Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance
Abstract
:1. Introduction
2. Methodology: Literature Search
3. Traditional and Other Uses of Moringa oleifera
3.1. Leaves
3.2. Flowers
3.3. Ben Oil
4. Morphology of Moringa oleifera
5. Cultivation
6. Industrial Applications
6.1. Treatment of Water
6.2. Great Fodder for Cattle
6.3. Bio-Gas
6.4. Standard Plate Count (SPC) Method
6.5. Most Probable Number (MPN)
6.6. Other Industrial Uses
7. Economic Potential
8. Toxicity Levels
9. Medicinal Properties and Biomedical Applications
9.1. Analgesic, Anti-Inflammatory, and Antipyretic Activities
9.2. Neuropharmacological Activity
9.3. Anticancerous Activity
9.4. Antioxidant Activity
9.5. Hepatoprotective Activity
9.6. Anti-Ulcer and Gastroprotective Properties
9.7. Cardiovascular Activity
9.8. Antiobesity Activity
9.9. Antiasthmatic Activity
9.10. Hematological Activity
9.11. Antidiabetic Activity
9.12. Anti-Urolithic Activity
9.13. Diuretic Activity
9.14. Anti-Allergic Activity
9.15. Anthelmintic Activity
9.16. Antidiarrheal Activity
9.17. Diabetes and Diverse Effects
10. Summary and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramachandran, C.; Peter, K.V.; Gopalakrishnan, P.K. Drumstick (Moringa oleifera): A multipurpose Indian vegetable. Econ. Bot. 1980, 34, 276–283. [Google Scholar] [CrossRef]
- Nadkarni, K.; Nadkarni, A. Indian Materia Medica; Popular Prakashan Pvt. Ltd.: Mumbai, India, 1976; Volume 1, p. 1799. [Google Scholar]
- Kardam, A.; Raj, K.R.; Arora, J.K.; Srivastava, M.M.; Srivastava, S. Artificial Neural Network Modeling for Sorption of Cadmium from Aqueous System by Shelled Moringa Oleifera Seed Powder as an Agricultural Waste. J. Water Resour. Prot. 2010, 2, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Anwar, F.; Bhanger, M.I. Analytical Characterization of Moringa oleifera Seed Oil Grown in Temperate Regions of Pakistan. J. Agric. Food Chem. 2003, 51, 6558–6563. [Google Scholar] [CrossRef]
- D’souza, J.; Kulkarni, A. Comparative Studies on Nutritive Values of Tender Foliage of Seedlings, and Mature Plants of Moringa oleifera (Lamk). Indian J. Nutr. Dietetics 1990, 27, 205–212. [Google Scholar]
- Somali, M.A.; Bajneid, M.A.; Al-Fhaimani, S.S. Chemical composition and characteristics of Moringa peregrina seeds and seeds oil. J. Am. Oil Chem. Soc. 1984, 61, 85–86. [Google Scholar] [CrossRef]
- Oinam, N.; Urooj, A.; Phillips, P.P.; Niranjan, N.P. Effect of dietary lipids and drumstick leaves (Moringa oleifera) on lipid profile & antioxidant parameters in rats. Food Nutr. Sci. 2012, 3, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric. 2000, 80, 1744–1756. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant Properties of Various Solvent Extracts of Total Phenolic Constituents from Three Different Agroclimatic Origins of Drumstick Tree (Moringa oleifera Lam.) Leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Saini, R.K.; Sivanesan, I.; Keum, Y.-S. Phytochemicals of Moringa oleifera: A review of their nutritional, therapeutic and industrial significance. 3 Biotech 2016, 6, 203. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Thakur, A.S.; Chandy, A.; Manigauha, A. Moringa oleifera: A review of there medicinal and economical importance to the health and nation. Drug Invent. Today 2010, 2, 339–342. [Google Scholar]
- Kirtikar, K.; Basu, B. New Cannaught Place; M/s Bishen Singh Mahendrapal Singh: Dehradun, India, 1975. [Google Scholar]
- Lea, M. Bioremediation of Turbid Surface Water Using Seed Extract from the Moringa oleifera Lam. (Drumstick) Tree. Curr. Protoc. Microbiol. 2014, 33, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tahiliani, P.; Kar, A. Role of Moringa oleifera leaf extract in the regulation of thyroid hormone status in adult male and female rats. Pharmacol. Res. 2000, 41, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Ojiako, F.; Adikuru, N.; Emenyonu, C. Critical issues in Investment, Production and Marketing of Moringa oleifera as an Industrial Agricultural raw material in Nigeria. J. Agric. Res. Dev. 2011, 10, 1039–1056. [Google Scholar]
- Bartha, D. Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie; Wiley Online Library: Hoboken, NJ, USA, 2001. [Google Scholar]
- Morton, J.F. The horseradish tree, Moringa pterygosperma (Moringaceae)—A boon to arid lands? Econ. Bot. 1991, 45, 318–333. [Google Scholar] [CrossRef]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2007, 21, 17–25. [Google Scholar] [CrossRef]
- Jahn, S.; Musnad, H.A.; Burgstaller, H. The tree that purifies water: Cultivating multipurpose Moringaceae in the Sudan. Unasylva 1986, 38, 23–28. [Google Scholar]
- Nasir, S.; Aguilar, D. Congestive Heart Failure and Diabetes Mellitus: Balancing Glycemic Control with Heart Failure Improvement. Am. J. Cardiol. 2012, 110, 50B–57B. [Google Scholar] [CrossRef] [Green Version]
- Rajangam, J.; Azahakia Manavalan, R.S.; Thangaraj, T.; Vijayakumar, A.; Muthukrishan, N. Status of Production and Utilization of Moringa in Southern India. Development Potential for Moringa Product. Dar Es Salaam, Tanzania. 2001. Available online: http://www.moringanews.org/actes/rajangam_en.doc (accessed on 10 January 2022).
