Correlation of Carotenoids Content and ASTA Values of Pepper (Capsicum chinense) Genetic Resources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Plant Materials
2.2. Extraction and Carotenoids Analysis
2.3. ASTA Color Index Measurement
2.4. Statistical Analysis
3. Results and Discussion
3.1. ASTA Color Value
3.2. Composition and Content of Carotenoids
3.3. Correlation of Carotenoids Content and ASTA Values
3.4. Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tong, N.; Bosland, P.W. Capsicum tovarii, a new member of the Capsicum baccatum complex. Euphytica 1999, 109, 71–77. [Google Scholar] [CrossRef]
- Yoon, J.B.; Do, J.W.; Yang, D.C.; Park, H.G. Interspecific cross compatibility among five domesticated species of Capsicum genus. Hortic. Sci. Technol. 2004, 45, 324–329. [Google Scholar]
- Antonious, G.F.; Lobel, L.; Kochhar, T.; Berke, T.; Jarret, R.L. Antioxidants in Capsicum chinense: Variation among countries of origin. J. Environ. Sci. Health 2009, 44, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Oz, A.T.; Kafkas, E. Phytochemicals in Fruits and Vegetables. Waisundara V. Superfood and Functional Food; IntechOpen: London, UK, 2017; pp. 175–184. [Google Scholar]
- Van Duyn, M.A.S.; Pivonka, E. Overview of the health benefits of fruit and vegetable consumption for the dietetics professional: Selected literature. J. Am. Diet. Assoc. 2000, 100, 1511–1521. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Berry, H.M.; Rickett, D.V.; Baxter, C.J.; Enfissi, E.M.; Fraser, P.D. Carotenoid biosynthesis and sequestration in red chilli pepper fruit and its impact on color intensity traits. J. Exp. Bot. 2019, 70, 2637–2650. [Google Scholar] [CrossRef] [Green Version]
- Cramer, D.W.; Kuper, H.; Harlow, B.L.; Titus-Ernstoff, L. Carotenoids, antioxidants and ovarian cancer risk in pre-and postmenopausal women. Int. J. Cancer 2001, 94, 128–134. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [Green Version]
- Igielska-Kalwat, J.; Gościańska, J.; Nowak, I. Carotenoids as natural antioxidants. Postepy Hig. I Med. Dosw. 2015, 69, 418–428. [Google Scholar] [CrossRef]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Harish; Marwal, A. Vital Roles of Carotenoids in Plants and Humans to Deteriorate Stress with Its Structure, Biosynthesis, Metabolic Engineering and Functional Aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Mohd Hassan, N.; Yusof, N.A.; Yahaya, A.F.; Mohd Rozali, N.N.; Othman, R. Carotenoids of Capsicum fruits: Pigment profile and health-promoting functional attributes. Antioxidants 2019, 8, 469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugliese, A.; O’Callaghan, Y.; Tundis, R.; Galvin, K.; Menichini, F.; O’Brien, N.; Loizzo, M.R. In vitro investigation of the bioaccessibility of carotenoids from raw, frozen and boiled red chili peppers (Capsicum annuum). Eur. J. Nutr. 2014, 53, 501–510. [Google Scholar] [CrossRef]
- Shah, S.N.M.; Tian, S.L.; Gong, Z.H.; Arisha, M.H. Studies on metabolism of capsanthin and its regulation under different conditions in pepper fruits (Capsicum spp.). Annu. Res. Rev. 2014, 4, 1106–1120. [Google Scholar] [CrossRef]
