Antioxidant Activity, Phenolic Composition, and Hormone Content of Wild Edible Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Preparation of Plant Samples for Analysis
2.3. Antioxidant Enzyme Analysis
2.4. Hormone Analysis
2.5. Total Phenolic Content
2.6. Phenolic Profiles
2.7. Statistical Analysis
3. Results
3.1. Antioxidant Enzyme and Hormone Contents
3.2. Phenolic Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achaglinkame, M.A.; Aderibigbe, R.O.; Hensel, O.; Sturm, B.; Korese, J.K. Nutritional characteristics of four underutilized edible wild fruits of dietary interest in Ghana. Foods 2019, 8, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monroy-García, I.N.; Carranza-Torres, I.E.; Carranza-Rosales, P.; Oyón-Ardoiz, M.; García-Estévez, I.; Ayala-Zavala, J.F.; Morán-Martínez, J.; Viveros-Valdez, E. Phenolic profiles and biological activities of extracts from edible wild fruits Ehretia tinifolia and Sideroxylon lanuginosum. Foods 2021, 10, 2710. [Google Scholar] [CrossRef] [PubMed]
- Stoenescu, A.-M.; Trandafir, I.; Cosmulescu, S. Determination of phenolic compounds using HPLC-UV method in wild fruit species. Horticulturae 2022, 8, 84. [Google Scholar] [CrossRef]
- Sagbas, H.I.; Ilhan, G.; Zitouni, H.; Anjum, M.A.; Hanine, H.; Necas, T.; Ondrasek, I.; Ercisli, S. Morphological and biochemical characterization of diverse strawberry tree (Arbutus unedo L.) genotypes from northern Turkey. Agronomy 2020, 10, 1581. [Google Scholar] [CrossRef]
- Subasi, I. Seed fatty acid compositions and chemotaxonomy of wild Crambe (Brassicaceae) taxa in Turkey. Turk. J. Agric. For. 2020, 44, 662–670. [Google Scholar] [CrossRef]
- Ilhan, G.; Gundogdu, M.; Karlović, K.; Židovec, V.; Vokurka, A.; Ercişli, S. Main agro-morphological and biochemical berry characteristics of wild-grown sea buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) genotypes in Turkey. Sustainability 2021, 13, 1198. [Google Scholar] [CrossRef]
- Narzary, H.; Basumatary, S. Amino Acid profiles, antimicrobial activity and anti-nutritional contents of two wild edible plants (Sphenoclea zeylanica Gaertn. and Sphaerantus peguensis Kurz ex CB Clarke.). Curr. Biotechnol. 2019, 8, 53–63. [Google Scholar] [CrossRef]
- Mollova, S.; Fidan, H.; Antonova, D.; Bozhilov, D.; Stanev, S.; Kostova, I.; Stoyanova, A. Chemical composition and antimicrobial and antioxidant activity of Helichrysum italicum (Roth) G. Don subspecies essential oils. Turk. J. Agric. For. 2020, 44, 371–378. [Google Scholar] [CrossRef]
- Motti, R. Wild Edible Plants: A challenge for future diet and health. Plants 2022, 11, 344. [Google Scholar] [CrossRef]
- Motti, R.; Bonanomi, G.; Lanzotti, V.; Sacchi, R. The contribution of wild edible plants to the Mediterranean Diet: An ethnobotanical case study along the coast of Campania (Southern Italy). Econ. Bot. 2020, 74, 249–272. [Google Scholar] [CrossRef]
- Ivanova, T.; Bosseva, Y.; Chervenkov, M.; Dimitrova, D. Enough to Feed Ourselves!—Food plants in Bulgarian rural home gardens. Plants 2021, 10, 2520. [Google Scholar] [CrossRef] [PubMed]
- Sibiya, N.P.; Kayitesi, E.; Moteetee, A.N. Proximate analyses and amino acid composition of selected wild ındigenous fruits of Southern Africa. Plants 2021, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Aldhafiri, F.K. Evaluation of biochemical parameters, phenolic compounds and antioxidant capacity of some varieties of Phoenix dactylifera L. (Date fruits) to determine the nutritional impact values. Mediterr. J. Nutr. Metab. 2017, 10, 153–164. [Google Scholar] [CrossRef]