- Amaglo, N.K.; Bennett, R.N.; Lo Curto, R.B.; Rosa, E.A.S.; Lo Turco, V.; Giuffrida, A.; Curto, A.L.; Crea, F.; Timpo, G.M. Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem. 2010, 122, 1047–1054. [Google Scholar] [CrossRef]
- Coppin, J.P.; Xu, Y.; Chen, H.; Pan, M.-H.; Ho, C.-T.; Juliani, R.; Simon, J.E.; Wu, Q. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J. Funct. Foods 2013, 5, 1892–1899. [Google Scholar] [CrossRef]
- Odebiyi, O.O.; Sofowora, E.A. Phytochemical screening of Nigerian medicinal plants II. Lloydia 1978, 41, 234–246. [Google Scholar]
- Gassenschmidt, U.; Jany, K.D.; Tauscher, B.; Niebergall, H. Isolation and characterization of a flocculating protein from Moringa oleifera Lam. Biochim. Biophys. Acta 1995, 1243, 477–481. [Google Scholar] [CrossRef]
- Nadkarni, K. Indian Materia Medica; Popular Prakashan: Mumbai, India, 1954; Volume 6, p. 629. [Google Scholar]
- Alam, M.I. Inhibition of Toxic Effects of Viper and Cobra Venom by Indian Medicinal Plants. Pharmacol. Pharm. 2014, 5, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Luqman, S.; Srivastava, S.; Kumar, R.; Maurya, A.K.; Chanda, D. Experimental Assessment of Moringa oleifera Leaf and Fruit for Its Antistress, Antioxidant, and Scavenging Potential Using In Vitro and In Vivo Assays. Evid. Based Complement. Altern. Med. 2012, 2012, 519084. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Bhattacharya, A.; Tiwari, P.; Sahu, P. A review of the phytochemical and pharmacological characteristics of Moringa oleifera. J. Pharm. Bioallied Sci. 2018, 10, 181–191. [Google Scholar] [CrossRef]
- Berkovich, L.; Earon, G.; Ron, I.; Rimmon, A.; Vexler, A.; Lev-Ari, S. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells. BMC Complement. Altern. Med. 2013, 13, 212. [Google Scholar] [CrossRef] [Green Version]
- Caceres, A.; Saravia, A.; Rizzo, S.; Zabala, L.; De Leon, E.; Nave, F. Pharmacologic properties of Moringa oleifera. 2: Screening for antispasmodic, antiinflammatory and diuretic activity. J. Ethnopharmacol. 1992, 36, 233–237. [Google Scholar] [CrossRef]
- Das, A.J. Moringa oleifera (Lamm.): A plant with immense importance. J. Biol. Act. Prod. Nat. 2012, 2, 307–315. [Google Scholar] [CrossRef]
- Shanmugavel, G.; Prabakaran, K.; George, B. Evaluation of phytochemical constituents of Moringa oleifera (Lam.) leaves collected from Puducherry region, South India. Int. J. Zool. Appl. Biosci. 2018, 3, 1–8. [Google Scholar]
- Sreelatha, S.; Jeyachitra, A.; Padma, P. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol. 2011, 49, 1270–1275. [Google Scholar] [CrossRef]
- Ndiaye, M.; Dieye, A.M.; Mariko, F.; Tall, A.; Diallo, A.S.; Faye, B. Contribution to the study of the anti-inflammatory activity of Moringa oleifera (moringaceae). Dakar Med. 2002, 47, 210–212. [Google Scholar]
- Minaiyan, M.; Asghari, G.; Taheri, D.; Saeidi, M.; Nasr-Esfahani, S. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats. Avicenna J. Phytomed. 2014, 4, 127–136. [Google Scholar] [PubMed]
- Moyo, B.; Masika, P.J.; Muchenje, V. Antimicrobial activities of Moringa oleifera Lam leaf extracts. Afr. J. Biotechnol. 2012, 11, 2797–2802. [Google Scholar] [CrossRef]
- Al-Malki, A.L.; El Rabey, H.A. The Antidiabetic Effect of Low Doses of Moringa oleifera Lam. Seeds on Streptozotocin Induced Diabetes and Diabetic Nephropathy in Male Rats. BioMed Res. Int. 2015, 2015, 381040. [Google Scholar] [CrossRef] [Green Version]
- James, A.; Zikankuba, V. Moringa oleifera a potential tree for nutrition security in sub-Sahara Africa. Am. J. Res. Commun. 2017, 5, 1–14. [Google Scholar]
- Isitua, C.C.; Lozano, M.J.S.-M.; Jaramillo, C.J.; Dutan, F. Phytochemical and nutritional properties of dried leaf powder of Moringa oleifera Lam. from machala el oro province of ecuador. Asian J. Plant Sci. Res. 2015, 5, 8–16. [Google Scholar]
- Ain, Q.-U.; Khan, H.; Mubarak, M.S.; Pervaiz, A. Plant Alkaloids as Antiplatelet Agent: Drugs of the Future in the Light of Recent Developments. Front. Pharmacol. 2016, 7, 292. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.K.; Mukherjee, P.K.; Saha, B.P. Studies on the antiulcer activity of Moringa oleifera leaf extract on gastric ulcer models in rats. Phytother. Res. 1995, 9, 463–465. [Google Scholar] [CrossRef]
- Babushkina, E.A.; Belokopytova, L.V.; Grachev, A.M.; Meko, D.; Vaganov, E.A. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg. Environ. Chang. 2017, 17, 1725–1737. [Google Scholar] [CrossRef] [Green Version]
- Tsaknis, J.; Lalas, S.; Gergis, V.; Dourtoglou, V.; Spiliotis, V. Characterization of Moringa oleifera Variety Mbololo Seed Oil of Kenya. J. Agric. Food Chem. 1999, 47, 4495–4499. [Google Scholar] [CrossRef]
- Berger, M.R.; Habs, M.; Jahn, S.A.; Schmahl, D. Toxicological assessment of seeds from Moringa oleifera and Moringa stenopetala, two highly efficient primary coagulants for domestic water treatment of tropical raw waters. East Afr. Med. J. 1984, 61, 712–716. [Google Scholar]
- Baptista, A.T.A.; Silva, M.O.; Gomes, R.G.; Bergamasco, R.; Vieira, M.F.; Vieira, A.M.S. Protein fractionation of seeds of Moringa oleifera lam and its application in superficial water treatment. Sep. Purif. Technol. 2017, 180, 114–124. [Google Scholar] [CrossRef]
- Olsen, A. Low technology water purification by bentonite clay and Moringa oleifera seed flocculation as performed in sudanese villages: Effects on Schistosoma mansoni cercariae. Water Res. 1987, 21, 517–522. [Google Scholar] [CrossRef]
- Barakat, H.; Ghazal, G.A. Physicochemical Properties of Moringa oleifera Seeds and Their Edible Oil Cultivated at Different Regions in Egypt. Food Nutr. Sci. 2016, 7, 472–484. [Google Scholar] [CrossRef] [Green Version]
- Wai, K.T.; Idris, A.; Johari, M.M.N.M.; Mohammad, T.A.; Ghazali, A.H.; Muyibi, S.A. Evaluation on different forms of Moringa oleifera seeds dosing on sewage sludge conditioning. Desalin. Water Treat. 2009, 10, 87–94. [Google Scholar] [CrossRef]
- Radovich, T. Farm and Forestry Production and Marketing Profile for Moringa (Moringa oleifera); Permanent Agriculture Resources (PAR): Holualoa, HI, USA, 2011. [Google Scholar]
- Trigo, C.; Castelló, M.L.; Ortolá, M.D.; García-Mares, F.J.; Soriano, M.D. Moringa oleifera: An Unknown Crop in Developed Countries with Great Potential for Industry and Adapted to Climate Change. Foods 2020, 10, 31. [Google Scholar] [CrossRef]
- Gautam, R.K.; Sankaran, M.; Zamir Ahmed, S.K.; AI Sunder, J.; Ram, N.; Dam Roy, S. Custodian Farmers and Communities of Biodiversity Conservation and Utilization in Andaman & Nicobar Islands, India. ICAR-CIARI, Port Blair; 2014. Available online: http://krishi.icar.gov.in/jspui/handle/123456789/20006 (accessed on 11 April 2022).
