Mulching Effect on Quantitative and Qualitative Characteristics of Yield in Sweet Potatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
- >150 g—tradable tuberous roots;
- <150 g—non-tradable tuberous roots.
2.2. Analytical Methods
2.2.1. Material
2.2.2. Methods
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Šlosár, M.; Mezeyová, I.; Hegedüsová, A.; Golian, M. Sweet potato (Ipomoea batatas L.) growing in conditions of southern Slovak republic. Potravinarstvo 2016, 10, 384–392. [Google Scholar] [CrossRef] [Green Version]
- FAO Stat Database. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 5 November 2021).
- Dinu, M.; Soare, R.; Băbeanu, C.; Hoza, G. Analysis of Nutritional Composition and Antioxidant Activity of Sweet Potato (Ipomoea batatas L.) Leaf and Petiole. J. Appl. Bot. Food Qual. 2018, 91, 120–125. [Google Scholar] [CrossRef]
- Tanaka, M.; Ishiguro, K.; Oki, T.; Okuno, S. Functional components in sweet potato and their genetic improvement. Breed. Sci. 2017, 67, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinu, M.; Băbeanu, C.; Hoza, C.; Sima, R.; Soare, R. Nutraceutical value and production of the sweet potato (Ipomoea batatas L.) cultivated in South-West of Romania. J. Cent. Eur. Agric. 2021, 22, 285–294. [Google Scholar] [CrossRef]
- Allen, C.J.; Corbitt, A.D.; Maloney, K.P.; Butt, M.S.; Truong, V.D. Glycemic index of sweet potato as affected by cooking methods. Open Nutr. J. 2012, 6, 1–11. [Google Scholar] [CrossRef]
- Kitahara, K.; Nakamura, Y.; Otani, M.; Hamada, T.; Nakayachi, O.; Takahata, Y. Carbohydrate components in sweet potato storage roots: Their diversities and genetic improvement. Breed. Sci. 2017, 67, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Najafabadi, M.B.M.; Peyvast, G.; Asil, M.H.; Olfati, J.A.; Rabiee, M. Mulching effects on the yield and quality of garlic as second crop in rice fields. Int. J. Plant Prod. 2012, 6, 279–289. [Google Scholar] [CrossRef]
- Kim, E.J.; Choi, D.G.; Jin, S.N. Effect of pre-harvest reflective mulch on growth and fruit quality of plum (Prunus domestica L.). Acta Hortic. 2008, 772, 323–326. [Google Scholar] [CrossRef]
- Kashi, A.; Hosseinzadeh, S.; Babalar, M.; Lessani, H. Effect of black polyethylene mulch and calcium nitrate application on growth, yield of watermelon (Citrullus lanatus). J. Sci. Tech. Agric. Nat. Res. 2004, 7, 235–246. [Google Scholar]
- Jiang, Y.; Shi, C.; Wang, Z.; Wang, C.; Liu, H. Effects of plastic film mulching on arable layer soil temperature, moisture and yield of sweet potato. Chin. J. Eco-Agric. 2014, 22, 627–634. [Google Scholar]
- Hou, F.; Zhang, L.; Xie, B.; Dong, S.; Zhang, H.; Li, A.; Wang, Q. Effect of plastic mulching on the photosynthetic capacity, endogenous hormones and root yield of summer-sown sweet potato (Ipomoea batatas (L). Lam.) in Northern China. Acta Physiol Plant. 2015, 37, 164. [Google Scholar] [CrossRef]
- Vial, L.K.; Lefroy, R.D.B.; Fukai, S. Application of mulch under reduced water input to increase yield and water productivity of sweet corn in a lowland rice system. Field Crops Res. 2015, 171, 120–129. [Google Scholar] [CrossRef]
- Raspisaniye Pogodi SRL. 2004–2021. Available online: https://rp5.ru/Vremea_%C3%AEn_Craiova_(aeroport) (accessed on 5 November 2021).