- Rana, Z.H.; Alam, M.K.; Akhtaruzzaman, M. Nutritional composition, total phenolic content, antioxidant and α-amylase inhibitory activities of different fractions of selected wild edible plants. Antioxidant. 2019, 8, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergio, L.; Boari, F.; Pieralice, M.; Linsalata, V.; Cantore, V.; Di Venere, D. Bioactive phenolics and antioxidant capacity of some wild edible greens as affected by different cooking treatments. Foods 2020, 9, 1320. [Google Scholar] [CrossRef] [PubMed]
- Borelli, T.; Hunter, D.; Powell, B.; Ulian, T.; Mattana, E.; Termote, C.; Engels, J. Born to Eat Wild: An ıntegrated conservation approach to secure wild food plants for food security and nutrition. Plants 2020, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Güneş, A.; Kordali, Ş.; Turan, M.; Bozhüyük, A.U. Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicanal plants. Ind. Crops Prod. 2019, 137, 208–213. [Google Scholar] [CrossRef]
- Korkmaz, M.; Turgut, N. Flora of Ergan Mountain (Erzincan/Turkey). Biol. Div. Conserv. 2014, 7, 195–216. [Google Scholar]
- Korkmaz, M.; Alpaslan, Z. Ethnobotanical properties of Ergan Mountain (Erzincan-Turkey). Hortic. Sci. J. 2014, 1, 1–31. [Google Scholar]
- Davis, P.H.; Mill, R.R.; Tan, K. Flora of Turkey and the East Aegean Islands; Edinburgh University Press: Edinburgh, UK, 1988; Volume 10. [Google Scholar]
- Sairam, P.K.; Srivastava, G.C. Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 2002, 162, 897–904. [Google Scholar] [CrossRef]
- Kuraishi, S.; Tasaki, K.; Sakurai, N.; Sadatoku, K. Changes in levels of cytokinins in etiolated squash seedlings after illumination. Plant Cell Physiol. 1991, 32, 585–591. [Google Scholar] [CrossRef]
- Turan, M.; Ekinci, M.; Yıldırım, E.; Güneş, A.; Karagöz, K.; Kotan, R.; Dursun, A. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk. J. Agric. For. 2014, 38, 327–333. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Rodríguez-Delgado, M.A.; Malovaná, S.; Pérez, J.P.; Borges, T.; García Montelongo, F.J. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chromatogr. A 2001, 912, 249–257. [Google Scholar] [CrossRef]
- Kordali, S.; Bozhuyuk, A.U.; Beyzi, E.; Gunes, A.; Turan, M. Antioxidant enzyme, phenolic substance and plant nutrient contents of Malva sylvestris L. and Alcea rosea L. species used as medicinal plants. J. Inst. Sci. Technol. 2021, 11, 786–794. [Google Scholar] [CrossRef]
- Alici, E.H.; Arabaci, G. Determination of SOD, POD, PPO and CAT enzyme activities of Rumex obtusifolius L. Ann. Res. Rev. Biol. 2016, 11, 1–7. [Google Scholar] [CrossRef]
- Coruh, N.; Celep, A.S.; Özgökçe, F. Antioxidant properties of Prangos ferulacea (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desf. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chem. 2007, 100, 1237–1242. [Google Scholar] [CrossRef]
- Coruh, N.; Celep, A.S.; Özgökçe, F.; İşcan, M. Antioxidant capacities of Gundelia tournefortii L. extracts and inhibition on glutathione-S-transferase activity. Food Chem. 2007, 100, 1249–1253. [Google Scholar] [CrossRef]