- Palada, M.C. Moringa (Moringa oleifera Lam.): A Versatile Tree Crop with Horticultural Potential in the Subtropical United States. HortScience 1996, 31, 794–797. [Google Scholar] [CrossRef] [Green Version]
- Godino, M.; Arias, C.; Izquierdo, M. Interés forestal de la Moringa Oleifera y Posibles Zonas de Implantación en España. In 6° Congreso Forestal Español: “Montes: Servicios y Desarrollo Rural”; Sociedad Española de Ciencias Forestales: Barcelona, Spain, 2013. [Google Scholar]
- Liu, Y.; Wang, X.-Y.; Wei, X.-M.; Gao, Z.-T.; Han, J.-P. Values, properties and utility of different parts of Moringa oleifera: An overview. Chin. Herb. Med. 2018, 10, 371–378. [Google Scholar] [CrossRef]
- Senthilkumar, A.; Karuvantevida, N.; Rastrelli, L.; Kurup, S.S.; Cheruth, A.J. Traditional Uses, Pharmacological Efficacy, and Phytochemistry of Moringa peregrina (Forssk.) Fiori. —A Review. Front. Pharmacol. 2018, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Agrawal, D.; Sahu, P.K.; Kumar, S.; Mishra, S.S.; Patnaik, S. Analgesic effect of ethanolic leaf extract of Moringa oleifera on albino mice. Indian J. Pain 2014, 28, 89. [Google Scholar] [CrossRef]
- Bosch, C. Moringa stenopetala (Baker f.) Cufod. PROTA 2004, 2, 395–397. [Google Scholar]
- George, T.T.; Oyenihi, A.B.; Rautenbach, F.; Obilana, A.O. Characterization of Moringa oleifera Leaf Powder Extract Encapsulated in Maltodextrin and/or Gum Arabic Coatings. Foods 2021, 10, 3044. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Saxena, A.; Seshadri, S. In-vitro availability of iron in various green leafy vegetables. J. Sci. Food Agric. 1988, 46, 125–127. [Google Scholar] [CrossRef]
- Dogra, P.; Singh, B.; Tandon, S. Vitamin C content in moringa pod vegetable. Curr. Sci. 1975, 44, 31. [Google Scholar]
- Azam, M.M.; Waris, A.; Nahar, N. Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 2005, 29, 293–302. [Google Scholar] [CrossRef]
- Nadkarni, K.M. Indian materia medica: With Ayurvedic, Unani-Tibbi, Siddha, allopathic, homeopathic, naturopathic & home remedies, appendices & indexes. 1. In Indian Materia Medica; Popular Prakashan: Mumbai, India, 1996; Volume 1. [Google Scholar]
- Gilani, A.; Janbaz, K.H.; Shah, B.H. 85 Quercetin exhibits hepatoprotective activity in rats. Biochem. Soc. Trans. 1997, 25, S619. [Google Scholar] [CrossRef] [Green Version]
- Ruckmani, K.; Kavimani, S.; Anandan, R.; Jaykar, B. Effect of Moringa oleifera Lam on paracetamol-induced hepatotoxicity. Indian J. Pharm. Sci. 1998, 60, 33. [Google Scholar]
- Jarald, E.E.; Sumati, S.; Edwin, S.; Ahmad, S.; Patni, S.; Daud, A. Characterization of Moringa oleifera Lam. gum to establish it as a pharmaceutical excipient. Indian J. Pharm. Educ. Res. 2012, 46, 211–216. [Google Scholar]
- Wang, Y.; Gao, Y.; Ding, H.; Liu, S.; Han, X.; Gui, J.; Liu, D. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chem. 2017, 218, 152–158. [Google Scholar] [CrossRef]
- Gothai, S.; Arulselvan, P.; Tan, W.; Fakurazi, S. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts. J. Intercult. Ethnopharmacol. 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Álvarez, R.; Vaz, B.; Gronemeyer, H.; de Lera, Á.R. Functions, Therapeutic Applications, and Synthesis of Retinoids and Carotenoids. Chem. Rev. 2014, 114, 1–125. [Google Scholar] [CrossRef]
- Ndabigengesere, A.; Narasiah, K.S. Quality of water treated by coagulation using Moringa oleifera seeds. Water Res. 1998, 32, 781–791. [Google Scholar] [CrossRef]
- Padmarao, P.; Acharya, B.M.; Dennis, T.J. Pharmacognostic study on stembark of Moringa oleifera Lam. Bull. Med.-Ethno-Bot. Res. 1996, 17, 151. [Google Scholar]
- Dahot, M. Vitamin contents of flowers and seeds of Moringa oleifera. Pak. J. Biochem. 1988, 21, 21–24. [Google Scholar]
- Bhattacharya, S.B.; Das, A.K.; Banerji, N. Chemical investigations on the gum exudates from Sonja (Moringa oleifera). Carbohydr. Res. 1982, 102, 253–262. [Google Scholar] [CrossRef]
- Mehta, K.; Balaraman, R.; Amin, A.; Bafna, P.; Gulati, O. Effect of fruits of Moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits. J. Ethnopharmacol. 2003, 86, 191–195. [Google Scholar] [CrossRef]
- Daba, M. Miracle Tree: A Review on Multi-purposes of Moringa oleifera and Its Implication for Climate Change Mitigation. J. Earth Sci. Clim. Chang. 2016, 7, 1000366. [Google Scholar] [CrossRef]
- Makonnen, E.; Hunde, A.; Damecha, G. Hypoglycaemic effect of Moringa stenopetala aqueous extract in rabbits. Phytother. Res. 1997, 17, 147–148. [Google Scholar] [CrossRef]
- Faizi, S.; Siddiqui, B.; Saleem, R.; Aftab, K.; Shaheen, F.; Gilani, A.-U. Hypotensive Constituents from the Pods of Moringa oleifera. Planta Medica 1998, 64, 225–228. [Google Scholar] [CrossRef]
- Lalas, S.; Tsaknis, J. Extraction and identification of natural antioxidant from the seeds of the Moringa oleifera tree variety of Malawi. J. Am. Oil Chem. Soc. 2002, 79, 677–683. [Google Scholar] [CrossRef]
- Santos, D.; Segtovich, I.; Teixeira, F.; Alvarez, V.H.; Mattedi, S. Vapor liquid equilibrium calculations for alcohol and hydrocarbon mixtures using COSMO SAC, NRTL, and UNIQUAC Models. Braz. J. Pet. Gas 2015, 8, 4. [Google Scholar]
- Standnes, D.C.; Skjevrak, I. Literature review of implemented polymer field projects. J. Pet. Sci. Eng. 2014, 122, 761–775. [Google Scholar] [CrossRef]
- Mizielinska, S.M.; Greenwood, S.M.; Tummala, H.; Connolly, C.N. Rapid dendritic and axonal responses to neuronal insults. Biochem. Soc. Trans. 2009, 37, 1389–1393. [Google Scholar] [CrossRef] [PubMed]
- Samanta, A.; Bera, A.; Ojha, K.; Mandal, A. Effects of Alkali, Salts, and Surfactant on Rheological Behavior of Partially Hydrolyzed Polyacrylamide Solutions. J. Chem. Eng. Data 2010, 55, 4315–4322. [Google Scholar] [CrossRef]
- Sandiford, B. Laboratory and Field Studies of Water Floods Using Polymer Solutions to Increase Oil Recoveries. J. Pet. Technol. 1964, 16, 917–922. [Google Scholar] [CrossRef]
- Woomer, P.L. Most Probable Number Counts. In Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 59–79. [Google Scholar] [CrossRef]
- Adedapo, A.; Falayi, F.; Oyagbemi, A. Evaluation of the analgesic, anti-inflammatory, anti-oxidant, phytochemical and toxicological properties of the methanolic leaf extract of commercially processed Moringa oleifera in some laboratory animals. J. Basic Clin. Physiol. Pharmacol. 2015, 26, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Ferrao, A.M.B.C.; Ferrao, M.J.E. Ácidos gordos em óleo de Moringueiro (Moringa oleifera Lam.). Agron. Angolana 1970, 8, 3–16. [Google Scholar]
