Biostimulatory Action of a Plant-Derived Protein Hydrolysate on Morphological Traits, Photosynthetic Parameters, and Mineral Composition of Two Basil Cultivars Grown Hydroponically under Variable Electrical Conductivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Growth Conditions
2.2. Harvest and Soil Plant Analysis Development Index (SPAD), Leaf Gas Exchange, and Chlorophyll Fluorescence Determination
2.3. Determination of Minerals
2.4. Determination of Chlorophylls and Carotenoids
2.5. Statistics
3. Results
3.1. Yield and Yield Parameters
3.2. Physiological Parameters
3.3. Mineral Profile
3.4. Pigments Accumulation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseini, H.; Mozafari, V.; Roosta, H.R.; Shirani, H.; van de Vlasakker, P.C.; Farhangi, M. Nutrient Use in Vertical Farming: Optimal Electrical Conductivity of Nutrient Solution for Growth of Lettuce and Basil in Hydroponic Cultivation. Horticulturae 2021, 7, 283. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.R.; Cho, J.Y. Reuse of hydroponic waste solution. Environ. Sci. Pollut. Res. 2014, 21, 9569–9577. [Google Scholar] [CrossRef] [PubMed]
- Aktsoglou, D.-C.; Kasampalis, D.S.; Sarrou, E.; Tsouvaltzis, P.; Chatzopoulou, P.; Martens, S.; Siomos, A.S. Protein hydrolysates supplement in the nutrient solution of soilless grown fresh peppermint and spearmint as a tool for improving product quality. Agronomy 2021, 11, 317. [Google Scholar] [CrossRef]
- Wortman, S.E. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- Yang, T.; Kim, H.-J. Characterizing nutrient composition and concentration in tomato-, basil-, and lettuce-based aquaponic and hydroponic systems. Water 2020, 12, 1259. [Google Scholar] [CrossRef]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef]
- Souri, M.K.; Bakhtiarizade, M. Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Sci. Hortic. 2019, 243, 472–476. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Nocerino, S.; Rouphael, Y.; Colla, G.; El-Nakhel, C.; Mori, M. Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and Lamb’s Lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy 2020, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Ganugi, P.; Fiorini, A.; Ardenti, F.; Caffi, T.; Bonini, P.; Taskin, E.; Puglisi, E.; Tabaglio, V.; Trevisan, M.; Lucini, L. Nitrogen use efficiency, rhizosphere bacterial community and root metabolome reprogramming due to maize seed treatment with microbial biostimulants. Physiol. Plant. 2022, 174, e13679. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.A. Practical applications of plant biostimulants in greenhouse vegetable crop production. Agronomy 2020, 10, 1569. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Geelen, D. Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [Green Version]
- Noroozlo, Y.A.; Souri, M.K.; Delshad, M. Effects of foliar application of glycine and glutamine amino acids on growth and quality of sweet basil. Adv. Hortic. Sci. 2019, 33, 495. [Google Scholar]
- Souri, M.K.; Hatamian, M. Aminochelates in plant nutrition: A review. J. Plant Nutr. 2019, 42, 67–78. [Google Scholar] [CrossRef]
- Bonasia, A.; Conversa, G.; Lazzizera, C.; Elia, A. Foliar Application of Protein Hydrolysates on Baby-Leaf Spinach Grown at Different N Levels. Agronomy 2022, 12, 36. [Google Scholar] [CrossRef]
- Li, X.; Zeng, R.; Liao, H. Improving crop nutrient efficiency through root architecture modifications. J. Integr. Plant Biol. 2016, 58, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Carillo, P.; Cristofano, F.; Cardarelli, M.; Colla, G. Effects of vegetal-versus animal-derived protein hydrolysate on sweet basil morpho-physiological and metabolic traits. Sci. Hortic. 2021, 284, 110123. [Google Scholar] [CrossRef]
- Sestili, F.; Rouphael, Y.; Cardarelli, M.; Pucci, A.; Bonini, P.; Canaguier, R.; Colla, G. Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Front. Plant Sci. 2018, 9, 1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carillo, P.; Colla, G.; El-Nakhel, C.; Bonini, P.; D’Amelia, L.; Dell’Aversana, E.; Pannico, A.; Giordano, M.; Sifola, M.I.; Kyriacou, M.C. Biostimulant application with a tropical plant extract enhances Corchorus olitorius adaptation to sub-optimal nutrient regimens by improving physiological parameters. Agronomy 2019, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Kerchev, P.; van der Meer, T.; Sujeeth, N.; Verlee, A.; Stevens, C.V.; Van Breusegem, F.; Gechev, T. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnol. Adv. 2020, 40, 107503. [Google Scholar] [CrossRef]
- Teklić, T.; Parađiković, N.; Špoljarević, M.; Zeljković, S.; Lončarić, Z.; Lisjak, M. Linking abiotic stress, plant metabolites, biostimulants and functional food. Ann. Appl. Biol. 2021, 178, 169–191. [Google Scholar] [CrossRef]
- ISTAT. (Istituto Nazionale di Statistica). Available online: http://dati.istat.it/ (accessed on 17 January 2022).
