafy vegetable paratha. J. Hum. Ecol. 2006, 19, 155–156. [Google Scholar] [CrossRef]
- Rajani, M.; Kanaki, N.S. Phytochemical standardization of herbal drugs and polyherbal formulations. In Bioactive Molecules and Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2008; pp. 349–369. [Google Scholar]
- Sun, J.; Liu, S.F.; Zhang, C.S.; Yu, L.N.; Bi, J.; Zhu, F.; Yang, Q.L. Chemical composition and antioxidant activities of Broussonetia papyrifera fruits. PLoS ONE 2012, 7, e32021. [Google Scholar] [CrossRef] [Green Version]
- Weijl, N.I.; Cleton, F.J.; Osanto, S. Free radicals and antioxidants in chemotherapy induced toxicity. Cancer Treat. Rev. 1997, 23, 209–240. [Google Scholar] [CrossRef]
- Manzano, P.; Hernández, J.; Quijano-Avilés, M.; Barragán, A.; Chóez-Guaranda, I.; Viteri, R.; Valle, O. Polyphenols extracted from Theobroma cacao waste and its utility as antioxidant. Emir. J. Food Agric. 2017, 29, 45. [Google Scholar] [CrossRef] [Green Version]
- Shahin, S.M.; Jaleel, A.; Alyafei, M.A.M. The Essential Oil-Bearing Plants in the United Arab Emirates (UAE): An Overview. Molecules 2021, 26, 6486. [Google Scholar] [CrossRef]
- Sakkir, S.; Kabshawi, M.; Mehairbi, M. Medicinal plants diversity and their conservation status in the United Arab Emirates (UAE). J. Med. Plants Res. 2012, 6, 1304–1322. [Google Scholar]
- Senthilkumar, A.; Karuvantevida, N.; Rastrelli, L.; Kurup, S.S.; Jaleel, A. Traditional uses, pharmacological efficacy, and phytochemistry of Moringa peregrina (Forssk.) Fiori.—A review. Front. Pharmacol. 2018, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Purohit, C.S.; Kumar, R. A review on genus Calligonum L. (Polygonaceae) from India and report Calligonum crinitum an addition for Flora of India. J. Asia-Pac. Biodivers. 2020, 13, 319–324. [Google Scholar] [CrossRef]
- Mandaville, J.P. Plant life in the Rub’al-Khali (the Empty Quarter), south-central Arabia. Proc. R. Soc. Edinburgh Sect. B Biol. Sci. 1986, 89, 147–157. [Google Scholar] [CrossRef]
- Ahmed, M.N.; Gowan, M.; Azam, M.N.K.; Mannan, M.A.; Rahman, M.M. Clinical appraisals and phytochemical potential of ethnomedicinal pteridophyte: Drynaria quercifolia (L.) J. Smith (Polypodiaceae). Pharmacol. Online 2015, 1, 4–17. [Google Scholar]
- Ahmed, H.; Moawad, A.; Owis, A.; AbouZid, S.; Ahmed, O. Flavonoids of Calligonum polygonoides and their cytotoxicity. Pharm. Biol. 2016, 54, 2119–2126. [Google Scholar] [CrossRef] [Green Version]
- Degheidy, N.S.; Sharaf, E.M.; Fathi, S.M. Field evaluation of anthelmentic efficacy of Calligonum comosum against Fasciolosis in sheep at Taif KSA. Glob. Vet. 2013, 11, 377–384. [Google Scholar]
- Abdo, W.; Hirata, A.; Shukry, M.; Kamal, T.; Abdel-Sattar, E.; Mahrous, E.; Yanai, T. Calligonum comosum extract inhibits diethylnitrosamine-induced hepatocarcinogenesis in rats. Oncol. Lett. 2015, 10, 716–722. [Google Scholar] [CrossRef]
- Jaleel, A.; Al Naqbi, K.M.; El-Kaabi, A.A.A.; Odeh, O.W.; Kandhan, K.; Maqsood, S.; Kurup, S.S.; Sakkir, S. In vitro antioxidant activities and screening of phytochemicals from methanolic and ethyl acetate extracts of Calligonum comosum L’Her. Orient. Pharm. Exp. Med. 2016, 16, 209–215. [Google Scholar]
- Safri, A.; Fletcher, A.J.; Abdel-Halim, E.; Ismail, M.A.; Hashem, A. Calligonum crinitum as a novel sorbent for sorption of Pb (II) from aqueous solutions: Thermodynamics, kinetics, and isotherms. J. Polym. Environ. 2021, 29, 1505–1515. [Google Scholar] [CrossRef]
