Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance
Abstract
:1. Introduction
2. Symptoms and Control of Bacterial Cankers of Tomatoes
3. Pathogenicity of Cm
3.1. Initial Infection of Plants by Cm
3.2. Colonization and Spread of Cm in Tomato Plant Interior
3.3. Colonization and Spread of Cm in Tomato Fruit
3.4. Plant Wilting Induced by Pathogenic Cm Strains
4. Molecular Mechanism Underlying Cm Pathogenicity
4.1. Virulence Genes in Two Plasmids and PAI
4.2. Virulence Factors Encoded by Chromosomal Genes
4.3. Function of Virulence Genes Underlying Cm Pathogenicity
5. Research Related to Tomato Plant Disease Resistance
5.1. Response of Wild Tomato to Cm
5.2. Identification and Verification of Resistance-Related Proteins and Enzymes
5.3. Hypersensitive Responses of Other Solanaceae Plants to Cm
6. Genetics-Based Research and Breeding to Enhance Resistance to Bacterial Canker
6.1. Identification of Resistant Tomato Accessions
6.2. Breeding of Disease-Resistant Tomato
7. Future Directions and Prospects
7.1. Comprehensively Characterize the Interaction between Tomato Host Plants and Pathogenic Cm Strains
7.2. Accelerate the Identification of Resistance Genes and the Elucidation of the Molecular Mechanism Underlying Tomato Disease Resistance
7.3. Broaden the Resistance Resources or Introduce Broad-Spectrum Resistance into Tomato
7.4. Design Novel Effective Agents for the Comprehensive Control of Bacterial Canker of Tomato
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Tambong, J.; Yuan, K.X.; Chen, W.; Xu, H.; Levesque, C.A.; De Boer, S.H. Re-classification of Clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses. Int. J. Syst. Evol. Microbiol. 2018, 68, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Sen, Y.; Van der Wolf, J.; Visser, R.G.; Van Heusden, S. Bacterial canker of tomato: Current knowledge of detection, management, resistance, and interactions. Plant Dis. 2015, 99, 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.F. A new tomato disease of economic importance. Science 1910, 31, 794–796. [Google Scholar]
- Yang, W.C.; Francis, D.M. Genetics and breeding for resistance to bacterial diseases in tomato: Prospects for marker assisted selection. In Genetic Improvement of Solanaceous Crops, 1. Tomato; Razdan, M.K., Mattoo, A.K., Eds.; Science Publishers: Enfield, NH, USA, 2007; pp. 379–419. [Google Scholar]
- EPPO. Distribution of Clavibacter michiganesis subsp. michiganesis 2016. Available online: https://gd.eppo.int/taxon/CORBMI/distribution (accessed on 8 February 2022).
- Chalupowicz, L.; Barash, I.; Reuven, M.; Dror, O.; Sharabani, G.; Gartemann, K.H.; Eichenlaub, R.; Sessa, G.; Manulis-Sasson, S. Differential contribution of Clavibacter michiganensis subsp. michiganensis virulence factors to systemic and local infection in tomato. Mol. Plant Pathol. 2017, 18, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Peritore–Galve, F.C.; Tancos, M.A.; Smart, C.D. Bacterial canker of tomato: Revisiting a global and economically damaging seedborne pathogen. Plant Dis. 2021, 105, 1581–1595. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, Y.X.; Gao, Z.P.; Yang, W.C. Breeding for resistance to tomato bacterial diseases in China: Challenges and prospects. Hortic Plant J. 2018, 4, 193–207. [Google Scholar] [CrossRef]
- Liu, P.H.; Zhang, L.; Li, M.Y. Occurrence of tomato bacterial canker in Beijing. Plant Protction 1986, 12, 32–33. (In Chinese) [Google Scholar]
- Sen, Y.; Feng, Z.; Vandenbroucke, H.; Van der Wolf, J.; Visser, R.G.; Van Heusden, A.W. Screening for new sources of resistance to Clavibacter michiganensis subsp. michiganensis (Cmm) in tomato. Euphytica 2013, 190, 309–317. [Google Scholar] [CrossRef]