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Kyriacou, M.C.; Soteriou, G.A.; Pizzolongo, F.; Romano, R.; De Pascale, S.; Rouphael, Y. Genotype and successive harvests interaction affects phenolic acids and aroma profile of genovese basil for pesto sauce production. Foods 2021, 10, 278. [Google Scholar] [CrossRef]
- Žlabur, J.Š.; Opačić, N.; Žutić, I.; Voća, S.; Poštek, M.; Radman, S.; Benko, B.; Uher, S.F. Valorization of Nutritional Potential and Specialized Metabolites of Basil Cultivars Depending on Cultivation Method. Agronomy 2021, 11, 1048. [Google Scholar] [CrossRef]
- Ciriello, M.; Pannico, A.; El-Nakhel, C.; Formisano, L.; Cristofano, F.; Duri, L.G.; Pizzolongo, F.; Romano, R.; De Pascale, S.; Colla, G.; et al. Sweet Basil Functional Quality as Shaped by Genotype and Macronutrient Concentration Reciprocal Action. Plants 2020, 9, 1786. [Google Scholar] [CrossRef]
- Formisano, L.; Ciriello, M.; El-Nakhel, C.; De Pascale, S.; Rouphael, Y. Dataset on the Effects of Anti-Insect Nets of Different Porosity on Mineral and Organic Acids Profile of Cucurbita pepo L. Fruits and Leaves. Data 2021, 6, 50. [Google Scholar] [CrossRef]
- El-Nakhel, C.; Ciriello, M.; Formisano, L.; Pannico, A.; Giordano, M.; Gentile, B.R.; Fusco, G.M.; Kyriacou, M.C.; Carillo, P.; Rouphael, Y. Protein Hydrolysate Combined with Hydroponics Divergently Modifies Growth and Shuffles Pigments and Free Amino Acids of Carrot and Dill Microgreens. Horticulturae 2021, 7, 279. [Google Scholar] [CrossRef]
- Nicoletto, C.; Santagata, S.; Bona, S.; Sambo, P. Influence of cut number on qualitative traits in different cultivars of sweet basil. Ind. Crop. Prod. 2013, 44, 465–472. [Google Scholar]
- Formisano, L.; Ciriello, M.; El-Nakhel, C.; Kyriacou, M.C.; Rouphael, Y. Successive Harvests Modulate the Productive and Physiological Behavior of Three Genovese Pesto Basil Cultivars. Agronomy 2021, 11, 560. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Callahan, A.; Cantrell, C.L. Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. J. Agric. Food Chem. 2008, 56, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Andayani, N.; Riadi, M.; Kalqutny, S.; Efendi, R.; Azrai, M. Evaluation of yield and agronomic components of three-way cross maize hybrids under low-light environment. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Makassar, Indonesia, 23–25 September 2019; p. 012016. [Google Scholar]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Corrado, G.; Pannico, A.; De Pascale, S.; Rouphael, Y. Morpho-Physiological Responses and Secondary Metabolites Modulation by Preharvest Factors of Three Hydroponically Grown Genovese Basil Cultivars. Front. Plant Sci 2021, 12, 671026. [Google Scholar] [CrossRef] [PubMed]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour measurement and analysis in fresh and processed foods: A review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Zhou, Q.; Nandwani, D.; Hui, D.; Yu, J. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. Chinensis) in a hydroponic system. PLoS ONE 2018, 13, e0202090. [Google Scholar] [CrossRef]