- Dogan, H.; Ercisli, S.; Jurikova, T.; Temim, E.; Leto, A.; Hadziabulic, A.; Tosun, M.; Narmanlioglu, H.K.; Zia-Ul-Haq, M. Physicochemical and antioxidant characteristics of fruits of cape gooseberry (Physalis peruviana L.) from Turkey. Oxid. Commun. 2014, 37, 1005–1014. [Google Scholar]
- Dogan, H.; Ercisli, S.; Temim, E.; Hadziabulic, A.; Tosun, M.; Yilmaz, S.O.; Zia-Ul-Haq, M. Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. Comptes Rendus De L Acad. Bulg. Des Sci. 2014, 67, 1593–1600. [Google Scholar]
- Kupe, M. Some ampelographic and biochemical characteristics of local grape accessions from Turkey. Genetika 2020, 52, 513–525. [Google Scholar] [CrossRef]
- Atmani, D.; Chaher, N.; Berboucha, M.; Ayouni, K.; Lounis, H.; Boudaoud, H.; Debbache, N.; Atmani, D. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009, 112, 303–309. [Google Scholar] [CrossRef]
- Gonçalves, S.; Gomes, D.; Costa, P.; Romano, A. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Ind. Crops Prod. 2013, 43, 465–471. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Ahmad, S.; Qayum, M.; Ercisli, S. Compositional studies and antioxidant potential of Albizia lebbeck (L.) Benth. Pods and seeds. Turk. J. Biol. 2013, 37, 25–32. [Google Scholar]
- Alaca, K.; Okumus, E.; Bakkalbasi, E.; Javidipour, I. Phytochemicals and antioxidant activities of twelve edible wild plants from Eastern Anatolia, Turkey. Food Sci. Technol. Camp. 2022, 42, e18021. [Google Scholar] [CrossRef]
- Ru, W.; Pang, Y.; Gan, Y.; Liu, Q.; Bao, J. Phenolic compounds and antioxidant activities of potato cultivars with white, yellow, red and purple flesh. Antioxidants 2019, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Butkeviciute, A.; Abukauskas, V.; Janulis, V.; Kviklys, D. Phenolic content and antioxidant activity in apples of the ‘galaval’ cultivar grown on 17 different rootstocks. Antioxidants 2022, 11, 266. [Google Scholar] [CrossRef]
- Nagai, T.; Myoda, T.; Nagashima, T. Antioxidative activities of water extract and ethanol extract from field horsetail (tsukushi) Equisetum arvense. Food Chem. 2005, 91, 389–394. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress. Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ros) revisited: Outlining their role in biological macromolecules (DNA, Lipids and Proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Upreti, K.K.; Sharma, M. Role of plant growth regulators in abiotic stress tolerance. In Abiotic Stress Physiology of Horticultural Crops; Springer: New Delhi, India, 2016; pp. 19–46. [Google Scholar]
- El-Khallal, S.M.; Hathout, T.A.; Ahsour, A.E.R.A.; Kerrit, A.A.A. Brassinolide and salicylic acid induced antioxidant enzymes, hormonal balance and protein profile of maize plants grown under salt stress. Res. J. Agric. Biol. Sci. 2009, 5, 391–402. [Google Scholar]
- Bolouri-Moghaddam, M.R.; Le Roy, K.; Xiang, L.; Rolland, F.; Van den Ende, W. Sugar signalling and antioxidant network connections in plant cells. FEBS J. 2010, 277, 2022–2037. [Google Scholar] [CrossRef] [PubMed]