- Sawangjaroen, N.; Sawangjaroen, K. The effects of extracts from anti-diarrheic Thai medicinal plants on the in vitro growth of the intestinal protozoa parasite: Blastocystis hominis. J. Ethnopharmacol. 2005, 98, 67–72. [Google Scholar] [CrossRef]
- Harborne, A.J. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis; Springer Science Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical constituents of some Nigerian medicinal plants. Afr. J. Biotechnol. 2005, 4, 685–688. [Google Scholar] [CrossRef]
- Prakash, D.; Suri, S.; Upadhyay, G.; Singh, B.N. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants. Int. J. Food Sci. Nutr. 2007, 58, 18–28. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Association of Analytical Chemists. Official Methods of Analysis, 15th ed.; AOAC: Washington, DC, USA, 1990; pp. 1121–1180. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis; Horwitz, W., Ed.; AOAC: Washington, DC, USA, 1995. [Google Scholar]
- Knevel, A.L.; Digangi, F.F. Jenkin’s Quantitative Pharmaceutical Chemistry; McGraw-Hill: New York, NY, USA, 1977. [Google Scholar]
- USEPA United States Environmental Protection Agency. Revision 5.4 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma–Mass Spectrometry; Method 200.8; USEPA United States Environmental Protection Agency: Washington, DC, USA, 1994. [Google Scholar]
- Wolfenden, B.S.; Willson, R.L. Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: Pulse radiolysis studies of 2, 2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J. Chem. Soc. Perkin Trans. 2 1982, 7, 805–812. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.; Aruoma, O.I. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef]
- Nishimiki, M.; Rao, N.A.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen. Biochem. Biophys. Res. Comm. 1972, 46, 849–853. [Google Scholar] [CrossRef]
- Marcocci, L.; Maguire, J.J.; Droy-Lafaix, M.T.; Packer, L. The nitric oxide scavenging property of Ginkgo biloba extracts EGb 761. Biochem. Biophys. Res. Commun. 1994, 201, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, I.C.; Baptista, P.; Vilas-Boas, M.; Barros, L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem. 2007, 100, 1511–1516. [Google Scholar] [CrossRef]
- Paulsamy, S.; Jeeshna, M.V. Preliminary phytochemistry and antimicrobial studies of an endangered medicinal herb Exacum bicolor Roxb. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 447–457. [Google Scholar]
- De Jesus, N.Z.T.; Falcão, H.d.S.; Gomes, I.F.; Leite, T.J.d.A.; Lima, G.R.d.M.; Barbosa-Filho, J.M.; Tavares, J.F.; Silva, M.S.d.; Athayde-Filho, P.F.d.; Batista, L.M. Tannins, Peptic Ulcers and Related Mechanisms. Int. J. Mol. Sci. 2012, 13, 3203–3228. [Google Scholar] [CrossRef] [Green Version]
- Sparg, S.; Light, M.E.; Van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef]
- Pop, A.; Fizeșan, I.; Vlase, L.; Rusu, M.E.; Cherfan, J.; Babota, M.; Gheldiu, A.-M.; Tomuta, I.; Popa, D.-S. Enhanced Recovery of Phenolic and Tocopherolic Compounds from Walnut (Juglans Regia L.) Male Flowers Based on Process Optimization of Ultrasonic Assisted-Extraction: Phytochemical Profile and Biological Activities. Antioxidants 2021, 10, 607. [Google Scholar] [CrossRef]
- Sulaiman, S.F.; Sajak, A.A.B.; Ooi, K.L.; Seow, E.M. Effect of solvents in extracting polyphenols and antioxidants of selected raw vegetables. J. Food Compos. Anal. 2011, 24, 506–515. [Google Scholar] [CrossRef]
- Kessler, M.; Ubeaud, G.; Jung, L. Anti-and pro-oxidant activity of rutin and quercetin derivatives. J. Pharm. Pharmacol. 2003, 55, 131–142. [Google Scholar] [CrossRef]