- Albornoz, F.; Heinrich Lieth, J. Over fertilization limits lettuce productivity because of osmotic stress. Chil. J. Agric. Res. 2015, 75, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Walters, K.J.; Currey, C.J. Effects of nutrient solution concentration and daily light integral on growth and nutrient concentration of several basil species in hydroponic production. HortScience 2018, 53, 1319–1325. [Google Scholar] [CrossRef]
- Morano, G.; Amalfitano, C.; Sellitto, M.; Cuciniello, A.; Maiello, R.; Caruso, G. Effects of nutritive solution electrical conductivity and plant density on growth, yield and quality of sweet basil grown in gullies by subirrigation. Adv. Hortic. Sci. 2017, 31, 25–30. [Google Scholar]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.-J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Khammar, A.A.; Moghaddam, M.; Asgharzade, A.; Sourestani, M.M. Nutritive Composition, Growth, Biochemical Traits, Essential Oil Content and Compositions of Salvia officinalis L. Grown in Different Nitrogen Levels in Soilless Culture. J. Soil Sci. Plant Nutr. 2021, 21, 3320–3332. [Google Scholar] [CrossRef]
- Chenard, C.H.; Kopsell, D.A.; Kopsell, D.E. Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. J. Plant Nutr. 2005, 28, 285–297. [Google Scholar] [CrossRef]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.Q.; Ko, K.Y.; Kim, S.H.; Lee, K.S. Effect of amino acid fertilization on nitrate assimilation of leafy radish and soil chemical properties in high nitrate soil. Commun. Soil Sci. Plant Anal. 2007, 39, 269–281. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Colla, G.; Fiorentino, N.; Sabatino, L.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cirillo, V.; Shabani, E. Appraisal of combined applications of Trichoderma virens and a biopolymer-based biostimulant on lettuce agronomical, physiological, and qualitative properties under variable N regimes. Agronomy 2020, 10, 196. [Google Scholar] [CrossRef] [Green Version]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Tsouvaltzis, P.; Kasampalis, D.S.; Aktsoglou, D.-C.; Barbayiannis, N.; Siomos, A.S. Effect of Reduced Nitrogen and Supplemented Amino Acids Nutrient Solution on the Nutritional Quality of Baby Green and Red Lettuce Grown in a Floating System. Agronomy 2020, 10, 922. [Google Scholar] [CrossRef]
- Cristofano, F.; El-Nakhel, C.; Pannico, A.; Giordano, M.; Colla, G.; Rouphael, Y. Foliar and Root Applications of Vegetal-Derived Protein Hydrolysates Differentially Enhance the Yield and Qualitative Attributes of Two Lettuce Cultivars Grown in Floating System. Agronomy 2021, 11, 1194. [Google Scholar] [CrossRef]