- Fingrut, O.; Flescher, E. Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 2002, 16, 608–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rattan, S.I.; Clark, B.F. Kinetin delays the onset of aging characteristics in human fibroblasts. Biochem. Biophys. Res. Commun. 1994, 201, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Rattan, S.I. N6-furfuryladenine (kinetin) as a potential anti-aging molecule. J. Anti-Aging Med. 2002, 5, 113–116. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Vianello, F.; Corrêa, C.R.; Campos, R.A.D.S.; Borguini, M.G. Polyphenols in fruits and vegetables and its effect on human health. Nutr. Food Sci. 2014, 5, 1065–1082. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.M.; El Mohsen, M.A.; Vauzour, D.; Rendeiro, C.; Butler, L.T.; Ellis, J.A.; Whiteman, M.; Spencer, J.P.E. Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radic. Biol. Med. 2008, 45, 295–305. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kohli, S.K.; Bali, S.; Sharma, M.; Kumar, R.; Bhardwaj, R.; Thukral, A.K. Differential distribution of polyphenols in plants using multivariate techniques. Biotechnol. Res. Innov. 2019, 3, 1–21. [Google Scholar] [CrossRef]
- Ahmed, I.A.M.; Al Juhaimi, F.Y.; Osman, M.A.; Al Maiman, S.A.; Hassan, A.B.; Alqah, H.A.S.; Babiker, E.E.; Ghafoor, K. Effect of oven roasting treatment on the antioxidant activity, phenolic compounds, fatty acids, minerals, and protein profile of Samh (Mesembryanthemum forsskalei Hochst) seeds. LWT 2020, 131, 109825. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmianski, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Thukral, A.K.; Bhardwaj, R. Polyphenols profiling in the leaves of plants from the catch-ment area of river Beas. Int. J. Pharma Bio Sci. 2015, 6, 1005–1012. [Google Scholar]
- Yancheva, S.; Mavromatis, P.; Georgieva, L. Polyphenol profile and antioxidant activity of extract from olive leaves. J. Cent. Eur. Agric. 2016, 17, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Jan, S.A.; Javed, M.; Shaheen, R.; Khan, Z.; Ahmad, A.; Safi, S.Z.; Imran, M. Nutritional composition, antioxidant and antimicrobial activities of selected wild edible plants. J. Food Biochem. 2016, 40, 61–70. [Google Scholar] [CrossRef]
- Pandey, A.; Belwal, T.; Tamta, S.; Bhatt, I.D.; Rawal, R.S. Phenolic compounds, antioxidant capacity and antimutagenic activity in different growth stages of in vitro raised plants of Origanum vulgare L. Mol. Bio. Rep. 2019, 46, 2231–2241. [Google Scholar] [CrossRef]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants. 2019, 8, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seal, T. Antioxidant activities of some wild vegetables of North-Eastern region in India and effect of solvent extraction system. Int. J. Pharm. Pharm. Sci. 2014, 6, 315–319. [Google Scholar]
- Ersoy, N.; Kupe, M.; Gundogdu, M.; Ilhan, G.; Ercisli, S. Phytochemical and antioxidant diversity in fruits of currant (Ribes spp.) cultivars. Not. Bot. Horti Agrobo. 2018, 45, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, N.; Kupe, M.; Sagbas, H.I.; Ercisli, S. Phytochemical diversity among barberry (Berberis vulgaris L.). Not. Bot. Horti Agrobo. 2018, 46, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Ozkan, G.; Ercisli, S.; Zeb, A.; Agar, G.; Sagbas, H.I.; Ilhan, G.; Gundogdu, M. Some morphological and biochemical characteristics of wild grown Caucasian Whortleberry (Vaccinium arctostaphylos L.) genotypes from Northeastern Turkey. Not. Bot. Horti Agrobot. 2019, 47, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Gecer, M.K.; Kan, T.; Gundogdu, M.; Ercisli, S.; Ilhan, G.; Sagbas, H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop Evol. 2020, 46, 935–945. [Google Scholar] [CrossRef]