- Francis, D.M.; Kabelka, E.; Bell, J.; Franchino, B.; Clair, D.S. Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum. Plant Dis. 2001, 85, 1171–1176. [Google Scholar] [CrossRef] [Green Version]
- Nandi, M.; Macdonald, J.; Liu, P.; Weselowski, B.; Yuan, Z.P. Clavibacter michiganensis ssp. michiganensis: Bacterial canker of tomato, molecular interactions and disease management. Mol. Plant Pathol. 2018, 19, 2036–2050. [Google Scholar] [CrossRef] [Green Version]
- Carlton, W.M.; Braun, E.J.; Gleason, M.L. Ingress of Clavibacter michiganensis subsp. michiganensis into tomato leaves through hydathodes. Phytopathology 1998, 88, 525–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Rajashekara, G.; Paul, P.A.; Miller, S.A. Colonization of tomato seedlings by bioluminescent Clavibacter michiganensis subsp. michiganensis under different humidity regimes. Phytopathology 2012, 102, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peritore-Galve, F.C.; Miller, C. and Smart, C.D. Characterizing colonization patterns of Clavibacter michiganensis during infection of tolerant wild Solanum species. Phytopathology 2020, 110, 574–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mekina-Mora, C.M.; Hausbeck, M.K.; Fulbright, D.W. Bird’s eye lesions of tomato fruit produced by aerosol and direct application of Clavibacter michiganensis subsp. michiganensis. Plant Dis. 2001, 85, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Chalupowicz, L.; Zellermann, E.M.; Fluegel, M.; Dror, O.; Eichenlaub, R.; Gartemann, K.H.; Savidor, A.; Sessa, G.; Iraki, N.; Barash, I. Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. Phytopathology 2012, 102, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Yadeta, K.; Thomma, B. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013, 4, 97. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wang, L.; Liu, L.; Hou, Y.; Huang, S.; Li, Q. Infection process of Burkholderia glumae in rice spikelets. J. Phytopathol. 2017, 165, 123–130. [Google Scholar] [CrossRef]
- Mallowa, S.O.; Mbofung, G.Y.; Eggenberger, S.K.; Den Adel, R.L.; Scheiding, S.R.; Robertson, A.E. Infection of maize by Clavibacter michiganensis subsp. nebraskensis does not require severe wounding. Plant Dis. 2016, 100, 724–731. [Google Scholar] [CrossRef] [Green Version]
- Bouda, M.; Windt, C.W.; McElrone, A.J.; Brodersen, C.R. In vivo pressure gradient heterogeneity increases flow contribution of small diameter vessels in grapevine. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Utsuzawa, S.; Fukuda, K.; Sakaue, D. Use of magnetic resonance microscopy for the nondestructive observation of xylem cavitation caused by pine wilt disease. Phytopathology 2005, 95, 737–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe–Power, T.M.; Khokhani, D.; Allen, C. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment. Trends Microbiol. 2018, 26, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Li, Y.; Galvavni, C.D.; Turner, J.N.; Burr, T.J.; Hoch, H.C. Upstream migration of Xylella fastidiosa via pilus–driven twitching motility. J. Bacteriol. 2005, 187, 5560–5567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Fuente, L.; Burr, T.J.; Hoch, H.C. Mutations in type I and type IV pilus biosynthetic genes affect twitching motility rates in Xylella fastidiosa. J. Bacteriol. 2007, 189, 7507–7510. [Google Scholar] [CrossRef] [Green Version]