- Matsumiya, Y.; Kubo, M. Soybean peptide: Novel plant growth promoting peptide from soybean. In Soybean and Nutrition; El-Shemy, H., Ed.; InTech, 2011; Available online: http://www.intechopen.com/books/soybean-and-nutrition/soybean-peptide-novel-plant-growth-promoting-peptide-from-soybean (accessed on 29 March 2022).
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Ertani, A.; Schiavon, M.; Nardi, S. Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicon L. in response to an alfalfa-protein hydrolysate using microarrays. Front. Plant Sci. 2017, 8, 1159. [Google Scholar] [CrossRef] [Green Version]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [Green Version]
- Koukounaras, P.T.A.; Siomos, A.S. Application of amino acids improves lettuce crop uniformity and inhibits nitrate accumulation induced by the supplemental inorganic nitrogen fertilization. Int. J. Agric. Biol. 2014, 16, 951–955. [Google Scholar]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
Total Fresh Weight | Leaf-to-Stem Ratio | Node Number | Stem Diameter | |
---|---|---|---|---|
g Plant−1 | n° Plant−1 | mm | ||
Cultivar (CV) | ||||
Eleonora | 21.02 ± 0.41 a | 1.17 ± 0.01 b | 4.18 ± 0.05 a | 6.03 ± 0.05 a |
Italiano Classico | 19.91 ± 0.42 b | 1.51 ± 0.02 a | 3.93 ± 0.06 b | 5.52 ± 0.07 b |
Biostimulant Treatment (BT) | ||||
Control | 18.52 ± 0.24 c | 1.31 ± 0.05 c | 3.86 ± 0.07 b | 5.64 ± 0.11 b |
BT1 | 20.50 ± 0.25 b | 1.37 ± 0.06 a | 4.12 ± 0.06 a | 5.84 ± 0.12 a |
BT2 | 22.36 ± 0.28 a | 1.35 ± 0.05 b | 4.19 ± 0.06 a | 5.84 ± 0.08 a |
Nutrient Solution Concentration (NSC) | ||||
NSC1 | 20.39 ± 0.33 | 1.32 ± 0.04 b | 4.02 ± 0.05 b | 5.92 ± 0.06 a |
NSC2 | 20.53 ± 0.51 | 1.37 ± 0.05 a | 4.09 ± 0.07 a | 5.62 ± 0.09 b |
CV × BT | ||||
Eleonora × Control | 19.06 ± 0.36 c | 1.14 ± 0.01 | 4.08 ± 0.03 ab | 5.91 ± 0.12 |
Eleonora × BT1 | 21.31 ± 0.11 b | 1.21 ± 0.03 | 4.26 ± 0.08 a | 6.09 ± 0.07 |
Eleonora × BT2 | 22.68 ± 0.45 a | 1.18 ± 0.01 | 4.21 ± 0.12 a | 6.08 ± 0.07 |
Italiano Classico × Control | 17.98 ± 0.06 d | 1.47 ± 0.02 | 3.65 ± 0.05 c | 5.36 ± 0.07 |
Italiano Classico × BT1 | 19.69 ± 0.06 c | 1.54 ± 0.05 | 3.98 ± 0.05 b | 5.58 ± 0.17 |
Italiano Classico × BT2 | 22.05 ± 0.29 ab | 1.52 ± 0.03 | 4.18 ± 0.02 ab | 5.61 ± 0.06 |
BT × NSC | ||||
Control × NSC1 | 18.94 ± 0.41 d | 1.34 ± 0.08 bc | 3.91 ± 0.12 cd | 5.84 ± 0.15 b |
BT1 × NSC1 | 20.56 ± 0.42 c | 1.28 ± 0.06 cd | 4.09 ± 0.02 bc | 6.10 ± 0.07 a |
BT2 × NSC1 | 21.68 ± 0.20 b | 1.32 ± 0.06 bcd | 4.07 ± 0.06 bc | 5.82 ± 0.07 b |
Control × NSC2 | 18.10 ± 0.11 e | 1.27 ± 0.07 d | 3.81 ± 0.09 d | 5.43 ± 0.10 c |
BT1 × NSC1 | 20.44 ± 0.32 c | 1.46 ± 0.09 a | 4.15 ± 0.12 ab | 5.57 ± 0.17 c |
BT2 × NSC2 | 23.05 ± 0.32 a | 1.37 ± 0.10 b | 4.32 ± 0.07 a | 5.86 ± 0.16 b |
CV × NSC | ||||
Eleonora × NSC1 | 21.01 ± 0.31 | 1.17 ± 0.01 c | 4.07 ± 0.03 b | 6.12 ± 0.05 a |
Eleonora × NSC2 | 21.03 ± 0.78 | 1.18 ± 0.02 c | 4.29 ± 0.08 a | 5.93 ± 0.08 b |