- Koyuncu, M.A. The effect of hot water, 1-MCP, and lovastatin on fresh-cut apples after long-term controlled atmosphere storage. Turk. J. Agric. For. 2020, 44, 198–207. [Google Scholar] [CrossRef]
Family | Species | Local Name | Edible Part |
---|---|---|---|
Amaranthaceae | Chenopodium album L. subsp. album var. album | Tel pancarı, Tel otu | Leaf, fresh stem, petiole |
Apiaceae | Falcaria vulgaris Bernh. | Kazayağı | Leaf, fresh stem |
Asteraceae | Cirsium arvense (L.) Scop. subsp. vestitum (Wimmer and Grab.) | Keğaver | Leaf, fresh stem |
Taraxacum phaleratum G. Hagl. ex Rech. | Karahindiba | Leaf | |
Tragopogon buphthalmoides (DC.) Boiss. var. buphthalmoides | Yemlik | Leaf | |
Brassicaceae | Brassica nigra (L.) K. Koch | Eşek turpu, Turp otu | Leaf |
Caryophyllaceae | Silene vulgaris (Moench) Garcke var. commutata (Guss.) Coode and Cullen | Gelin parmağı | Leaf |
Lamiaceae | Mentha longifolia (L.) Hudson subsp. typhoides (Briq.) Harley var. typhoides | Yarpuz | Leaf, fresh stem |
Malvaceae | Malva neglecta Wallr. | Ebegümeci | Leaf, petiole |
Polygonaceae | Polygonum cognatum Meissn. | Madımak | Leaf |
Rumex crispus L. | Evelik | Leaf, fresh stem, petiole | |
Urticaceae | Urtica dioica L. | Isırgan | Leaf, fresh stem, petiole |
Plant Species | CAT | POD | SOD | AxPOD | GR | GST |
---|---|---|---|---|---|---|
(EU g−1 Plant) | ||||||
Brassica nigra | 35.72 cd | 74.97 bcd | 68.16 bc | 60.49 cde | 27.76 cd | 801.28 d |
Chenopodium album | 25.52 g | 61.15 ef | 65.73 bcd | 39.71 g | 22.44 ef | 634.47 f |
Cirsium arvense | 28.54 fg | 59.89 ef | 38.86 de | 48.75 efg | 23.64 def | 667.72 f |
Falcaria vulgaris | 36.03 cd | 65.28 de | 46.66 cde | 64.76 bcd | 26.46 cde | 916.64 c |
Malva neglecta | 44.52 a | 93.41 a | 97.53 a | 81.93 a | 34.60 ab | 1163.51 a |
Mentha longifolia | 29.87 f | 72.14 cd | 56.98 cde | 42.91 fg | 26.01 de | 698.64 ef |
Polygonum cognatum | 45.12 a | 94.83 a | 67.00 bcd | 69.12 bc | 36.76 a | 1218.35 a |
Rumex crispus | 33.87 de | 81.15 bc | 69.81 bc | 51.43 efg | 30.43 bc | 930.15 bc |
Silene vulgaris | 31.44 ef | 65.45 de | 58.96 bcd | 54.21 def | 24.68 de | 782.64 de |
Taraxacum phaleratum | 38.69 bc | 93.44 a | 85.79 ab | 58.26 cde | 33.69 ab | 1017.30 b |
Tragopogon buphthalmoides | 25.16 g | 54.51 f | 29.15 e | 42.54 fg | 20.04 f | 474.21 g |
Urtica dioica | 39.79 b | 82.83 b | 46.14 cde | 75.38 ab | 33.29 ab | 1162.06 a |
Plant Species | IAA ng mg−1 Tissue | ABA | GA | SA | Cytokinin | Zeatin | Jasmonic Acid |
---|---|---|---|---|---|---|---|
(ng g−1 DW) | |||||||
Brassica nigra | 0.30 i | 15,318.74 b | 1.36 k | 0.48 gh | 1.01 f | 0.48 d | 4.99 gh |
Chenopodium album | 0.44 h | 13,787.54 c | 1.56 j | 0.52 g | 1.07 f | 0.59 bc | 6.08 g |
Cirsium arvense | 1.77 c | 4267.93 i | 2.86 d | 1.26 c | 2.32 c | 0.63 ab | 10.94 d |
Falcaria vulgaris | 1.87 b | 1511.22 kl | 3.51 b | 1.48 b | 2.51 b | 0.62 abc | 15.15 b |
Malva neglecta | 1.16 f | 9090.07 f | 2.11 g | 0.94 e | 1.51 e | 0.63 ab | 10.34 de |
Mentha longifolia | 0.29 i | 16,849.94 a | 1.26 k | 0.44 h | 0.87 g | 0.44 d | 4.31 h |
Polygonum cognatum | 2.13 a | 1087.50 m | 3.55 a | 1.57 a | 2.60 a | 0.68 a | 16.49 a |