- Fuglie, L.J. The Miracle Tree: Moringa Oleifera. Natural Nutrition for the Tropics; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999. [Google Scholar]
- Verma, S.C.; Banerji, R.; Misra, G.; Nigam, S.K. Nutritional value of Moringa. Curr. Sci. 1976, 45, 769–770. [Google Scholar] [CrossRef] [Green Version]
- Sutar, N.G.; Bonde, C.G.; Patil, V.V.; Narkhede, S.B.; Patil, A.P.; Kakade, R.T. Analgesic activity of seeds of Moringa oleifera Lam. Int. J. Green Pharm. 2008, 2. [Google Scholar] [CrossRef]
- Manaheji, H. Analgesic effects of methanolic extracts of the leaf or root of Moringa oleifera on complete Freund’s adjuvant-induced arthritis in rats. J. Chin. Integr. Med. 2011, 9, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Upadhye, K.; Rangari, V.; Mathur, V. Antimigraine activity study of Moringa oleifera leaf juice. Int. J. Green Pharm. 2012, 6, 204. [Google Scholar] [CrossRef]
- Velaga, V.S.A.R.; Suryadevara, N.; Chee, L.; Ismail, N.E. Phytochemical analysis and immuno-modulatory effect of Moringa oleifera flowers. Int. J. Pharm. Pharmaceut. 2017, 9, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Ezeamuzie, I.C.; Ambakederemo, A.W.; Shode, F.O.; Ekwebelem, S.C. Antiinflammatory Effects of Moringa oleifera Root Extract. Int. J. Pharmacogn. 1996, 34, 207–212. [Google Scholar] [CrossRef]
- Kinase, J. Moringa tea blocks acute lung inflammation induced by swine confinement dust through a mechanism involving TNF-α expression, c-Jun N-terminal kinase activation and neutrophil regulation. Am. J. Immunol. 2014, 10, 73–87. [Google Scholar]
- Rani, N.Z.A.; Husain, K.; Kumolosasi, E. Moringa Genus: A Review of Phytochemistry and Pharmacology. Front. Pharmacol. 2018, 9, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopalakrishnan, L.; Doriya, K.; Kumar, D.S. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci. Hum. Wellness 2016, 5, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Ganguly, R.; Hazra, R.; Ray, K.; Guha, D. Effect of Moringa oleifera in experimental model of Alzheimer’s disease: Role of antioxidants. Ann. Neurosci. 2010, 12, 33–36. [Google Scholar] [CrossRef]
- Kou, X.; Li, B.; Olayanju, J.B.; Drake, J.M.; Chen, N. Nutraceutical or Pharmacological Potential of Moringa oleifera Lam. Nutrients 2018, 10, 343. [Google Scholar] [CrossRef] [Green Version]
- Mohan, M.; Kaul, N.; Punekar, A.; Girnar, R.; Junnare, P.; Patil, L. Nootropic activity of Moringa oleifera leaves. J. Nat. Remedies 2005, 5, 59–62. [Google Scholar]
- Akram, M.; Nawaz, A. Effects of medicinal plants on Alzheimer’s disease and memory deficits. Neural Regen. Res. 2017, 12, 660–670. [Google Scholar] [CrossRef]
- More, S.V.; Kumar, H.; Cho, D.-Y.; Yun, Y.-S.; Choi, D.-K. Toxin-Induced Experimental Models of Learning and Memory Impairment. Int. J. Mol. Sci. 2016, 17, 1447. [Google Scholar] [CrossRef] [Green Version]
- Ray, K.; Guha, D. Effect of Moringa oleifera root extract on penicillin-induced epileptic rats. Biog. Amines 2005, 19, 223–231. [Google Scholar] [CrossRef]
- Fathima, S.N.; Vasudevamurthy, S.; Rajkumar, N. A review on phytoextracts with antiepileptic property. J. Pharm. Sci. Res. 2015, 7, 994. [Google Scholar]
- Kaur, G.; Invally, M.; Sanzagiri, R.; Buttar, H.S. Evaluation of the antidepressant activity of Moringa oleifera alone and in combination with fluoxetine. J. Ayurveda Integr. Med. 2015, 6, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Santra, S.; Mahapatra, S.; Sahu, P.K.; Agrawal, D.; Kumar, S. Study of anxiolytic effect of ethanolic extract of drumstick tree leaves on albino mice in a basic neuropharmacology laboratory of a postgraduate teaching institute. J. Health Res. Rev. 2016, 3, 41. [Google Scholar] [CrossRef]
- Islam, M.T.; Martins, N.; Imran, M.; Hameed, A.; Ali, S.W.; Salehi, B.; Ahmad, I.; Hussain, A.; Sharifi-Rad, J. Anxiolytic-like effects of Moringa oleifera in Swiss mice. Cell. Mol. Biol. 2020, 66, 73–77. [Google Scholar] [CrossRef]
- Jung, I.L.; Lee, J.H.; Kang, S.C. A potential oral anticancer drug candidate, Moringa oleifera leaf extract, induces the apoptosis of human hepatocellular carcinoma cells. Oncol. Lett. 2015, 10, 1597–1604. [Google Scholar] [CrossRef]
- Dulay, M.T.; Zaman, N.; Jaramillo, D.; Mody, A.C.; Zare, R.N. Pathogen-Imprinted Organosiloxane Polymers as Selective Biosensors for the Detection of Targeted E. coli. C 2018, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Tiloke, C.; Phulukdaree, A.; Chuturgoon, A.A. The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. BMC Complement. Altern. Med. 2013, 13, 226. [Google Scholar] [CrossRef] [Green Version]
- Al-Asmari, A.K.; AlBalawi, S.M.; Athar, T.; Khan, A.Q.; Al-Shahrani, H.; Islam, M. Moringa oleifera as an Anti-Cancer Agent against Breast and Colorectal Cancer Cell Lines. PLoS ONE 2015, 10, e0135814. [Google Scholar] [CrossRef]
- Mojzis, J.; Varinska, L.; Mojzisova, G.; Kostova, I.; Mirossay, L. Antiangiogenic effects of flavonoids and chalcones. Pharmacol. Res. 2008, 57, 259–265. [Google Scholar] [CrossRef]
- Tragulpakseerojn, J.; Yamaguchi, N.; Pamonsinlapatham, P.; Wetwitayaklung, P.; Yoneyama, T.; Ishikawa, N.; Ishibashi, M.; Apirakaramwong, A. Anti-proliferative effect of Moringa oleifera Lam (Moringaceae) leaf extract on human colon cancer HCT116 cell line. Trop. J. Pharm. Res. 2017, 16, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Budda, S.; Butryee, C.; Tuntipopipat, S.; Rungsipipat, A.; Wangnaithum, S.; Lee, J.-S.; Kupradinun, P. Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pac. J. Cancer Prev. 2011, 12, 3221–3228. [Google Scholar] [PubMed]
- Abd-Rabou, A.A.; Abdalla, A.M.; Ali, N.A.; Zoheir, K.M.A. Moringa oleifera Root Induces Cancer Apoptosis more Effectively than Leave Nanocomposites and Its Free Counterpart. Asian Pac. J. Cancer Prev. 2017, 18, 2141–2149. [Google Scholar] [PubMed]
- Zayas-Viera, M.D.M. Anticancer effect of Moringa oleifera leaf extract in human cancer cell lines. J. Health Disparities Res. Pract. 2016, 9, 102. [Google Scholar]