- Rapicavoli, J.; Ingel, B.; Blanco-Ulate, B.; Cantu, D.; Roper, C. Xylella fastidiosa: An examination of a re–emerging plant pathogen. Mol. Plant Pathol. 2018, 19, 786–800. [Google Scholar] [CrossRef] [Green Version]
- Bermpohl, A.; Dreier, J.; Bahro, R.; Eichenlaub, R. Exopolysaccharides in the pathogenic interaction of Clavibacter michiganensis subsp. michiganensis with tomato plants. Microbiol. Res. 1996, 151, 391–399. [Google Scholar] [CrossRef]
- Gartemann, K.H.; Abt, B.; Bekel, T.; Burger, A.; Engemann, J.; Flugel, M.; Gaigalat, L.; Goesmann, A.; Gräfen, I.; Kalinowski, J.; et al. The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J. Bacteriol. 2008, 190, 2138–2149. [Google Scholar] [CrossRef] [Green Version]
- Tancos, M.A.; Lowe-Power, T.M.; Peritore–Galve, F.C.; Tran, T.M.; Allen, C.; Smart, C.D. Plant-like bacterial expansins play contrasting roles in two tomato vascular pathogens. Mol. Plant Pathol. 2018, 19, 1210–1221. [Google Scholar] [CrossRef] [Green Version]
- Eichenlaub, R.; Gartemann, K.H.; Burger, A. Clavibacter michiganensis, a group of gram-positive phytopathogenic bacteria. In Plant-Associated Bacteria; Springer: Dordrecht, The Netherlands, 2006; pp. 385–421. [Google Scholar]
- Tancos, M.A.; Chalupowicz, L.; Barash, I.; Manulis-Sasson, S.; Smart, C.D. Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes. Appl. Environ. Microbiol. 2013, 79, 6948–6957. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, K.; Ritsema, T.; Nijsse, J.; Holsters, M.; Goethals, K.; Jaziri, M. The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants. Mol. Plant. Microbe. Interact. 2001, 14, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Hogenhout, S.A.; Loria, R. Virulence mechanisms of Gram–positive plant pathogenic bacteria. Curr. Opin. Plant Biol. 2008, 11, 449–456. [Google Scholar] [CrossRef]
- Van der Meij, A.; Willemse, J.; Schneijderberg, M.A.; Geurts, R.; Raaijmakers, J.M.; Van Wezel, G.P. Inter– and intracellular colonization of Arabidopsis roots by endophytic actinobacteria and the impact of plant hormones on their antimicrobial activity. Antonie Van Leeuwenhoek. 2018, 111, 679–690. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.P.; Pattathil, S.; Hahn, M.G.; Jacques, M.A.; Gilbertson, R.L.; Coaker, G. Genomic analysis of Clavibacter michiganensis reveals insight into virulence strategies and genetic diversity of a Gram–positive bacterial pathogen. Mol. Plant Microbe Interact. 2017, 30, 786–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez–Donoso, A.G.; Greve, L.C.; Walton, J.H.; Shackel, K.A.; Labavitch, J.M. Xylella fastidiosa infection and ethylene exposure result in xylem and water movement disruption in grapevine shoots. Plant Physiol. 2007, 143, 1024–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venturas, M.D.; Sperry, J.S.; Hacke, U.G. Plant xylem hydraulics: What we understand, current research, and future challenges. J. Integr. Plant Biol. 2017, 59, 356–389. [Google Scholar] [CrossRef] [Green Version]
- Savidor, A.; Teper, D.; Gartemann, K.H.; Eichenlaub, R.; Chalupowicz, L.; Manulis–Sasson, S.; Barash, I.; Tews, H.; Mayer, K.; Giannone, R.J.; et al. The Clavibacter michiganensis subsp. michiganensis-tomato interactome reveals perception of pathogen by the host and suggests mechanisms of infection. J. Proteome Res. 2012, 11, 736–750. [Google Scholar] [CrossRef] [PubMed]