Italiano Classico × NSC1 | 19.78 ± 0.53 | 1.46 ± 0.01 b | 3.98 ± 0.08 bc | 5.72 ± 0.07 c |
Italiano Classico × NSC2 | 20.03 ± 0.67 | 1.56 ± 0.03 a | 3.89 ± 0.08 c | 5.31 ± 0.06 d |
Significance | ||||
CV | *** | *** | *** | *** |
BT | *** | *** | *** | *** |
NSC | ns | *** | * | *** |
CV × BT | ** | ns | *** | ns |
BT × NSC | *** | *** | *** | *** |
CV × NSC | ns | *** | *** | *** |
Leaf Area | SPAD Index | Fv/Fm | ACO2 | gs | E | WUEi | |
---|---|---|---|---|---|---|---|
cm2 Plant−1 | µmol CO2 m−2 s−1 | mol H2O m−2 s−1 | mol H2O m−2 s−1 | mol CO2 mol H2O−1 | |||
Cultivar (CV) | |||||||
Eleonora | 309.09 ± 7.00 | 35.86 ± 0.39 a | 0.80 ± 0.00 | 28.22 ± 0.54 a | 1.27 ± 0.03 | 6.18 ± 0.10 | 4.57 ± 0.07 |
Italiano Classico | 304.47 ± 9.27 | 34.37 ± 0.38 b | 0.79 ± 0.00 | 25.85 ± 0.46 b | 1.24 ± 0.03 | 6.16 ± 0.12 | 4.21 ± 0.06 |
Biostimulant Treatment (BT) | |||||||
Control | 266.96 ± 5.42 c | 33.22 ± 0.31 c | 0.79 ± 0.00 c | 24.69 ± 0.31 c | 1.18 ± 0.01 c | 5.80 ± 0.12 c | 4.27 ± 0.08 b |
BT1 | 313.08 ± 4.30 b | 35.75 ± 0.40 b | 0.80 ± 0.00 b | 27.37 ± 0.65 b | 1.26 ± 0.04 b | 6.19 ± 0.08 b | 4.42 ± 0.11 ab |
BT2 | 340.30 ± 4.10 a | 36.37 ± 0.27 a | 0.81 ± 0.00 a | 29.04 ± 0.37 a | 1.32 ± 0.02 a | 6.52 ± 0.13 a | 4.47 ± 0.10 a |
Nutrient Solution Concentration (NSC) | |||||||
NSC1 | 308.34 ± 7.60 | 34.45 ± 0.40 b | 0.79 ± 0.00 | 26.79 ± 0.59 b | 1.28 ± 0.03 a | 6.01 ± 0.11 b | 4.46 ± 0.07 |
NSC2 | 305.23 ± 8.81 | 35.77 ± 0.39 a | 0.80 ± 0.00 | 27.28 ± 0.55 a | 1.24 ± 0.02 b | 6.34 ± 0.10 a | 4.31 ± 0.08 |
CV × BT | |||||||
Eleonora × Control | 273.01 ± 9.26 d | 33.91 ± 0.31 | 0.79 ± 0.00 | 25.30 ± 0.49 c | 1.19 ± 0.02 b | 5.81 ± 0.11 | 4.36 ± 0.04 bc |
Eleonora × BT1 | 325.41 ± 3.88 b | 36.60 ± 0.46 | 0.80 ± 0.00 | 29.44 ± 0.28 ab | 1.36 ± 0.06 a | 6.24 ± 0.12 | 4.72 ± 0.11 a |
Eleonora × BT2 | 328.86 ± 2.70 b | 37.06 ± 0.33 | 0.81 ± 0.00 | 29.92 ± 0.21 a | 1.26 ± 0.01 b | 6.50 ± 0.18 | 4.62 ± 0.15 ab |
Italiano Classico × Control | 260.92 ± 5.36 d | 32.53 ± 0.37 | 0.78 ± 0.00 | 24.08 ± 0.19 c | 1.17 ± 0.01 b | 5.80 ± 0.22 | 4.18 ± 0.15 c |
Italiano Classico × BT1 | 300.75 ± 2.32 c | 34.90 ± 0.46 | 0.80 ± 0.00 | 25.31 ± 0.29 c | 1.17 ± 0.01 b | 6.14 ± 0.10 | 4.12 ± 0.05 c |
Italiano Classico × BT2 | 351.75 ± 3.76 a | 35.68 ± 0.15 | 0.80 ± 0.00 | 28.16 ± 0.49 b | 1.38 ± 0.01 a | 6.55 ± 0.20 | 4.32 ± 0.12 bc |
BT × NSC | |||||||
Control × NSC1 | 272.69 ± 9.78 c | 32.53 ± 0.39 d | 0.78 ± 0.00 | 24.08 ± 0.24 | 1.19 ± 0.01 b | 5.46 ± 0.11 d | 4.41 ± 0.08 abc |
BT1 × NSC1 | 316.52 ± 7.15 b | 34.81 ± 0.42 b | 0.80 ± 0.00 | 27.46 ± 0.81 | 1.31 ± 0.08 a | 6.43 ± 0.05 b | 4.27 ± 0.10 bc |
BT2 × NSC1 | 335.80 ± 4.95 a | 36.02 ± 0.26 a | 0.80 ± 0.00 | 28.83 ± 0.67 | 1.32 ± 0.03 a | 6.13 ± 0.09 c | 4.71 ± 0.13 a |
Control × NSC2 | 261.24 ± 4.51 c | 33.91 ± 0.30 c | 0.79 ± 0.00 | 25.30 ± 0.47 | 1.17 ± 0.02 b | 6.14 ± 0.06 bc | 4.13 ± 0.11 c |