- Moghe, A.S.; Fernandes, E.E.; Pulwale, A.V.; Patil, G.A. Probing regenerative potential of Moringa oleifera aqueous extracts using In vitro cellular assays. Pharmacogn. Res. 2016, 8, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Fisall, U.F.M.; Ismail, N.Z.; Adebayo, I.A.; Arsad, H. Dichloromethane fraction of Moringa oleifera leaf methanolic extract selectively inhibits breast cancer cells (MCF7) by induction of apoptosis via upregulation of Bax, p53 and caspase 8 expressions. Mol. Biol. Rep. 2021, 48, 4465–4475. [Google Scholar] [CrossRef]
- Purwal, L.; Pathak, A.; Jain, U. In vivo anticancer activity of the leaves and fruits of Moringa oleifera on mouse melanoma. Pharmacologyonline 2010, 1, 655–665. [Google Scholar]
- Charoensin, S. Antioxidant and anticancer activities of Moringa oleifera leaves. J. Med. Plants Res. 2014, 8, 318–325. [Google Scholar]
- Karin, M.; Lin, A. NF-kappaB at the crossroads of life and death. Nat. Immunol. 2002, 3, 221–227. [Google Scholar] [CrossRef]
- Greenhalf, W.; Thomas, A. Combination therapy for the treatment of pancreatic cancer. Anti-Cancer Agents Med. Chem. 2011, 11, 418–426. [Google Scholar] [CrossRef]
- Sreelatha, S.; Padma, P.R. Antioxidant Activity and Total Phenolic Content of Moringa oleifera Leaves in Two Stages of Maturity. Mater. Veg. 2009, 64, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Shameer, P.; Mohamed, K.; Sukhen, S. Effect of Moringa oleifera on stress induced brain lipid peroxidation in rats. Res. J. Pharm. Biol. Chem. Sci. 2010, 1, 336–342. [Google Scholar]
- Kumar, V.; Pandey, N.; Mohan, N.; Singh, R.P. Antibacterial & antioxidant activity of different extract of Moringa oleifera Leaves—An in vitro study. Int. J. Pharm. Sci. Rev. Res. 2012, 12, 89–94. [Google Scholar]
- Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Dhakarey, R.; Upadhyay, G.; Singh, H.B. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. 2009, 47, 1109–1116. [Google Scholar] [CrossRef]
- Satish, A.; Reddy, P.V.; Sairam, S.; Ahmed, F.; Urooj, A. Antioxidative Effect and DNA Protecting Property of Moringa oleifera Root Extracts. J. Herbs Spices Med. Plants 2014, 20, 209–220. [Google Scholar] [CrossRef] [Green Version]
- Laoung-On, J.; Jaikang, C.; Saenphet, K.; Sudwan, P. Phytochemical Screening, Antioxidant and Sperm Viability of Nelumbo nucifera Petal Extracts. Plants 2021, 10, 1375. [Google Scholar] [CrossRef]
- Sinha, M.; Das, D.K.; Bhattacharjee, S.; Majumdar, S.; Dey, S. Leaf Extract of Moringa oleifera Prevents Ionizing Radiation-Induced Oxidative Stress in Mice. J. Med. Food 2011, 14, 1167–1172. [Google Scholar] [CrossRef]
- Paliwal, R.; Sharma, V.; Sharma, S. Elucidation of free radical scavenging and antioxidant activity of aqueous and hydro-ethanolic extracts of Moringa oleifera pods. Res. J. Pharm. Technol. 2011, 4, 566–571. [Google Scholar]
- Atawodi, S.E.; Atawodi, J.C.; Idakwo, G.A.; Pfundstein, B.; Haubner, R.; Wurtele, G.; Bartsch, H.; Owen, R.W. Evaluation of the Polyphenol Content and Antioxidant Properties of Methanol Extracts of the Leaves, Stem, and Root Barks of Moringa oleifera Lam. J. Med. Food 2010, 13, 710–716. [Google Scholar] [CrossRef]
- Patel, R.K.; Patel, M.M.; Kanzariya, N.R.; Vaghela, K.R.; Patel, N.J. In-vitro hepatoprotective activity of Moringa oleifera Lam. leave on isolated rat hepatocytes. Int. J. Pharm. Sci. 2010, 2, 457–463. [Google Scholar]
- Hamza, A.A. Ameliorative effects of Moringa oleifera Lam seed extract on liver fibrosis in rats. Food Chem. Toxicol. 2010, 48, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Fakurazi, S.; Hairuszah, I.; Nanthini, U. Moringa oleifera Lam prevents acetaminophen induced liver injury through restoration of glutathione level. Food Chem. Toxicol. 2008, 46, 2611–2615. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Sikder, K.; Ghosh, S.; Fromenty, B.; Dey, S. Moringa oleifera Lam. leaf extract prevents early liver injury and restores antioxidant status in mice fed with high-fat diet. Indian J. Exp. Biol. 2012, 50, 404–412. [Google Scholar] [PubMed]
- Suganthi, U.R.; Parvatham, R. Efficacy of Moringa oleifera and Aloe vera on aflatoxin Blinduced hepatotoxicityin rats. Res. J. Biotechnol. 2010, 4, 2024. [Google Scholar]
- Pari, L.; Kumar, N.A. Hepatoprotective activity of Moringa oleifera on antitubercular drug-induced liver damage in rats. J. Med. Food 2002, 5, 171–177. [Google Scholar] [CrossRef]
- Omodanisi, E.; Aboua, Y.G.; Chegou, N.N.; Oguntibeju, O.O. Hepatoprotective, Antihyperlipidemic, and Anti-inflammatory Activity of Moringa oleifera in Diabetic-induced Damage in Male Wistar Rats. Pharmacogn. Res. 2017, 9, 182–187. [Google Scholar] [CrossRef]
- Abd Eldaim, M.A.; Elrasoul, A.S.A.; Elaziz, S.A.A. An aqueous extract from Moringa oleifera leaves ameliorates hepatotoxicity in alloxan-induced diabetic rats. Biochem. Cell Biol. 2017, 95, 524–530. [Google Scholar] [CrossRef]
- Adeyemi, O.S.; Aroge, C.S.; Akanji, M.A. Moringa oleifera-based diet protects against nickel-induced hepatotoxicity in rats. J. Biomed. Res. 2017, 31, 350–357. [Google Scholar] [CrossRef] [Green Version]
- Toppo, R.; Roy, B.K.; Gora, R.H.; Baxla, S.L.; Kumar, P. Hepatoprotective activity of Moringa oleifera against cadmium toxicity in rats. Veter-World 2015, 8, 537–540. [Google Scholar] [CrossRef] [Green Version]
- Debnath, S.; Guha, D. Role of Moringa oleifera on enterochromaffin cell count and serotonin content of experimental ulcer model. Indian J. Exp. Biol. 2007, 45, 726–731. [Google Scholar]
- Ndong, M.; Uehara, M.; Katsumata, S.; Sato, S.; Suzuki, K. Preventive Effects of Moringa oleifera (Lam) on Hyperlipidemia and Hepatocyte Ultrastructural Changes in Iron Deficient Rats. Biosci. Biotechnol. Biochem. 2007, 71, 1826–1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangi, S.; Jolly, C.; Narayanan, S. Antihypertensive Activity of the Total Alkaloids from the Leaves of Moringa oleifera. Pharm. Biol. 2002, 40, 144–148. [Google Scholar] [CrossRef]
- Randriamboavonjy, J.I.; Loirand, G.; Vaillant, N.; Lauzier, B.; Derbré, S.; Michalet, S.; Pacaud, P.; Tesse, A. Cardiac Protective Effects of Moringa oleifera Seeds in Spontaneous Hypertensive Rats. Am. J. Hypertens. 2016, 29, 873–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilani, A.H.; Aftab, K.; Suria, A.; Siddiqui, S.; Salem, R.; Siddiqui, B.S.; Faizi, S. Pharmacological studies on hypotensive and spasmolytic activities of pure compounds from Moringa oleifera. Phytother. Res. 1994, 8, 87–91. [Google Scholar] [CrossRef]