- Dreier, J.; Meletzus, D.; Eichenlaub, R. Characterization of the plasmid encoded virulence region pat-1 of the phytopathogenic Clavibacter michiganensis subsp. michiganensis. Mol. Plant Microbe Interact. 1997, 10, 195–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahr, H.; Dreier, J.; Meletzus, D.; Bahro, R.; Eichenlaub, R. The endo-beta–1, 4-glucanase CelA of Clavibacter michiganensis subsp. michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. Mol. Plant Microbe Interact. 2000, 13, 703–714. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.S.; Oh, E.J.; Lee, H.B.; Oh, C.S. Functional characterization of two cellulase genes in the Gram-positive pathogenic bacterium Clavibacter michiganensis for wilting in tomato. Mol. Plant–Microbe Interact. 2019, 32, 491–501. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, D.J. Loosening of plant cell walls by expansins. Nature 2000, 407, 321–326. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Plant expansins: Diversity and interactions with plant cell walls. Curr. Opin. Plant Biol. 2015, 25, 162–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burger, A.; Gräfen, I.; Engemann, J.; Niermann, E.; Pieper, M.; Kirchner, O.; Gartemann, K.H.; Eichenlaub, R. Identification of homologues to the pathogenicity factor Pat–1, a putative serine protease of Clavibacter michiganensis subsp. michiganensis. Microbiol. Res. 2005, 160, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Stork, I.; Gartemann, K.H.; Burger, A.; Eichenlaub, R. A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato. Mol. Plant Pathol. 2008, 9, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Hatsugai, N.; Katagiri, F.; Ishimaru, C.A.; Glazebrook, J. Putative serine protease effectors of Clavibacter michiganesis induce a hypersensitive response in the apoplast of Nicotiana species. Mol. Plant Microbe Interact. 2015, 28, 1216–1226. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.S.; Lee, H.M.; Oh, E.J.; Lee, S.; Heu, S.; Oh, C.S. Plasmid composition and the chpG gene determine the virulence level of Clavibacter capsici natural isolates in pepper. Mol. Plant Pathol. 2020, 21, 808–819. [Google Scholar] [CrossRef] [Green Version]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The carbohydrate-active enzymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, 233–238. [Google Scholar] [CrossRef]
- Meletzus, D.; Bermphol, A.; Dreier, J.; Eichenlaub, R. Evidence for plasmid–encoded virulence factors in the phytopathogenic bacterium Clavibacter michiganensis subsp. michiganensis NCPPB382. J. Bacteriol. 1993, 175, 2131–2136. [Google Scholar] [CrossRef] [Green Version]
- Chalupowicz, L.; Cohen–Kandli, M.; Dror, O.; Eichenlaub, R.; Gartemann, K.H.; Sessa, G.; Barash, I.; Manulis-Sasson, S. Sequential expression of bacterial virulence and plant defense genes during infection of tomato with Clavibacter michiganensis subsp. michiganensis. Phytopathology 2010, 100, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Thapa, S.P.; O’Leary, M.; Jacques, M.; Gilbertson, R.L.; Coaker, G. Comparative genomics to develop a specific multiplex PCR assay for detection of Clavibacter michiganensis. Phytopathology 2020, 110, 556–566. [Google Scholar] [CrossRef] [Green Version]
- Tancos, M.A.; Lange, H.W.; Smart, C.D. Characterizing the genetic diversity of the Clavibacter michiganensis subsp. michiganensis population in New York. Phytopathology 2015, 105, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Lowe-Power, T.M.; Hendrich, C.G.; von Roepenack-Lahaye, E.; Li, B.; Wu, D.; Mitra, R.; Dalsing, B.L.; Ricca, P.; Naidoo, J.; Cook, D.; et al. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ. Microbiol. 2018, 20, 1330–1349. [Google Scholar] [CrossRef]