BT1 × NSC1 | 309.64 ± 5.03 b | 36.69 ± 0.42 a | 0.80 ± 0.00 | 27.28 ± 1.10 | 1.21 ± 0.01 b | 5.95 ± 0.03 c | 4.58 ± 0.18 ab |
BT2 × NSC2 | 344.81 ± 6.42 a | 36.72 ± 0.45 a | 0.81 ± 0.00 | 29.26 ± 0.36 | 1.32 ± 0.03 a | 6.92 ± 0.04 a | 4.23 ± 0.07 c |
CV × NSC | |||||||
Eleonora × NSC1 | 316.28 ± 6.33 a | 35.12 ± 0.48 | 0.80 ± 0.00 | 27.91 ± 0.93 | 1.32 ± 0.05 a | 6.08 ± 0.14 bc | 4.59 ± 0.10 a |
Eleonora × NSC2 | 301.91 ± 12.46 b | 36.59 ± 0.54 | 0.80 ± 0.01 | 28.53 ± 0.59 | 1.22 ± 0.02 b | 6.28 ± 0.15 ab | 4.55 ± 0.11 a |
Italiano Classico × NSC1 | 300.40 ± 13.78 b | 33.78 ± 0.58 | 0.79 ± 0.01 | 25.67 ± 0.56 | 1.23 ± 0.04 b | 5.93 ± 0.17 c | 4.34 ± 0.10 a |
Italiano Classico × NSC2 | 308.55 ± 13.10 ab | 34.95 ± 0.42 | 0.80 ± 0.00 | 26.02 ± 0.75 | 1.25 ± 0.03 ab | 6.39 ± 0.15 a | 4.07 ± 0.06 b |
Significance | |||||||
CV | ns | *** | ns | *** | ns | ns | *** |
BT | *** | *** | *** | *** | *** | *** | * |
NSC | ns | *** | ns | * | ** | *** | ** |
CV × BT | *** | ns | ns | *** | *** | ns | ** |
BT × NSC | ** | ** | ns | ns | * | *** | *** |
CV × NSC | *** | ns | ns | ns | *** | * | * |
Nitrate | P | K | Ca | Mg | S | |
---|---|---|---|---|---|---|
(mg kg−1 fw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | (g kg−1 dw) | |
Cultivar (CV) | ||||||
Eleonora | 2988.16 ± 122.67 a | 6.56 ± 0.15 b | 53.17 ± 1.43 a | 10.27 ± 0.35 b | 3.32 ± 0.06 a | 0.95 ± 0.02 b |
Italiano Classico | 2584.55 ± 92.73 b | 7.58 ± 0.37 a | 48.51 ± 0.81 b | 13.22 ± 0.54 a | 3.16 ± 0.05 b | 1.46 ± 0.04 a |
Biostimulant Treatment (BT) | ||||||
Control | 2766.18 ± 181.42 b | 6.36 ± 0.13 b | 47.48 ± 1.88 c | 13.13 ± 0.82 a | 3.32 ± 0.07 a | 1.20 ± 0.08 ab |
BT1 | 2583.26 ± 123.40 c | 6.61 ± 0.27 b | 51.13 ± 1.14 b | 10.96 ± 0.56 b | 3.21 ± 0.06 ab | 1.17 ± 0.07 b |
BT2 | 3009.64 ± 97.30 a | 8.24 ± 0.40 a | 53.91 ± 1.00 a | 11.13 ± 0.56 b | 3.18 ± 0.07 b | 1.24 ± 0.10 a |
Nutrient Solution Concentration (NSC) | ||||||
NSC1 | 2434.36 ± 90.26 b | 6.6 ± 0.18 b | 48.34 ± 1.26 b | 12.25 ± 0.62 a | 3.37 ± 0.03 a | 1.26 ± 0.06 a |
NSC2 | 3138.35 ± 75.61 a | 7.55 ± 0.36 a | 53.34 ± 1.00 a | 11.23 ± 0.51 b | 3.11 ± 0.06 b | 1.14 ± 0.07 b |
CV × BT | ||||||
Eleonora × Control | 2901.45 ± 336.83 ab | 6.24 ± 0.18 c | 48.93 ± 3.83 bc | 11.92 ± 0.33 | 3.43 ± 0.05 | 1.00 ± 0.02 b |
Eleonora × BT1 | 2837.60 ± 142.44 b | 6.14 ± 0.09 c | 54.32 ± 0.61 ab | 9.44 ± 0.45 | 3.29 ± 0.11 | 0.94 ± 0.03 b |
Eleonora × BT2 | 3225.43 ± 49.60 a | 7.31 ± 0.10 b | 56.25 ± 0.15 a | 9.44 ± 0.36 | 3.23 ± 0.11 | 0.91 ± 0.05 b |
Italiano Classico × Control | 2630.90 ± 155.07 bc | 6.48 ± 0.18 bc | 46.03 ± 0.16 c | 14.35 ± 1.50 | 3.22 ± 0.13 | 1.40 ± 0.10 a |
Italiano Classico × BT1 | 2328.92 ± 144.35 c | 7.07 ± 0.48 bc | 47.94 ± 1.12 c | 12.47 ± 0.51 | 3.13 ± 0.03 | 1.40 ± 0.03 a |
Italiano Classico × BT2 | 2793.84 ± 143.40 b | 9.18 ± 0.59 a | 51.57 ± 1.49 abc | 12.82 ± 0.30 | 3.14 ± 0.08 | 1.56 ± 0.04 a |
BT × NSC | ||||||