- Nandave, M.; Ojha, S.K.; Joshi, S.; Kumari, S.; Arya, D.S. Moringa oleifera leaf extract prevents isoproterenol-induced myocardial damage in rats: Evidence for an antioxidant, antiperoxidative, and cardioprotective intervention. J. Med. Food 2009, 12, 47–55. [Google Scholar] [CrossRef]
- Barbagallo, I.; Vanella, L.; Distefano, A.; Nicolosi, D.; Maravigna, A.; Lazzarino, G.; Di Rosa, M.; Tibullo, D.; Acquaviva, R.; Volti, G.L. Moringa oleifera Lam. improves lipid metabolism during adipogenic differentiation of human stem cells. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 5223–5232. [Google Scholar]
- Nahar, S.; Faisal, F.; Iqbal, J.; Rahman, M.M.; Yusuf, A. Antiobesity activity of Moringa oleifera leaves against high fat diet-induced obesity in rats. Int. J. Basic Clin. Pharmacol. 2016, 5, 1263–1268. [Google Scholar] [CrossRef]
- Bais, S.; Singh, G.S.; Sharma, R. Antiobesity and Hypolipidemic Activity of Moringa oleifera Leaves against High Fat Diet-Induced Obesity in Rats. Adv. Biol. 2014, 2014, 162914. [Google Scholar] [CrossRef] [Green Version]
- Pare, D.; Hilou, A.; Ouedraogo, N.; Guenne, S. Ethnobotanical Study of Medicinal Plants Used as Anti-Obesity Remedies in the Nomad and Hunter Communities of Burkina Faso. Medicines 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Metwally, F.; Rashad, H.; Ahmed, H.H.; Mahmoud, A.; Raouf, E.A.; Abdalla, A.M. Molecular mechanisms of the anti-obesity potential effect of Moringa oleifera in the experimental model. Asian Pac. J. Trop. Biomed. 2017, 7, 214–221. [Google Scholar] [CrossRef]
- Mehta, A.; Agrawal, B. Investigation into the mechanism of action of Moringa oleifera for its anti-asthmatic activity. Orient. Pharm. Exp. Med. 2008, 8, 24–31. [Google Scholar] [CrossRef]
- Goyal, B.R.; Goyal, R.K.; Mehta, A.A. Investigation Into the Mechanism of Anti-Asthmatic Action of Moringa oleifera. J. Diet. Suppl. 2009, 6, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.G.; Mehta, A.A. Effect of Moringa oleifera Lam. Seed Extract on Ovalbumin-Induced Airway Inflammation in Guinea Pigs. Inhal. Toxicol. 2008, 20, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Suzana, D.; Suyatna, F.D.; Azizahwati; Andrajati, R.; Santi, P.S.; Mun’im, A. Effect of Moringa oleifera Leaves Extract Against Hematology and Blood Biochemical Value of Patients with Iron Deficiency Anemia. J. Young Pharm. 2017, 9, s79–s84. [Google Scholar] [CrossRef] [Green Version]
- Adegbite, O.A.; Omolaso, B.; Seriki, S.A.; Shatima, C. Effects of Moringa oleifera leaves on hematological indices in humans. Ann. Hematol. Oncol. 2016, 3, 1107. [Google Scholar]
- Archibong, A.N.; Nku, C.O.; Ofem, O.E. Extract of Moringa oleifera attenuates hematological parameters following salt loading. MicroMedicine 2017, 5, 24–30. [Google Scholar]
- Manohar, V.S.; Jayasree, T.; Kiran Kishore, K.; Mohana Rupa, L.; Dixit, R.; Chandrasekhar, N. Evaluation of hypoglycemic and antihyperglycemic effect of freshly prepared aqueous extract of Moringa oleifera leaves in normal and diabetic rabbits. J. Chem. Pharm. Res. 2012, 4, 249–253. [Google Scholar]
- Jaiswal, D.; Rai, P.K.; Kumar, A.; Mehta, S.; Watal, G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J. Ethnopharmacol. 2009, 123, 392–396. [Google Scholar] [CrossRef]
- Yassa, H.D.; Tohamy, A.F. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats. Acta Histochem. 2014, 116, 844–854. [Google Scholar] [CrossRef]
- Karadi, R.V.; Gadge, N.B.; Alagawadi, K.; Savadi, R.V. Effect of Moringa oleifera Lam. root-wood on ethylene glycol induced urolithiasis in rats. J. Ethnopharmacol. 2006, 105, 306–311. [Google Scholar] [CrossRef]
- Dhongade, H.K.J.; Paikra, B.K.; Gidwani, B. Phytochemistry and Pharmacology of Moringa oleifera Lam. J. Pharmacopunct. 2017, 20, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Villarruel-López, A.; López-de la Mora, D.A.; Vázquez-Paulino, O.D.; Puebla-Mora, A.G.; Torres-Vitela, M.R.; Guerrero-Quiroz, L.A.; Nuño, K. Effect of Moringa oleifera consumption on diabetic rats. BMC Complement. Altern. Med. 2018, 18, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paula, P.C.; Sousa, D.O.B.; Oliveira, J.T.A.; Carvalho, A.F.U.; Alves, B.G.T.; Pereira, M.L.; Farias, D.F.; Viana, M.P.; Santos, F.A.; Morais, T.C.; et al. A Protein Isolate from Moringa oleifera Leaves Has Hypoglycemic and Antioxidant Effects in Alloxan-Induced Diabetic Mice. Molecules 2017, 22, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Muñoz, M.A.; Valdez-Solana, M.A.; Campos-Almazán, M.I.; Flores-Herrera, Ó.; Esparza-Perusquía, M.; Olvera-Sánchez, S.; García-Arenas, G.; Avitia-Domínguez, C.; Téllez-Valencia, A.; Sierra-Campos, E. Streptozotocin-Induced Adaptive Modification of Mitochondrial Supercomplexes in Liver of Wistar Rats and the Protective Effect of Moringa oleifera Lam. Biochem. Res. Int. 2018, 2018, 5681081. [Google Scholar] [CrossRef] [Green Version]
- Hagiwara, A.; Hidaka, M.; Takeda, S.; Yoshida, H.; Kai, H.; Sugita, C.; Watanabe, W.; Kurokawa, M. Anti-Allergic Action of Aqueous Extract of Moringa oleifera Lam. Leaves in Mice. Eur. J. Med. Plants 2016, 16, 1–10. [Google Scholar] [CrossRef]
- Rastogi, T.; Buhtda, V.; Moon, K.; Aswar, P.B.; Khadabadi, S.S. Comparative studies on anthelmintic activity of Moringa oleifera and Vitex negundo. Asian J. Res. Chem. 2009, 2, 181–182. [Google Scholar]
- Cabardo, D.E., Jr.; Portugaliza, H.P. Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae. Int. J. Vet. Sci. Med. 2017, 5, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Saralaya, M.G.; Patel, P.; Patel, M.; Roy, S.P.; Patel, A.N. Research article antidiarrheal activity of methanolic extract of Moringa oleifera lam roots in experimental animal models. Int. J. Pharm. Res. 2010, 2, 25–29. [Google Scholar]
- Lakshminarayana, M.; Shivkumar, H.; Rimaben, P.; Bhargava, V.K. Antidiarrhoeal activity of leaf extract of Moringa oleifera in experimentally induced diarrhoea in rats. Int. J. Phytomedicine 2011, 3, 68–74. [Google Scholar]
- Choudhury, S.; Sharan, L.; Sinha, M. Antidiarrhoeal potentiality of leaf extracts of Moringa oleifera. Br. J. Appl. Sci. Technol. 2013, 10, 1086–1096. [Google Scholar] [CrossRef]
- Raguindin, P.F.N.; Dans, L.F.; King, J.F. Moringa oleifera as a Galactagogue. Breastfeed. Med. 2014, 9, 323–324. [Google Scholar] [CrossRef] [PubMed]