- Vasanthan, T. Overview of laboratory isolation of starch from plant materials. Curr. Protoc. Food Anal. Chem. 2001, 1, E2.1.1–E2.1.6. [Google Scholar] [CrossRef]
- Karakashov, B.; Grigorakis, S.; Loupassaki, S.; Mourtzinos, I.; Makris, D.P. Optimisation of organic solvent-free polyphenol extraction from Hypericum triquetrifolium Turra using Box–Behnken experimental design and kinetics. Int. J. Ind. Chem. 2015, 6, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Cicco, N.; Lanorte, M.T.; Paraggio, M.; Viggiano, M.; Lattanzio, V. A reproducible, rapid and inexpensive Folin–Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 2009, 91, 107–110. [Google Scholar] [CrossRef]
- Shi, H.; Niki, E. Stoichiometric and kinetic studies on Ginkgo biloba extract and related antioxidants. Lipids 1998, 33, 365. [Google Scholar] [CrossRef]
- Paleologou, I.; Vasiliou, A.; Grigorakis, S.; Makris, D.P. Optimisation of a green ultrasound-assisted extraction process for potato peel (Solanum tuberosum) polyphenols using bio-solvents and response surface methodology. Biomass Convers. Biorefin. 2016, 6, 289–299. [Google Scholar] [CrossRef]
- Onofri, A.; Pannacci, E. Spreadsheet tools for biometry classes in crop science programmes. Commun. Biometry Crop Sci. 2014, 9, 43–53. [Google Scholar]
- Dinu, M.; Soare, R. Researches on the sweet potato (Ipomea batatas L.) behavior under the soi land climatic conditions of the South-West of Roumania. J. Hortic. For. Biotechnol. 2015, 19, 79–84. [Google Scholar]
- Ellong, E.N.; Billard, C.; Adenet, S. Comparison of Physicochemical, Organoleptic and Nutritional Abilities of Eight Sweet Potato (Ipomoea batatas) Varieties. Food Nutr. Sci. 2014, 5, 196–311. [Google Scholar] [CrossRef] [Green Version]
- Uwah, D.F.; Undie, U.L.; John, N.M.; Ukoha, G.O. Growth and yield response of improved sweet potato (Ipomoea batatas (L.) Lam.) varieties to different rates of potassium fertilizer in Calabar, Nigeria. J. Agric. Sci. 2013, 5, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Nwosisi, N.; Nandwani, D.; Pokhare, B. Yield Performance of Organic Sweet potato Varieties in Various Mulches. Hortic 2017, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Jian-Wei, L.; Fang, C.; You-Sheng, X.; Yun-Fan, W.; Dong-Bi, L. Sweet Potato Response to Potassium. BCI 2001, 15, 10–12. [Google Scholar]
- Sowley, E.N.K.; Neindow, M.; Abubakari, A.H. Effect of poultry manure and NPK on yield and storability of orange- and white-fleshed sweet potato [Ipomoea batatas (L.) Lam.]. ISABB-J. Sci. Food Agric. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Nair, A.; Tillman, J.; Kruse, R.; Jokela, D. Effect of Plastic Mulch on Sweet Potato Yield and Quality. Iowa State University: Ames, IA, USA, 2015. Available online: https://core.ac.uk/display/38920222 (accessed on 1 November 2021).
- Bornt, C. Improving the Yield and Quality of Sweet potato Grown in New York. In Sustainable Agriculture Research and Education Final Report Summary; Cornell Cooperative Extension Capital District Vegetable & Small Fruit Program: Troy, NY, USA, 2012; p. 9. [Google Scholar]
- Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of plastic mulching and plastic residue on agricultural production: A meta-analysis. Sci. Total Environ. 2019, 651, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Hector, V.; Fukuda, S.; Arakaki, A. Crop production guidelines. In Sweet Potato Crop Production Guidelines for Hawaii; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, Hawaii, HI, USA, 2015. [Google Scholar]
- Senanayake, S.A.; Ranaweera, K.K.D.S.; Gunaratne, A.; Bamunuarachchi, A. Comparative analysis of nutritional quality of five different cultivars of sweet potatoes (Ipomea batatas (L.) Lam.) in Sri Lanka. Food Sci. Nutr. 2013, 1, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, A.; Chakraborty, I.; Mukhopadhyay, S.K.; Kumar, P.R.; Sen, H. Compositional changes of sweet potato as influenced by cultivar, harvest date and cooking. Acta Hortic. 2006, 703, 211–218. [Google Scholar] [CrossRef]
- Rautenbach, F.; Faber, M.; Laurie, S.M.; Laurie, R. Antioxidant Capacity and Antioxidant Content in Roots of 4 Sweet potato Varieties. J. Food Sci. 2010, 75, C400–C405. [Google Scholar] [CrossRef]
- Yildirim, Z.; Tokuşoğlu, Ö.; Öztürk, G. Determination of Sweet Potato [Ipomoea batatas (L.) Lam.] Genotypes Suitable to the Aegean Region of Turkey. Turkish J. Field Crop. 2011, 16, 48–53. [Google Scholar]
- Gichuhi, P.N.; Kokoasse-Kpomblekou, A.; Bowel-Benjamin, A.C. Nutritional and physical properties of organic Beauregard sweet potato (Ipomoea batatas L.) as influenced by broiler litter application rate. Food Sci Nutr. 2014, 2, 332–340. [Google Scholar] [CrossRef]