Control × NSC1 | 2226.11 ± 69.60 d | 6.28 ± 0.21 cd | 43.34 ± 1.33 c | 14.35 ± 1.48 a | 3.41 ± 0.05 | 1.31 ± 0.13 a |
BT1 × NSC1 | 2270.56 ± 117.17 d | 6.02 ± 0.09 d | 49.30 ± 1.66 b | 11.16 ± 0.36 b | 3.30 ± 0.08 | 1.22 ± 0.11 ab |
BT2 × NSC1 | 2806.42 ± 150.99 c | 7.50 ± 0.20 b | 52.39 ± 1.81 ab | 11.23 ± 0.48 b | 3.38 ± 0.04 | 1.24 ± 0.11 ab |
Control × NSC2 | 3306.25 ± 152.67 a | 6.45 ± 0.16 cd | 51.62 ± 2.63 ab | 11.92 ± 0.39 ab | 3.23 ± 0.14 | 1.09 ± 0.05 b |
BT1 × NSC1 | 2895.95 ± 119.00 bc | 7.20 ± 0.42 bc | 52.96 ± 1.26 ab | 10.75 ± 1.11 b | 3.11 ± 0.07 | 1.12 ± 0.10 ab |
BT2 × NSC2 | 3212.85 ± 48.35 ab | 8.99 ± 0.67 a | 55.43 ± 0.49 a | 11.03 ± 1.07 b | 2.99 ± 0.04 | 1.23 ± 0.19 ab |
CV × NSC | ||||||
Eleonora × NSC1 | 2606.97 ± 148.52 | 6.31 ± 0.21 b | 49.91 ± 2.43 b | 10.62 ± 0.19 | 3.41 ± 0.04 | 1.01 ± 0.01 |
Eleonora × NSC2 | 3369.35 ± 74.66 | 6.82 ± 0.18 b | 56.43 ± 0.29 a | 9.91 ± 0.68 | 3.22 ± 0.09 | 0.89 ± 0.03 |
Italiano Classico × NSC1 | 2261.76 ± 71.54 | 6.88 ± 0.28 b | 46.78 ± 0.48 b | 13.88 ± 0.96 | 3.32 ± 0.05 | 1.51 ± 0.03 |
Italiano Classico × NSC2 | 2907.35 ± 73.34 | 8.27 ± 0.63 a | 50.25 ± 1.34 b | 12.55 ± 0.46 | 3.00 ± 0.04 | 1.40 ± 0.07 |
Significance | ||||||
CV | *** | *** | *** | *** | *** | *** |
BT | *** | *** | *** | *** | * | ** |
NSC | *** | *** | *** | *** | *** | *** |
CV × BT | * | *** | *** | ns | ns | *** |
BT × NSC | *** | *** | *** | ** | ns | *** |
CV × NSC | ns | *** | *** | ns | ns | ns |
Chlorophyll a | Chlorophyll b | Total Chlorophylls | Carotenoids | Chlorophyll a/b | |
---|---|---|---|---|---|
mg g−1 fw | mg g−1 fw | mg g−1 fw | mg g−1 fw | ||
Cultivar (CV) | |||||
Eleonora | 1.13 ± 0.02 a | 0.67 ± 0.02 a | 1.75 ± 0.03 a | 0.37 ± 0.01 a | 1.703 ± 0.04 |
Italiano Classico | 1.07 ± 0.02 b | 0.63 ± 0.02 b | 1.68 ± 0.03 b | 0.34 ± 0.01 b | 1.742 ± 0.06 |
Biostimulant Treatment (BT) | |||||
Control | 1.02 ± 0.01 b | 0.55 ± 0.02 b | 1.55 ± 0.02 c | 0.36 ± 0.02 a | 1.875 ± 0.07 a |
BT1 | 1.11 ± 0.02 a | 0.68 ± 0.01 a | 1.74 ± 0.01 b | 0.36 ± 0.01 a | 1.645 ± 0.03 b |
BT2 | 1.16 ± 0.03 a | 0.71 ± 0.03 a | 1.84 ± 0.03 a | 0.34 ± 0.01 b | 1.647 ± 0.07 b |
Nutrient Solution Concentration (NSC) | |||||
NSC1 | 1.10 ± 0.02 | 0.62 ± 0.02 b | 1.68 ± 0.03 b | 0.37 ± 0.01 a | 1.806 ± 0.06 |
NSC2 | 1.10 ± 0.02 | 0.68 ± 0.02 a | 1.74 ± 0.04 a | 0.34 ± 0.01 b | 1.639 ± 0.04 |
CV × BT | |||||
Eleonora × Control | 1.05 ± 0.01 c | 0.60 ± 0.01 b | 1.61 ± 0.01 c | 0.37 ± 0.01 a | 1.740 ± 0.03 ab |
Eleonora × BT1 | 1.11 ± 0.04 b | 0.68 ± 0.02 ab | 1.73 ± 0.01 b | 0.36 ± 0.01 a | 1.637 ± 0.04 b |
Eleonora × BT2 | 1.23 ± 0.02 a | 0.73 ± 0.05 a | 1.91 ± 0.04 a | 0.37 ± 0.01 a | 1.732 ± 0.13 b |
Italiano Classico × Control | 1.00 ± 0.02 c | 0.51 ± 0.03 c | 1.50 ± 0.03 d | 0.36 ± 0.03 a | 2.009 ± 0.13 a |
Italiano Classico × BT1 | 1.11 ± 0.02 b | 0.67 ± 0.01 ab | 1.76 ± 0.02 b | 0.35 ± 0.02 a | 1.653 ± 0.04 b |