- Cellini, A.; Donati, I.; Fiorentini, L.; Vandelle, E.; Polverari, A.; Venturi, V.; Buriani, G.; Vanneste, J.L.; Spinelli, F. N-Acyl Homoserine lactones and Lux Solos regulate social behaviour and virulence of Pseudomonas syringae pv. Actinidiae. Microb. Ecol. 2020, 79, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Balaji, V.; Mayrose, M.; Sherf, O.; Jacob-Hirsch, J.; Eichenlaub, R.; Iraki, N.; Manulis–Sasson, S.; Rechavi, G.; Barash, I.; Sessa, G. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol. 2008, 146, 1797–1809. [Google Scholar] [CrossRef] [Green Version]
- Yokotani, N.; Hasegawa, Y.; Sato, M.; Hirakawa, H.; Kouzai, Y.; Nishizawa, Y.; Yamamoto, E.; Naito, Y.; Isobe, S. Transcriptome analysis of Clavibacter michiganensis subsp. michiganensis–infected tomatoes: A role of salicylic acid in the host response. BMC. Plant. Biol. 2021, 21, 476. [Google Scholar] [CrossRef]
- Melan, M.A.; Dong, X.N.; Endara, M.E. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid and methl jasmonate. Plant Physiol. 1993, 101, 441–450. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.S.; Hwang, B.K. The pepper 9–lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol. 2010, 152, 948–967. [Google Scholar] [CrossRef] [Green Version]
- Wiermer, M.; Feys, B.J.; Parker, J.E. Plant immunity: The EDS1 regulatory node. Curr. Opin. Plant Biol. 2005, 8, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Joglekar, S.; Suliman, M.; Bartsch, M.; Halder, V.; Maintz, J.; Bautor, J.; Zeier, J.; Parker, J.E.; Kombrink, E. Chemical activation of EDS1/PAD4 signaling leading to pathogen resistance in Arabidopsis. Plant Cell Physiol. 2018, 59, 1592–1607. [Google Scholar] [CrossRef]
- Tian, M.; Win, J.; Song, J.; Van der Hoorn, R.; Van der Knaap, E.; Kamoun, S.A. Phytophthora infestans cystatin–like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol. 2007, 143, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, L.; Mo, X.; Ji, H.; Bian, H.; Hu, Y. Aquaporin PIP1; 3 of rice and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. J. Exp. Bot. 2019, 70, 3057–3073. [Google Scholar] [CrossRef] [Green Version]
- Coaker, G.; Francis, D. Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor. Appl. Genet. 2004, 108, 1047–1055. [Google Scholar] [CrossRef]
- Umesha, S. Phenylalanine ammonia lyase activity in tomato seedlings and its relationship to bacterial canker disease resistance. Phytoparasitica 2006, 34, 68–71. [Google Scholar] [CrossRef]
- Esparza–Araiza, M.J.; Bañuelos-Hernández, B.; Argüello–Astorga, G.R. Evaluation of a SUMO E2 conjugating enzyme involved in resistance to Clavibacter michiganensis subsp. michiganensis in Solanum peruvianum, through a tomato mottle virus VIGS assay. Front. Plant Sci. 2015, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Balaji, V.; Smart, C.D. Over–expression of snakin-2 and extensin–like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res. 2012, 21, 23–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmann, J.; Brancato, C.; Berendzen, K.W.; Dreiseikelmann, B. Development of a tomato plant resistant to Clavibacter michiganensis using the endolysin gene of bacteriophage CMP1 as a transgene. Plant Pathol. 2016, 65, 496–502. [Google Scholar] [CrossRef]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Thyr, B.D. Resistance to Corynebacterium michiganense measured in six Lycopersicon accessions. Phytopathology 1971, 61, 972–974. [Google Scholar] [CrossRef]
- Thyr, B.D. Inheritance of resistance to Corynebacterium michiganense in tomato. Phytopathology 1976, 66, 1116–1119. [Google Scholar] [CrossRef]