- Agati, G.; Azzarello, E.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67–76. [Google Scholar] [CrossRef]
- Dehpour, A.A.; Ebrahimzadeh, M.A.; Fazel, N.S.; Mohammad, N.S. Antioxidant activity of the methanol extract of Ferula assafoetida and its essential oil composition. Grasas Y Aceites 2009, 60, 405–412. [Google Scholar]
- Onwuka, G.I. Food Analysis and Instrumentation: Theory and Practice; Naphthalic prints: Surulere, Lagos, Nigeria, 2005; pp. 219–230. [Google Scholar]
- Jones, M.M. Chemistry and Society; Saunders College Publishing: Rochester, NY, USA, 1987. [Google Scholar]
- World Health Organization. Quality Control Methods for Medicinal Plant Materials; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Hotz, C.; Brown, K.H. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, 194–195. [Google Scholar]
- Chaturvedi, U.C.; Shrivastava, R.; Upreti, R.K. Viral infections and trace elements: A complex interaction. Curr. Sci. 2004, 87, 1536–1554. [Google Scholar]
- Serdar, M.; Bakir, F.; Hasimi, A.; Celik, T.; Akin, O.; Kenar, L.; Yildirimkaya, M. Trace and toxic element patterns in nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose. Int. J. Diabetes Dev. Ctries. 2009, 29, 35. [Google Scholar] [CrossRef] [Green Version]
- Annan, K.; Kojo, A.I.; Cindy, A.; Samuel, A.N.; Tunkumgnen, B.M. Profile of heavy metals in some medicinal plants from Ghana commonly used as components of herbal formulations. Pharmacogn. Res. 2010, 2, 41. [Google Scholar] [CrossRef] [Green Version]
- Agomuo, E.N. Proximate, phytochemical, and mineral element analysis of the sclerotium of Pleurotus tuber-regium. Int. Sci. Res. J. 2011, 3, 104–107. [Google Scholar]
- Yazdanparast, R.; Bahramikia, S.; Ardestani, A. Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats. Chem.-Biol. Interact. 2008, 172, 176–184. [Google Scholar] [CrossRef]
- Ak, T.; Gülçin, İ. Antioxidant and radical scavenging properties of curcumin. Chem.-Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Alnajar, Z.A.A.; Abdulla, M.A.; Ali, H.M.; Alshawsh, M.A.; Hadi, A.H.A. Acute toxicity evaluation, antibacterial, antioxidant and immunomodulatory effects of Melastoma malabathricum. Molecules 2012, 17, 3547–3559. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.D.; Herdeiro, R.S.; Mathias, C.J.; Panek, A.D.; Silveira, C.S.; Rodrigues, V.P.; Nogueira, F.L.P. Evaluation of antioxidant activity of Brazilian plants. Pharmacol. Res. 2005, 52, 229–233. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.R.; Hoque, M.Z.; Hossain, S.J. Free radical scavenging activities of Zizyphus mauritiana. World J. Agric. Sci. 2009, 5, 318–322. [Google Scholar]
- Lee, K.W.; Kim, Y.J.; Lee, H.J.; Lee, C.Y. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric. Food Chem. 2003, 51, 7292–7295. [Google Scholar] [CrossRef]
- Lipinski, B. Hydroxyl radical and its scavengers in health and disease. Oxidative Med. Cell. Longev. 2011, 2011, 809696. [Google Scholar] [CrossRef] [Green Version]
- Joseph, B.; Priya, M. Review on nutritional, medicinal and pharmacological properties of guava (Psidium guajava Linn.). Int. J. Pharma Bio. Sci. 2011, 2, 53–69. [Google Scholar]
- Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Kim, S.K. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002, 163, 1161–1168. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free. Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagetia, G.C.; Baliga, M.S. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: A preliminary study. J. Med. Food 2004, 7, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Saha, K.; Lajis, N.H.; Israf, D.A.; Hamzah, A.S.; Khozirah, S.; Khamis, S.; Syahida, A. Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. J. Ethnopharmacol. 2004, 92, 263–267. [Google Scholar] [CrossRef]