- Ogunlesi, M.; Okiei, W.; Azeez, L.; Obakachi, V.; Osunsanmi, M.; Nkenchor, G. Vitamin C contents of tropical vegetables and foods determined by voltammetric and titrimetric methods and their relevance to the medical uses of the plants. Int. J. Electrochem. Sci. 2010, 5, 105–115. [Google Scholar]
- Watada, A.E.; Tran, T.T. Vitamin C, B1, and B2 contents of stored fruits and vegetables as determined by high performance liquid chromatography. J. Am. Soc. Hortic. Sci. 1987, 112, 794–797. [Google Scholar]
- Truong, V.D.; Mcfeeters, R.F.; Thompson, R.T.; Dean, L.L.; Shofran, B. Phenolic acid content and composition in leaves and roots of common commercial sweet potato (Ipomea batatas L.) cultivars in the United States. J. Food Sci. 2007, 72, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Teow, C.C. Antioxidant Activity and Bioactive Compounds of Sweet Potatoes. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 2005. [Google Scholar]
- Poungmalee, B. Total Phenolic Content and Antioxidant Activity of Sweet Potato (Ipomoea batatas L.) Flours from Different Varieties Grown in Thailand. In Proceedings of the Pure and Applied Chemistry International Conference (PACCON), Bangsaen, Thailand, 23–25 January 2013; pp. 23–25. [Google Scholar]
- Evers, D.; Deußer, H. Potato Antioxidant Compounds: Impact of Cultivation Methods and Relevance for Diet and Health; Bouayed, J., Ed.; Nutrition, Well-Being and Health; InTech: Rijeka, Croatia, 2012; p. 106. [Google Scholar]
- Oki, T.; Masuda, M.; Furuta, S.; Nishiba, Y.; Terahara, N.; Suda, I. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J. Food Sci. 2002, 67, 1752–1756. [Google Scholar] [CrossRef]
- Cevallos-Casals, B.A.; Cisneros-Zevallos, L.A. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweet potato. J. Agric. Food Chem. 2003, 51, 3313–3319. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Tskayanagi, T.; Harada, K.; Makino, K.; Ishikawa, F. Antioxidative activity of anthocyanins from purple sweet potato, Ipomea batatas cultivar Ayamurasaki. Biosci. Biotechnol. Biochem. 2005, 69, 979–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Month/ Year | Temperature (°C) | The relative Humidity of the Air (%) | Rainfall (mm) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Mean | ||||||||
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | |
May | 4.8 | 10.1 | 29.6 | 30.0 | 16.7 | 19.3 | 73 | 67 | 58 | 57.0 |
June | 12.0 | 10.0 | 32.2 | 32.4 | 23.4 | 21.6 | 57 | 71 | 2.2 | 134.0 |
July | 14.0 | 12.6 | 38.4 | 31.6 | 24.2 | 22.3 | 59 | 73 | 84.0 | 148.0 |
August | 10.4 | 14.8 | 39.6 | 33.0 | 25.4 | 24.2 | 50 | 63 | 10.0 | 16.0 |
September | 5.5 | 1.9 | 34.3 | 32.6 | 19.4 | 19.2 | 57 | 61 | 21.0 | 17.0 |
October | 2.7 | 2.9 | 26.4 | 25.7 | 12.7 | 14.3 | 68 | 63 | 98 | 5.0 |
Cultivating System | Cultivar | Tradable Tubers (>150 g) | Untradable Tubers (<150 g) | Total Yield (t/ha) * | ||||
---|---|---|---|---|---|---|---|---|
Average Root Weight (g) | Yield (g/plant) | Yield (t/ha) | Average Root Weight (g) | Yield (g/plant) | Yield (t/ha) | |||
Non- mulching | ‘Pumpkin’ | 260.4 | 1067.64 | 23.48 | 96.2 | 355.94 | 7.83 | 31.31 c |
‘Chestnut’ | 348.7 | 1150.71 | 25.31 | 113.8 | 330.02 | 7.26 | 32.57 b | |
‘Italian’ | 285.6 | 1199.52 | 26.38 | 87.5 | 393.75 | 8.66 | 35.04 a | |
Mulching | ‘Pumpkin’ | 294.5 | 1325.25 | 29.15 | 102.3 | 378.51 | 8.33 | 37.48 B |
‘Chestnut’ | 370.2 | 1517.82 | 33.39 | 123.4 | 357.86 | 7.87 | 41.26 A | |
‘Italian’ | 315.4 | 1482.38 | 32.61 | 105.4 | 400.52 | 8.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinu, M.; Soare, R.; Poulianiti, K.; Karageorgou, I.; Bozinou, E.; Makris, D.P.; Lalas, S.; Botu, M. Mulching Effect on Quantitative and Qualitative Characteristics of Yield in Sweet Potatoes. Horticulturae 2022, 8, 271. https://doi.org/10.3390/horticulturae8030271
Dinu M, Soare R, Poulianiti K, Karageorgou I, Bozinou E, Makris DP, Lalas S, Botu M. Mulching Effect on Quantitative and Qualitative Characteristics of Yield in Sweet Potatoes. Horticulturae. 2022; 8(3):271. https://doi.org/10.3390/horticulturae8030271
Chicago/Turabian StyleDinu, Maria, Rodica Soare, Konstantina Poulianiti, Ioanna Karageorgou, Eleni Bozinou, Dimitris P. Makris, Stavros Lalas, and Mihai Botu. 2022. "Mulching Effect on Quantitative and Qualitative Characteristics of Yield in Sweet Potatoes" Horticulturae 8, no. 3: 271. https://doi.org/10.3390/horticulturae8030271
APA StyleDinu, M., Soare, R., Poulianiti, K., Karageorgou, I., Bozinou, E., Makris, D. P., Lalas, S., & Botu, M. (2022). Mulching Effect on Quantitative and Qualitative Characteristics of Yield in Sweet Potatoes. Horticulturae, 8(3), 271. https://doi.org/10.3390/horticulturae8030271