- Pugliese, A.; O’Callaghan, Y.; Tundis, R.; Galvin, K.; Menichini, F.; O’Brien, N.; Loizzo, M.R. In vitro assessment of the bioaccessibility of carotenoids from sun-dried chilli peppers. Plant Foods Hum. Nutr. 2014, 69, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Topuz, A.; Dincer, C.; Özdemir, K.S.; Feng, H.; Kushad, M. Influence of different drying methods on carotenoids and capsaicinoids of paprika (Cv., Jalapeno). Food Chem. 2011, 129, 860–865. [Google Scholar] [CrossRef]
- Giuffrida, D.; Dugo, P.; Torre, G.; Bignardi, C.; Cavazza, A.; Corradini, C.; Dugo, G. Characterization of 12 Capsicum varieties by evaluation of their carotenoid profile and pungency determination. Food Chem. 2013, 140, 794–802. [Google Scholar] [CrossRef]
- Rodriguez-Uribe, L.; Guzman, I.; Rajapakse, W.; Richins, R.D.; O’Connell, M.A. Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels. J. Exp. Bot. 2012, 63, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Guzman, I.; Hamby, S.; Romero, J.; Bosland, P.W.; O’Connell, M.A. Variability of carotenoid biosynthesis in orange colored Capsicum spp. Plant Sci. 2010, 179, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Burruezo, A.; González-Mas, M.D.C.; Nuez, F. Carotenoid composition and vitamin A value in ají (Capsicum baccatum L.) and rocoto (C. pubescens R. and P.), 2 pepper species from the Andean region. J. Food Sci. 2010, 75, S446–S453. [Google Scholar] [CrossRef]
- Baenas, N.; Belović, M.; Ilic, N.; Moreno, D.A.; García-Viguera, C. Industrial use of pepper (Capsicum annum L.) derived products: Technological benefits and biological advantages. Food Chem. 2019, 274, 872–885. [Google Scholar] [CrossRef]
- Belović, M.M.; Mastilović, J.S.; Kevrešan, Z.S. Change of surface colour parameters during storage of paprika (Capsicum annuum L.). Food Feed Res. 2014, 41, 85–92. [Google Scholar] [CrossRef]
- Kim, S.; Youl Ha, T.; Park, J. Characteristics of pigment composition and colour value by the difference of harvesting times in Korean red pepper varieties (Capsicum annuum, L.). Int. J. Food Sci. 2008, 43, 915–920. [Google Scholar] [CrossRef]
- Kim, J.K.; Lee, S.Y.; Chu, S.M.; Lim, S.H.; Suh, S.C.; Lee, Y.T.; Ha, S.H. Variation and correlation analysis of flavonoids and carotenoids in Korean pigmented rice (Oryza sativa L.) cultivars. J. Agric. Food Chem. 2010, 58, 12804–12809. [Google Scholar] [CrossRef]
- ASTA. Official Analytical Methods of the American Spice Trade Association, 2nd ed.; ASTA: Englewood Cliffs, NJ, USA, 1968. [Google Scholar]
- Ku, K.H.; Kim, N.Y.; Park, J.B.; Park, W.S. Characteristics of color and pungency in the red pepper for Kimchi. Korean J. Food Sci. Technol. 2001, 33, 231–237. [Google Scholar]
- Kweon, O.; Kim, Y.; Yoon, J.; Park, H.; Yoon, W. Inheritance of carotenoids content in red pepper (Capsicum annuum L.) fruit. Hortic. Sci. Technol. 2006, 24, 123–127. [Google Scholar]
- Jung, J.; Cho, M.; Cho, Y. Fruit quality of once-over harvest pepper (Capsicum annuum) cultivar ‘Saengryeg No. 211’ and ‘Saengryeg No. 213’. Korean J. Food Sci. Technol. 2006, 24, 205–209. [Google Scholar]
- Yoon, J.; Kim, J.; Kim, H.; Jang, K.; Ko, H.; Jang, H.; Hwang, Y. Carotenoid composition and ASTA color value in pepper (Capsicum annum L.) germplasms. Korean J. Breed. Sci. 2015, 47, 238–244. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, E.; Sánchez-Prieto, M.; Olmedilla-Alonso, B. Assessment of carotenoid concentrations in red peppers (Capsicum annuum) under domestic refrigeration for three weeks as determined by HPLC-DAD. Food Chem. 2020, 6, 100092. [Google Scholar] [CrossRef]