- Kabelka, E.; Franchino, B.; Francis, D.M. Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 2002, 92, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Van Heusden, A.W.; Koornneef, M.; Voorrips, R.E.; Bruggemann, W.; Pet, G.; Vrielink van Ginkel, R.; Chen, X.; Lindhout, P. Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor. Appl. Genet. 1999, 99, 1068–1074. [Google Scholar] [CrossRef]
- Sandbrink, J.M.; Vanooijen, J.W.; Purimahua, C.C.; Vrielink, M.; Verkerk, R.; Zabel, P.; Lindhout, P. Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs. Theor. Appl. Genet. 1995, 90, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Zhang, W.; Zhang, X.Y.; Li, D.Z. Cross breeding of canker–resistance varieties for tomato and identification by SSR molecular markers. Hunan Agric. Sci. 2012, 13, 13–15. (In Chinese) [Google Scholar]
- Pereyra-Bistraín, L.I.; Ovando–Vázquez, C.; Rougon-Cardoso, A.; Alpuche–Solís, A.G. Comparative RNA-Seq analysis reveals potentially resistance–related genes in response to bacterial canker of tomato. Genes 2021, 12, 1745. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Balyan, H.S.; Gautam, T. SWEET genes and TAL effectors for disease resistance in plants:present status and future prospects. Mol. Plant. Pathol. 2021, 22, 1014–1026. [Google Scholar] [CrossRef]
- Navathe, S.; Yadav, P.S.; Chand, R.; Mishra, V.K.; Vasistha, N.K.; Meher, P.K.; Joshi, A.K.; Gupta, P.K. ToxA–Tsn1 interaction for spot blotch susceptibility in Indian wheats: An example of inverse gene–for-gene relationship. Plant Dis. 2020, 104, 71–81. [Google Scholar] [CrossRef]
- Asai, Y.; Kobayashi, Y.; Kobayashi, I. Increased expression of the tomato SISWEET15 gene during grey mold infection and the possible involvement of the sugar efflux to apoplasm in the disease susceptibility. J. Plant. Pathol. Microbiol. 2016, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Shammai, A.; Petreikov, M.; Yeselson, Y.; Faigenboim, A.; Moy-Komemi, M.; Cohen, S.; Cohen, D.; Besaulov, E.; Efrati, A.; Houminer, N.; et al. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose composition of ripening tomato fruit. Plant J. 2018, 96, 343–357. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.E.; Long, X.X.; Ni, W.Z.; Ye, Z.Q.; He, Z.L.; Stoffella, P.J.; Calvert, D.V. Assessing copper thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. J. Environ. Sci. Health 2002, 37, 625–635. [Google Scholar] [CrossRef]
- Baysal, O.; Gursoy, Y.; Ornek, H.; Duru, A. Induction of oxidants in tomato leaves treated with DL-beta–amino butyric acid (BABA) and infected with Clavibacter michiganensis ssp. michiganensis. Eur. J. Plant Pathol. 2005, 112, 361–369. [Google Scholar] [CrossRef]
- Baysal, O.; Soylu, E.M.; Soylu, S. Induction of defence–related enzymes and resistance by the plant activator acibenzolar-S-methyl in tomato seedlings against bacterial canker caused by Clavibacter michiganensis ssp. michiganensis. Plant Pathol. 2003, 52, 747–753. [Google Scholar] [CrossRef]
- De León, L.; Siverio, F.; López, M.M.; Rodríguez, A. Clavibacter michiganensis subsp. michiganensis, a seedborne tomato pathogen: Healthy seeds are still the goal. Plant Dis. 2011, 95, 1328–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Location in NCPPB382 | Gene Ontology | Gene Name | Mutant Phenotype Changes in Tomato Tissues | References |
---|---|---|---|---|
pCM1 plasmid | Chymotrypsin-related serine proteases | ppaJ | No report | [6] |
Cellulases | celA | Avirulent (wilt) | [15,35,40,41] | |
Expansins | CmEXLX1 (CelA domain) | Reduced wilt | [40,41] | |
pCM2 plasmid | Chymotrypsin | pat-1 | Reduced wilt | [40,41] |
subfamily S1A proteases | phpA | No change in wilt | [35,39] | |
phpB | No change in wilt | [44] | ||