Italiano Classico × BT2 | 1.09 ± 0.02 bc | 0.70 ± 0.01 a | 1.78 ± 0.02 b | 0.30 ± 0.01 b | 1.562 ± 0.01 ab |
BT × NSC | |||||
Control × NSC1 | 1.03 ± 0.01 | 0.53 ± 0.04 d | 1.54 ± 0.04 c | 0.41 ± 0.01 a | 1.976 ± 0.13 |
BT1 × NSC1 | 1.13 ± 0.03 | 0.68 ± 0.01 b | 1.74 ± 0.01 b | 0.34 ± 0.02 bc | 1.663 ± 0.04 |
BT2 × NSC1 | 1.15 ± 0.05 | 0.65 ± 0.01 bc | 1.78 ± 0.02 b | 0.35 ± 0.02 bc | 1.779 ± 0.10 |
Control × NSC2 | 1.02 ± 0.02 | 0.58 ± 0.01 cd | 1.57 ± 0.03 c | 0.32 ± 0.01 c | 1.774 ± 0.04 |
BT1 × NSC1 | 1.10 ± 0.03 | 0.68 ± 0.02 b | 1.75 ± 0.02 b | 0.37 ± 0.01 ab | 1.627 ± 0.04 |
BT2 × NSC2 | 1.17 ± 0.03 | 0.78 ± 0.03 a | 1.91 ± 0.04 a | 0.32 ± 0.01 c | 1.515 ± 0.06 |
CV × NSC | |||||
Eleonora × NSC1 | 1.15 ± 0.03 a | 0.64 ± 0.01 | 1.73 ± 0.03 | 0.39 ± 0.01 a | 1.793 ± 0.06 |
Eleonora × NSC2 | 1.10 ± 0.03 ab | 0.69 ± 0.04 | 1.77 ± 0.06 | 0.35 ± 0.00 b | 1.614 ± 0.06 |
Italiano Classico × NSC1 | 1.05 ± 0.02 b | 0.59 ± 0.04 | 1.64 ± 0.05 | 0.34 ± 0.02 b | 1.819 ± 0.12 |
Italiano Classico × NSC2 | 1.09 ± 0.03 ab | 0.66 ± 0.03 | 1.72 ± 0.05 | 0.33 ± 0.02 b | 1.664 ± 0.05 |
Significance | *** | ** | *** | *** | ns |
CV | *** | *** | *** | *** | *** |
BT | ns | *** | *** | *** | *** |
NSC | ** | * | *** | *** | *** |
CV × BT | ns | *** | * | *** | ns |
BT × NSC | ** | ns | ns | ** | ns |
CV × NSC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciriello, M.; Formisano, L.; El-Nakhel, C.; Corrado, G.; Rouphael, Y. Biostimulatory Action of a Plant-Derived Protein Hydrolysate on Morphological Traits, Photosynthetic Parameters, and Mineral Composition of Two Basil Cultivars Grown Hydroponically under Variable Electrical Conductivity. Horticulturae 2022, 8, 409. https://doi.org/10.3390/horticulturae8050409
Ciriello M, Formisano L, El-Nakhel C, Corrado G, Rouphael Y. Biostimulatory Action of a Plant-Derived Protein Hydrolysate on Morphological Traits, Photosynthetic Parameters, and Mineral Composition of Two Basil Cultivars Grown Hydroponically under Variable Electrical Conductivity. Horticulturae. 2022; 8(5):409. https://doi.org/10.3390/horticulturae8050409
Chicago/Turabian StyleCiriello, Michele, Luigi Formisano, Christophe El-Nakhel, Giandomenico Corrado, and Youssef Rouphael. 2022. "Biostimulatory Action of a Plant-Derived Protein Hydrolysate on Morphological Traits, Photosynthetic Parameters, and Mineral Composition of Two Basil Cultivars Grown Hydroponically under Variable Electrical Conductivity" Horticulturae 8, no. 5: 409. https://doi.org/10.3390/horticulturae8050409
APA StyleCiriello, M., Formisano, L., El-Nakhel, C., Corrado, G., & Rouphael, Y. (2022). Biostimulatory Action of a Plant-Derived Protein Hydrolysate on Morphological Traits, Photosynthetic Parameters, and Mineral Composition of Two Basil Cultivars Grown Hydroponically under Variable Electrical Conductivity. Horticulturae, 8(5), 409. https://doi.org/10.3390/horticulturae8050409