- Arimboor, R.; Natarajan, R.B.; Menon, K.R.; Chandrasekhar, L.P.; Moorkoth, V. Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: Analysis and stability—A review. J. Food Sci. Technol. 2015, 52, 1258–1271. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Gálvez, A.; Martin, H.D.; Sies, H.; Stahl, W. Incorporation of carotenoids from paprika oleoresin into human chylomicrons. Br. J. Nutr. 2003, 89, 787–793. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K. Carotenoid composition of new cultivar of Capsicum annuum during maturation and its high capsanthin content. J. JPN. Soc. Food Sci. 2003, 50, 324–326. [Google Scholar] [CrossRef]
- Bosland, P.W. Capsicums: Innovative uses of an ancient crop. In Progress in New Crops; Janick, J., Ed.; ASHS Press: Arlington, TX, USA, 1996; pp. 479–487. [Google Scholar]
- Maiani, G.; Periago Castón, M.J.; Catasta, G.; Toti, E.; Cambrodón, I.G.; Bysted, A.; Schlemmer, U. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res. 2009, 53, S194–S218. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.J.; Kim, J.W.; Choi, H.O.; Kim, J.H.; Kim, H.J.; Woo, S.H.; Han, B.H. Capsanthin inhibits both adipogenesis in 3T3-L1 preadipocytes and weight gain in high-fat diet-induced obese mice. Biomol. Ther. 2017, 25, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-García, E.; Carvajal-Lérida, I.; Pérez-Gálvez, A. Carotenoids exclusively synthesized in red pepper (capsanthin and capsorubin) protect human dermal fibroblasts against UVB induced DNA damage. Photochem. Photobiol. Sci. 2016, 15, 1204–1211. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, P.; Cheema, A.; Paliyath, G. Solanaceous Fruits including tomato, eggplant, and peppers. In Encyclopedia of Food and Health; Academic Press: Cambridge, MA, USA, 2016; pp. 24–32. [Google Scholar]
- Hornero-Mendez, D.; Gomez-Ladron de Guevara, R.; Minguez-Mosquera, M.I. Carotenoids biosynthesis changes in five red pepper (Capsicum annuum L.) cultivars during ripening. J. Agric. Food Chem. 2000, 48, 3857–3864. [Google Scholar] [CrossRef]
- Hornero-Mendez, D.; Minguez-Mosquera, M.I. Xanthophyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index. J. Agric. Food Chem. 2000, 48, 1617–1622. [Google Scholar] [CrossRef]
- Ronen, G.; Cohen, M.; Zamir, D.; Hirschberg, J. Regulation of carotenoid biosynthesis during tomato fruit development: Expression of the gene for lycopene epsilon-cyclase is down regulated during ripening and is elevated in the mutant delta. Plant J. 1999, 17, 341–351. [Google Scholar] [CrossRef]
- Locey, C.L.; Guzinski, J.A. Paprika. In Natural Food Colorants; Lauro, G.J., Francis, F.J., Eds.; Marcel Dekker: New York, NY, USA, 2000; pp. 97–114. [Google Scholar]
- Kim, S.; Ha, T.Y.; Hwang, I.K. Analysis, bioavailability, and potential healthy effects of capsanthin, natural red pigment from Capsicum spp. Food Rev. Int. 2009, 25, 198–213. [Google Scholar] [CrossRef]
- Tian, S.L.; Li, L.; Shah, S.N.M.; Gong, Z.H. The relationship between red fruit colour formation and key genes of capsanthin biosynthesis pathway in Capsicum annuum. Biol. Plant. 2015, 59, 507–513. [Google Scholar] [CrossRef]