pathogenicity island (PAI) | Chymotrypsin subfamily S1A proteases | chpA/B/D | No report | [44] |
Chpc | Reduced wilt and blisters | |||
chpE/F/G | No change in wilt and blisters | [6,45] | ||
ppaA/C | No change in wilt and blisters | [6,45] | ||
Chymotrypsin-related serine proteases | ppaB1/B2/D/E | No report | [6] | |
Subtilase proteases | sbtB/C | Reduced wilt and blisters | ||
Pectinases | pelA1/A2 | Reduced wilt | [6] | |
tomatinase | tomA | No change in wilt | [35] | |
chromosome other regions | Chymotrypsin-related serine proteases | ppaF/G/H/I | No report | [35] |
Subtilase proteases | sbtB/C | No change in wilt and blisters | ||
Cellulases | celB | No change in wilt and blisters | [6,41] | |
Xylanases | xysA/B | No change in wilt and blisters | [6] | |
Pectinases | pgaA | Reduced blisters, no change in wilt | [6] | |
Endoglucanases | endX/Y | Reduced blisters, no change in wilt | [35] | |
Expansins | expA(CmEXLX2) | Increased wilt and bird’s eye lesions | [40,41] | |
Perforin | perF(perforin) | Reduced blisters, no change in wilt | [15,29] | |
Sortase | srtA(sortase) | Reduced blisters, no change in wilt | [6] |
Resistance Source | Population Type | Gene Interactions | References |
---|---|---|---|
S. lycopersicum | Introgression lines Bulgaria 12 | Polygenic and horizontal type resistance | [8] |
S. lycopersicum | Bulgaria 12 F2 and backcross | Incomplete dominant genes with one to four major genes | [2] |
S. lycopersicum | Hawaii 7998 and Irat-L3 RIL population | Complementary genes with transgressive segregation | [2,4] |
S. pimpinellifolium | Homestead, Heinz 1350 | Polygenic and horizontal type resistance | [69,70] |
S. pimpinellifolium | Utah 737 and Utah 20 F2 and backcross of interspecific cross | 4 to 11 with presence of modifying genes | [2] |
S. pimpinellifolium | PI344102 and PI344103 | 4 genes | [4,8] |
S. peruvianum var. humifusum | Cm 180 (S. peruvianum var. humifusum × (S. lycopersicum × S. chilense LA 460)) F2 and backcross population | A single dominant gene on Chr 4 | [2] |
S. arcanum | LA2157 F2 and backcross of intraspecific cross | Two to three genes with recessive inheritance | [72] |
S. arcanum | LA2157 Backcross of intraspecific cross | 5 regions on chromosomes 1, 6, 7, 8, and 10 | [73] |
S. arcanum | LA2157 F2 population of interspecific cross | 3 QTLs on chromosomes 5, 7, and 9 additive interactions of QTLs | [72] |
S. habrochaites | LA 407 Inbred backcross lines of interspecific cross | 2 QTLs on chromosome 2 and 5 additive interactions of QTLs | [63,71] |
S. habrochaites | Highlander and Campbell | Polygenic and horizontal type resistance | [69,70] |
S. habrochaites | PI251305 | 1–3 genes | [69,70] |
S. habrochaites | Okitsu Sozai 1-20 | One major gene plus modifier genes | [8] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Deng, S.; Li, Z.; Yang, W. Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. Horticulturae 2022, 8, 209. https://doi.org/10.3390/horticulturae8030209
Wang Y, Deng S, Li Z, Yang W. Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. Horticulturae. 2022; 8(3):209. https://doi.org/10.3390/horticulturae8030209
Chicago/Turabian StyleWang, Yuqing, Shuozhen Deng, Ziyan Li, and Wencai Yang. 2022. "Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance" Horticulturae 8, no. 3: 209. https://doi.org/10.3390/horticulturae8030209
APA StyleWang, Y., Deng, S., Li, Z., & Yang, W. (2022). Advances in the Characterization of the Mechanism Underlying Bacterial Canker Development and Tomato Plant Resistance. Horticulturae, 8(3), 209. https://doi.org/10.3390/horticulturae8030209