- Medhi, B.; Khanikor, H.; Lahon, L.; Mohan, P.; Barua, C. Analgesic, Anti-inflammatory and Local Anaesthetic Activity of Moringa pterygosperma in Laboratory Animals. Pharm. Biol. 2003, 41, 248–252. [Google Scholar] [CrossRef] [Green Version]
- Monera, T.G.; Wolfe, A.R.; Maponga, C.C.; Benet, L.Z.; Guglielmo, J. Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4. J. Infect. Dev. Ctries. 2008, 2, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Roosdiana, A.; Prasetyawan, S.; Mahdi, C.; Sutrisno, S. Production and Characterization of Bacillus firmus pectinase. J. Pure Appl. Chem. Res. 2013, 2, 35–41. [Google Scholar] [CrossRef]
- Cabeza, M.S.; Baca, F.L.; Puntes, E.M.; Loto, F.; Baigori, M.; Morata, V.I. Selection of psychrotolerant microorganisms producing cold-active pectinases for biotechnological processes at low temperature. Food Technol. Biotechnol. 2011, 49, 187–195. [Google Scholar]
- Das, B.; Chakraborty, A.; Ghosh, S.; Chakrabarti, K. Studies on the effect of pH and carbon sources on enzyme activities of some pectinolytic bacteria isolated from jute retting water. Turk. J. Biol. 2011, 35, 671–678. [Google Scholar]
- Namasivayam, E.; Ravindar, J.D.; Mariappan, K.; Jiji, A.; Kumar, M.; Jayaraj, R.L. Production of Extracellular Pectinase by Bacillus Cereus Isolated from Market Solid Waste. J. Bioanal. Biomed. 2011, 3, 70–75. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, G.D.; Zoya, J.; Singh, A.K. Pectinase production and purification from Bacillus subtilis isolated from soil. Adv. Appl. Sci. Res. 2014, 5, 103–105. [Google Scholar]
- Chandra, D. Analgesic effect of aqueous and alcoholic extracts of Madhuka Longifolia (Koeing). Indian J. Pharmacol. 2001, 33, 108–111. [Google Scholar]
- Makinde, A.I. Effects of inorganic fertilizer on the growth and nutrient composition of Moringa (Moringa oleifera). J. Emerg. Trends Eng. Appl. Sci. 2013, 4, 341–343. [Google Scholar]
Phytochemicals | Medicinal Effects | References |
---|---|---|
Tannins | Bactericidal, anti-inflammatory, and anti-parasitic. | [22] |
Saponins reduction and immune support. | Antioxidant, anticancer, cholesterol. | [23] |
Alkaloid’s cancer, cardiac dysfunction, and pain. | Treatment of malaria, diabetes. | [23] |
Glycoside’s failure and cardiac arrhythmia. | Anti-tumoral, anti-inflammatory, antibacterial, and antioxidants. | [10] |
Reducing sugar’s function. | Treatment of congestive heart. | [24] |
Glucosinolate 4-O-(a-L-rhamnopyranosyloxy)-benzyl glucosinolate (glucomoringin) | Provides energy for proper body. | [25] |
Extract Type | Medicinal Effects | Reference |
---|---|---|
M. oleifera leaf extract | Have antioxidant potential, increase the cytotoxicity in apoptosis based chemotherapy by downregulation of (nuclear factor-kappa B; NF-kB) | [29,30] |
Flower, seed, leaf, root and bark extract of M. oleifera | Increase urine production in rats. | [31] |
Ethanolic extracts of the seeds of M. oleifera | in vitro antifungal activity | [32] |
Hydroalcoholic extracts of the M. oleifera leaves | Hypolipidemic and antioxidant activities. | [33] |
M. oleifera aqueous extract of foliage | Increase antiproliferative potential and leads to apoptosis of cancer cells | [34] |
M. oleifera aqueous extract of root | have anti-inflammatory efficacy in rats, reduce carrageenan-induced edoema | [35] |
Hydro-alcoholic extracts of M. oleifera seed | Reduce inflammation and help in effective treatment of experimental colitis | [36] |
M. oleifera acetone leaf extracts | Antimicrobial activity | [37] |
M. oleifera seeds extract | Show anti-diabetic activity | [38] |
Parameter | Requirement | References |
---|---|---|
Elevation | 0–2000 m | [28,44] |
Rain | 250–3000 mm | [44] |
250–3000 mm per year, if rainfall is less than 800 mm, irrigation is required for leaf formation. | [17] | |
Type of soil | Sandy, or sandy-loam, Loamy | [45] |
pH of soil | In the rage of 5–9 | [46] |
Fruiting period | In South India during the summer flowers and fruit appear, and While in North India July to September and March to April fruits ripen | [47] |
Irrigation | It should be administered every 2–3 days for the first few days, then once every 10–15 days after that. | [48] |
Temperature | At the temperature range of 25–35 °C and even sometimes it withstands up to 48 °C for a limited time period. | [49] |
Harvesting period | In Spain, between the months of August and September for pods and for leaves, due to high production yield, three to five cuts may be made per season for better productivity. | [15] |
Plant Parts | Phytochemicals Present | Medicinal Uses | References |
---|---|---|---|
Root | 4-(a-L-rhamnopyranosyloxy)-benzyl glucosinolate and benzyl glucosinolate | Act as anti-inflammatory; stimulant in paralytic afflictions; act as a cardiac; for treatment of rheumatism, lower back or kidney pain. | [1,50] |
Flower | D-glucose, D-mannose, protein, polysaccharide, ascorbic acid, | A stimulant; used as a cure for tumors, hysteria, muscle diseases, inflammation, and lower serum cholesterol | [65,66,67,68] |
Gum | L-arabinose, D-galactose, D-glucuronic acid, Exudates L-rhamnose, D-mannose, D-xylose and leucoanthocyanin | Used as an abortifacient and in treatment of syphilis as well as rheumatism; overcome dental caries; gum mixed with sesame oil helped to relieve pain from headache, dysentery, asthma, and intestinal problems | [51] |
Leave | Glycoside niazirin, niazirinin, and three mustard oil glycosides, 4-[4′-O-acetyl-a-L-rhamnosyloxy) benzyl] isothiocyanate, niaziminin A and B, vitamin A (Beta-carotene), vitamin B (choline), riboflavin, sterols, saponins, phenolics, quercetin, flavonoids, nicotinic acid, and ascorbic acid are present various amino acids like Histidine, Lysine, Tryptophan, Phenylalanine, Leucine, Methionine, Isoleucine, Valine, etc. | Used for eye and ear infections, piles, headache, sore throat, fever; leaf juice is used to control glucose level; treat asthma, hyperglycemiaurn, syphilis, malaria, pneumonia, scurvy, skin diseases, reduces blood pressure and cholesterol, and act as anticancer; anti-atherosclerotic agent, antioxidant, neuroprotectant, antidiabetic | [69,70,71] |