- Guzman, I.; Vargas, K.; Chacon, F.; McKenzie, C.; Bosland, P.W. Health-promoting carotenoids and phenolics in 31 Capsicum Accessions. HortScience 2021, 56, 36–41. [Google Scholar] [CrossRef]
- Deli, J.; Molnar, P.; Matus, Z.; Toth, G. Carotenoid composition in the fruits of red paprika (Capsicum annuum var. lycopersiciforme rubrum) during ripening; biosynthesis of carotenoids in red paprika. J. Agric. Food Chem. 2001, 49, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid metabolism and regulation in horticultural crops. Hortic. Res. 2015, 2, 15036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jourdan, M.; Gagne, S.; Dubois-Laurent, C.; Maghraoui, M.; Huet, S.; Suel, A.; Hamama, L.; Briard, M.; Peltier, D.; Geoffriau, E. Carotenoid content and root color of cultivated carrot: A candidate-gene association study using an original broad unstructured population. PLoS ONE 2015, 10, e0116674. [Google Scholar] [CrossRef] [Green Version]
- Zaki, N.; Hakmaoui, A.; Ouatmane, A.; Hasib, A.; Fernández-Trujillo, J.P. Bioactive components and antioxidant activity of Moroccan Paprika (Capsicum annuum L.) at different period of harvesting and processing. J. Biol. Agric. Healthc. 2013, 3, 1–8. [Google Scholar]
- Bernaert, N.; De Paepe, D.; Bouten, C.; De Clercq, H.; Stewart, D.; Van Bockstaele, E.; De Loose, M.; Van Droogenbroeck, B. Antioxidant capacity, total phenolic and ascorbate content as a function of the genetic diversity of leek (Allium ampeloprasum var. porrum). Food Chem. 2012, 134, 669–677. [Google Scholar] [CrossRef] [Green Version]
Capsanthin | Capsorubin | Lutein | Zeaxanthin | Antheraxanthin | Violaxanthin | α-Carotene | β-Carotene | β-Cryptoxanthin | Total Carotenoids | ASTA Value | |
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 5.86 | 0.00 | 7.04 | 0.00 |
Maximum | 1120.95 | 501.40 | 80.66 | 361.10 | 445.35 | 168.89 | 70.87 | 184.33 | 81.81 | 2430.85 | 221.32 |
Average | 325.77 | 82.36 | 2.72 | 43.21 | 136.34 | 46.54 | 13.91 | 59.11 | 9.67 | 719.62 | 75.12 |
SD | 222.80 | 80.05 | 11.16 | 46.01 | 90.40 | 31.30 | 14.01 | 36.90 | 10.88 | 471.42 | 45.22 |
Components | Ranges in mg/100 g DW (Number of Accessions) | |||||
---|---|---|---|---|---|---|
Capsanthin | 0–200 (67) | 200–400 (96) | 400–600 (35) | 600–800 (19) | 800–1000 (8) | 1000–1200 (1) |
Capsorubin | 0–100 (172) | 100–200 (29) | 200–300 (19) | 300–400 (5) | 400–500 (0) | >500 (1) |
Lutein | 0–50 (222) | 50–100 (4) | 100–150 (0) | 150–200 (0) | 200–250 (1) | - |
Zeaxanthin | 0–100 (214) | 100–200 (8) | 200–300 (3) | 300–400 (1) | - | - |
Antheraxanthin | 0–100 (82) | 100–200 (95) | 200–300 (38) | 300–400 (8) | 400–450 (3) | - |
Violaxanthin | 0–100 (215) | 100–200 (11) | - | - | - | - |
α-Carotene | 0–50 (220) | 50–100 (6) | - | - | - | - |
β-Carotene | 0–50 (109) | 50–100 (86) | 100–150 (26) | 150–200 (5) | - | - |
β-Cryptoxanthin | 0–20 (200) | 20–40 (19) | 40–60 (6) | 60–90 (1) | - | - |
Total carotenoid | 0–500 (81) | 500–1000 (94) | 1000–1500 (35) | 1500–2000 (13) | 2000–2500 (3) | - |
Introduction Number | Carotenoid Composition (%) | Total Carotenoids (mg/100 g DW) | ASTA Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Capsanthin | Capsorubin | Lutein | Zeaxanthin | Antheraxanthin | Violaxanthin | α-Carotene | β-Carotene | β-Cryptoxanthin | |||
IT261426 | 46.11 | 20.63 | 0.00 | 1.55 | 18.32 | 6.95 | 1.13 | 4.95 | 0.36 | 2430.85 | 221.32 |