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef]
Solvent | Extraction Period (h) | Extraction Yield (%) w/w |
---|---|---|
Petroleum ether | 36 | 5.6 |
Chloroform | 36 | 3.8 |
Ethyl acetate | 36 | 5.3 |
Acetone | 36 | 3.6 |
Methanol | 36 | 6.5 |
Phytochemical | Observation | Petroleum Ether | Chloroform | Ethyl Acetate | Acetone | Methanol |
---|---|---|---|---|---|---|
Flavonoid | Yellow color persist | ++ | ++ | +++ | + | +++ |
Alkaloid | Orange precipitate | ++ | ++ | + | + | ++ |
Phenols | Blue color | + | ++ | ++ | + | +++ |
Terpenoids | Reddish brown color | + | + | + | + | ++ |
Carbohydrate | Green color | + | + | + | + | + |
Tannin | Green brownish color | + | + | ++ | + | ++ |
Protein | White precipitate which turns red | + | − | + | + | ++ |
Steroids | A reddish brown ring | + | − | − | + | + |
Saponin | Formation of emulsion | + | − | − | − | ++ |
Phlobatannin | Red precipitate | + | + | + | + | ++ |
Cardiac glycoside | No yellowish brown ring of upper layer | − | + | + | − | + |
Anthraquinines | Pink, violet or red coloration | − | − | − | − | − |
Volatile oils | White precipitate | − | − | − | − | − |
Solvent | Phenolics mg of GAE/g of dry extract | Flavonoid mg of QE/g of dry extract |
---|---|---|
Petroleum ether | 29.62 ± 2.2 b | 10.33 ± 0.8 b |
Chloroform | 22.46 ± 1.4 b | 36.35 ± 2.4 b |
Ethyl acetate | 41.58 ± 2.6 b | 36.2 ± 2.2 a |
Acetone | 30.35 ± 2.3 a | 4.16 ± 0.2 b |
Methanol | 53.03 ± 4.2 b | 45.17 ± 3.4 b |
Parameter | Percentage Values (Dry Weight Basis) |
---|---|
Ash | 10.17 ± 0.1 a |
Dry matter | 96.7 ± 4.1 a |
NDF% | 24.4 ± 1.2 b |
Crude Protein% DM | 8.69 ± 0.04 a |
Fat (EE%) | 3.24 ± 0.01 b |
Moisture% | 9.33 ± 0.22 a |
Carbohydrate | 33.6 ± 3.1 b |
Minerals | Concentration (ppm) |
---|---|
Ca | 133.18 |
Na | 12.58 |
K | 87.17 |
Mg | 63.16 |
S | 24.46 |
P | 11.00 |
Zn | 32.2 |
Cu | 3.10 |
Cr | 2.66 |
Fe | 20.8 |
Pb | <0.011 |
Mn | 16.1 |
Ni | 4.32 |
Cd | 0.383 |
Co | 0.212 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naqbi, K.M.A.A.; Karthishwaran, K.; Kurup, S.S.; Abdul Muhsen Alyafei, M.; Jaleel, A. Phytochemicals, Proximate Composition, Mineral Analysis and In Vitro Antioxidant Activity of Calligonum crinitum Boiss. Horticulturae 2022, 8, 156. https://doi.org/10.3390/horticulturae8020156
Naqbi KMAA, Karthishwaran K, Kurup SS, Abdul Muhsen Alyafei M, Jaleel A. Phytochemicals, Proximate Composition, Mineral Analysis and In Vitro Antioxidant Activity of Calligonum crinitum Boiss. Horticulturae. 2022; 8(2):156. https://doi.org/10.3390/horticulturae8020156
Chicago/Turabian StyleNaqbi, Khalfan Mohamed Abdulla Al, Kandhan Karthishwaran, Shyam Sreedhara Kurup, Mohammed Abdul Muhsen Alyafei, and Abdul Jaleel. 2022. "Phytochemicals, Proximate Composition, Mineral Analysis and In Vitro Antioxidant Activity of Calligonum crinitum Boiss" Horticulturae 8, no. 2: 156. https://doi.org/10.3390/horticulturae8020156
APA StyleNaqbi, K. M. A. A., Karthishwaran, K., Kurup, S. S., Abdul Muhsen Alyafei, M., & Jaleel, A. (2022). Phytochemicals, Proximate Composition, Mineral Analysis and In Vitro Antioxidant Activity of Calligonum crinitum Boiss. Horticulturae, 8(2), 156. https://doi.org/10.3390/horticulturae8020156