Rumex crispus | 1.31 e | 7031.69 g | 2.41 f | 1.17 d | 2.10 d | 0.55 c | 9.54 e |
Silene vulgaris | 0.48 h | 12,256.35 d | 1.91 i | 0.81 f | 1.49 e | 0.62 abc | 7.65 f |
Taraxacum phaleratum | 0.71 g | 10,829.04 e | 2.01 gh | 0.82 f | 1.50 e | 0.64 ab | 8.00 f |
Tragopogon buphthalmoides | 1.30 e | 2359.67 j | 3.25 c | 1.42 b | 2.48 b | 0.59 bc | 12.58 c |
Urtica dioica | 1.51 d | 5435.45 h | 2.66 e | 1.23 cd | 2.12 d | 0.57 bc | 10.32 de |
Plant Species | CA | CAE | ECAE | FA | M3G | MYR | RT | TCA | TPCA | TY | QUE | VA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg g−1 FW) | ||||||||||||
Brassica nigra | 44.25 d | 59.40 b | 29.59 d | 16.36 b | 64.48 cd | 15.31 abc | 26.24 cd | 25.54 cd | 21.15 de | 53.80 b | 13.98 cd | 32.54 de |
Chenopodium album | 27.37 h | 34.41 cde | 22.08 fg | 12.27 d | 42.69 g | 7.80 h | 17.17 h | 17.66 f | 15.43 h | 32.50 e | 11.10 e | 21.91 i |
Cirsium arvense | 35.35 f | 26.28 ef | 23.00 f | 16.83 ab | 49.71 f | 11.25 efg | 20.97 fg | 24.24 de | 18.27 f | 46.46 c | 15.64 a | 28.10 g |
Falcaria vulgaris | 45.08 cd | 29.13 ef | 30.13 d | 17.89 a | 62.51 d | 14.34 bcd | 25.28 cde | 32.40 b | 21.11 de | 54.16 b | 15.93 a | 35.30 c |
Malva neglecta | 55.14 a | 85.00 a | 42.26 a | 13.96 c | 84.77 a | 17.55 a | 32.71 a | 35.83 a | 29.11 a | 74.05 a | 13.25 d | 44.79 a |
Mentha longifolia | 31.72 g | 38.39 cd | 24.24 ef | 12.53 d | 50.36 f | 9.04 gh | 19.89 gh | 19.69 f | 17.10 g | 36.00 e | 10.84 e | 24.84 h |
Polygonum cognatum | 47.92 bc | 30.09 def | 39.99 ab | 12.25 d | 77.74 b | 12.56 cdef | 28.42 bc | 39.00 a | 25.99 b | 55.19 b | 11.35 e | 40.08 b |
Rumex crispus | 36.32 f | 34.66 cde | 30.18 d | 11.14 e | 59.76 de | 9.52 fgh | 22.78 efg | 26.91 cd | 21.45 d | 45.16 c | 10.63 e | 30.44 f |
Silene vulgaris | 39.33 e | 51.39 b | 26.04 e | 16.50 b | 56.30 e | 13.60 bcde | 23.33 def | 24.08 de | 20.06 e | 51.04 b | 15.04 ab | 30.87 ef |
Taraxacum phaleratum | 41.08 e | 53.59 b | 34.80 c | 11.11 e | 68.81 c | 11.70 defg | 25.77 cde | 28.34 c | 24.15 c | 50.86 b | 10.53 e | 34.28 cd |
Tragopogon buphthalmoides | 29.96 gh | 22.67 f | 19.72 g | 16.19 b | 41.39 g | 9.53 fgh | 17.77 h | 21.02 ef | 15.94 h | 40.54 d | 15.48 a | 24.52 h |
Urtica dioica | 49.78 b | 40.22 c | 38.19 b | 14.30 c | 75.17 b | 15.84 ab | 29.52 b | 38.44 a | 28.24 a | 71.83 a | 14.59 bc | 43.45 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozturk, H.I.; Nas, H.; Ekinci, M.; Turan, M.; Ercisli, S.; Narmanlioglu, H.K.; Yildirim, E.; Assouguem, A.; Almeer, R.; Sayed, A.A.; et al. Antioxidant Activity, Phenolic Composition, and Hormone Content of Wild Edible Vegetables. Horticulturae 2022, 8, 427. https://doi.org/10.3390/horticulturae8050427
Ozturk HI, Nas H, Ekinci M, Turan M, Ercisli S, Narmanlioglu HK, Yildirim E, Assouguem A, Almeer R, Sayed AA, et al. Antioxidant Activity, Phenolic Composition, and Hormone Content of Wild Edible Vegetables. Horticulturae. 2022; 8(5):427. https://doi.org/10.3390/horticulturae8050427
Chicago/Turabian StyleOzturk, Halil Ibrahim, Hazel Nas, Melek Ekinci, Metin Turan, Sezai Ercisli, Haluk Kemal Narmanlioglu, Ertan Yildirim, Amine Assouguem, Rafa Almeer, Amany A. Sayed, and et al. 2022. "Antioxidant Activity, Phenolic Composition, and Hormone Content of Wild Edible Vegetables" Horticulturae 8, no. 5: 427. https://doi.org/10.3390/horticulturae8050427