IT183657 | 45.09 | 13.49 | 0.00 | 2.81 | 20.39 | 6.76 | 2.61 | 7.88 | 0.96 | 2077.55 | 196.31 |
IT261213 | 43.81 | 16.94 | 0.00 | 1.93 | 19.99 | 6.85 | 2.41 | 7.25 | 0.83 | 2062.54 | 211.72 |
IT261413 | 48.55 | 15.78 | 0.00 | 12.68 | 13.52 | 4.69 | 0.61 | 3.09 | 1.09 | 1990.76 | 160.47 |
Carotenoids (mg/100 g DW) | ASTA Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Capsanthin | Capsorubin | Lutein | Zeaxanthin | Antheraxanthin | Violaxanthin | α-Carotene | β-Carotene | β-Cryptoxanthin | Total Carotenoids | ||
Capsanthin | 1.000 | 0.927 | −0.356 | 0.348 | 0.952 | 0.920 | 0.558 | 0.706 | 0.438 | 0.981 | 0.946 |
Capsorubin | 1.000 | −0.240 | 0.208 | 0.866 | 0.860 | 0.477 | 0.599 | 0.279 | 0.913 | 0.858 | |
Lutein | 1.000 | −0.205 | −0.353 | −0.264 | −0.038 | −0.255 | −0.186 | −0.316 | −0.331 | ||
Zeaxanthin | 1.000 | 0.387 | 0.299 | 0.459 | 0.519 | 0.671 | 0.457 | 0.408 | |||
Antheraxanthin | 1.000 | 0.955 | 0.638 | 0.788 | 0.529 | 0.975 | 0.964 | ||||
Violaxanthin | 1.000 | 0.571 | 0.717 | 0.427 | 0.936 | 0.931 | |||||
α-Carotene | 1.000 | 0.935 | 0.665 | 0.667 | 0.649 | ||||||
β-Carotene | 1.000 | 0.705 | 0.801 | 0.792 | |||||||
β-Cryptoxanthin | 1.000 | 0.543 | 0.541 | ||||||||
Total carotenoids | 1.000 | 0.965 | |||||||||
ASTA value | 1.000 |
Variables | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Capsanthin | 0.9415 | −0.2783 | −0.0170 | 0.0917 | 0.0618 |
Capsorubin | 0.8521 | −0.4122 | 0.1057 | 0.1108 | 0.2047 |
Lutein | −0.3468 | 0.1423 | 0.8863 | 0.2669 | 0.0370 |
Zeaxanthin | 0.5132 | 0.6322 | −0.2613 | 0.4609 | −0.2340 |
Antheraxanthin | 0.9688 | −0.1697 | 0.0026 | 0.0163 | 0.0591 |
Violaxanthin | 0.9200 | −0.2648 | 0.0854 | 0.0511 | 0.0642 |
α-Carotene | 0.7544 | 0.4295 | 0.2969 | −0.3460 | −0.1631 |
β-Carotene | 0.8795 | 0.3173 | 0.0964 | −0.298 | −0.1144 |
β-Cryptoxanthin | 0.6432 | 0.6390 | −0.0829 | 0.0251 | 0.4017 |
Total carotenoid | 0.9845 | −0.1342 | 0.0250 | 0.0873 | −0.0185 |
ASTA Value | 0.9660 | −0.1404 | 0.0166 | 0.0307 | 0.0488 |
Eigenvalue | 7.4408 | 1.4978 | 0.9778 | 0.5226 | 0.2715 |
Variability (%) | 67.64 | 13.61 | 8.88 | 4.75 | 2.46 |
Cumulative (%) | 67.64 | 81.26 | 90.15 | 94.90 | 97.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, H.-C.; Haile, M.; Lee, S.; Hwang, A.; Lee, G.-A.; Choi, Y.-M.; Hahn, B.-S.; Ro, N. Correlation of Carotenoids Content and ASTA Values of Pepper (Capsicum chinense) Genetic Resources. Horticulturae 2022, 8, 486. https://doi.org/10.3390/horticulturae8060486
Ko H-C, Haile M, Lee S, Hwang A, Lee G-A, Choi Y-M, Hahn B-S, Ro N. Correlation of Carotenoids Content and ASTA Values of Pepper (Capsicum chinense) Genetic Resources. Horticulturae. 2022; 8(6):486. https://doi.org/10.3390/horticulturae8060486
Chicago/Turabian StyleKo, Ho-Cheol, Mesfin Haile, Sukyeung Lee, Aejin Hwang, Gi-An Lee, Yu-Mi Choi, Bum-Soo Hahn, and Nayoung Ro. 2022. "Correlation of Carotenoids Content and ASTA Values of Pepper (Capsicum chinense) Genetic Resources" Horticulturae 8, no. 6: 486. https://doi.org/10.3390/horticulturae8060486
APA StyleKo, H. -C., Haile, M., Lee, S., Hwang, A., Lee, G. -A., Choi, Y. -M., Hahn, B. -S., & Ro, N. (2022). Correlation of Carotenoids Content and ASTA Values of Pepper (Capsicum chinense) Genetic Resources. Horticulturae, 8(6), 486. https://doi.org/10.3390/horticulturae8060486