Seed | Crude protein, Crude fat, carbohydrate, Methionine, cysteine, 4-(a-L-rhamnopyranosyloxy) benzyl glucosinolate, benzyl glucosinolate, moringine, mono-palmitic and di-oleic triglyceride, oleic acid, antibiotic called pterygospermin, fatty acids like behenic acid, linolenic acid, linoleic acid; Phytochemicals like tannins, saponin, phytate, lectin, flavanoids. Apart from these fats, fibers, proteins, minerals, vitamins like A, B, C, and amino acids | The antihypertensive chemicals thiocarbamate and isothiocyanate glycosides have been identified from the acetate phase of the ethanolic extract of Moringa pods, and seed extract exerts its protective action by lowering liver lipid peroxides | [72,73] |
Stem bark | 4-hydroxymellein, vanillin, β-testosterone, octacosanol acid and β-sitosterol | The roots are used as a cure for earache and tooth cavity; antitubercular activity; prevent enlargement of spleen and formation of tuberculous glands; in ulcer treatment and also used to cure eye diseases | [74] |
Seed | Ben oil, Thiocarbamate and isothiocyanate | Ben oil has the ability to show resistance against oxidative degradation. Seed powder of M. oleifera Ben oil can also provide a defense to the oxidative stress induced by the arsenic and prevent the accumulation of arsenic in the tissues and blood. Various compounds related to thiocarbamate and isothiocynate exhibit antitumor potential by inhibiting the tumor promoter teleocidin B-4-induced Epstein–barr virus. | [75,76] |
Flower | Flavanoid-quercetin | M. oleifera flowers possess a flavanoid known as quercetin which have a significant impact on regulation of liver function due to its heatoprotective effects. | [77,78] |
Gum | Gum exudates | These gum exudates are non-toxic compounds that improve stability of therapeutics thereby overall efficiency of the therapeutics. These are also used to treat various chronic disorders. | [79] |
Leave | Flavanoids, Carotenoids, phenols, vitamin A | Antioxidant activity of M. oleifera leaves is mostly due to the presence of flavanoids. Carotenoids are naturally occurring pigments of plant that help in the prevention of damage to photosynthetic apparatus by excessive light intensity. Carotenoids also function as antioxidants along with working as protecting agent for aging, cellular damage and provide many health benefits. Higher concentration of phenols in leaf extract can induce caspases thereby resulting in cellular apoptosis. Vitamin A present in M. oleifera leaves regulates various functions such as vision, growth and reproduction, immune system cellular growth and apoptosis and brain activities. | [80,81,82] |
Pod | Methyl phydroxybenzoate and β-sitosterol | M. oleifera pod contains Methyl phydroxybenzoate and β-sitosterol that play a very efficient role in the lowering of blood pressure. | [4] |
Root bark | N-benzyl, S-ethyl thioformate | N-benzyl, S-ethyl thioformate isolated from bark of M. oleifera root. This compound showed antimicrobial activity. | [83] |
Root | Pterygospermin, 4-α-L-rhamnosyloxy benzyl isothiocyanate | M. oleifera roots contain Pterygospermin, and 4-α-L-rhamnosyloxy benzyl isothiocyanate components that show a very significant antimicrobial activities. These components play a very important role in antifungal and antimicrobial activities of M. oleifera roots. | [51,72,73] |
Part of M. oleifera Tree | Extract Type | Test | Cell Line Type | Observation | Reference |
---|---|---|---|---|---|
Leaves | Aqueous extract | XTT assay | Human pancreatic cancer cell lines [PANC-1] | The experiment shows that extract reduced more significantly the presence of all three protproteins in the NF-kB signaling pathway and decreased p65 proteins in PANC-1 cells nuclei which suggests that M. oleifera aqueous extract attenuated Panic-1 cell’s viability. | [113] |
Leaves and cisplantin | Aqueous extract | XTT assay | Human pancreatic cancer cell lines [PANC-1] | Combination of M. oleifera and cisplantin shows inhibitory effect on proliferation of Panc-1 cells, and inhibitory effect of both combined is higher than each agent alone. | [114] |
Leaves | Moringa leaves extract loaded PLGA-CS-PEG nanoparticles and Moringa leaves extract | MTT assay | Breast cancer cell line MCF-7, Human colorectal carcinoma cell line HCT 116, colorectal adenocarcinoma cells (Caco-2) | M. oleifera leaves extract [ML] and M. oleifera leaves extract loaded with PLGA-CS-PEG nanoparticles [ML] acts as anti-cancer agent by decreasing cell proliferation and exhibiting apoptosis-mediated cell death in liver HepG2, colon cancer HCT 116 and Caco-2 and breast cancer MCF-7 cell line. | [114] |
Leaves | Aqueous extract | Colorimetric tetrazolium salt [XTT] assay | Human pancreatic cancer cell lines [PANC-1], Cellosaurus cell line p34, | M. oleifera leaf extract inhibits the growth of three tested cell lines. Panc-1 cells were more susceptible to the treatment (IC50 = 1.1 mg/mL) compared to COLO357 (IC50 = 1.8 mg/mL) and p34 cells (IC50 = 1.5 mg/mL). There was a significant inhibition of Panc-1 cell survival at an extract concentration of 0.75 mg/mL. There was also a significant inhibitory effect at a higher concentration (1.5 mg/mL) in the two other cell lines. Moreover, treatment with 2 mg/mL M. oleifera extract resulted in a 98% reduction of Panc-1 cell survival. | [115] |
Leaves | Methanolic extract | MTT assay | Breast cancer cell line MCF-7 | Experiment conducted on MCF-7 cell lines Average range of growth inhibition has been 80–90% (mean value 87.13%) with various conditions and in optimum extraction condition at temperature 50 °C and incubation time 45 min with medium frequency, cell growth inhibition is 88.39%. | [116] |
Leaves | Methanolic extract [ME] and Dichloromethane extract [DE] | Antiproliferative assay | Breast cancer cell line MCF-7, Human hepatoma cell line, colorectal adenocarcinoma cells Caco-2 | Dichloromethane extract was more cytotoxic than ME. It showed an IC50 of 120.37 ± 2.55, 112.46 ± 3.74, and 133.58 ± 2.47 µg/mL for HepG2, Caco-2, and MCF-7, respectively, while methanolic extract exhibited less cytotoxicity to all cancer cell lines (IC50 > 250 µg/mL). M. oleifera extracts not only exhibit antiproliferative potential against cancer cells but also showed no cytotoxicity on normal cells. | [117] |
Bark, Leaves, and Seeds | Ethanolic extract | Clonogenic cell survival assay | MDA-MB-231 and HCT-8 | A significant decrease in cell survival was observed in MDA-MB-231 and HCT-8 cell lines when treated with leaf extract and barks extract and did not observe a significant decrease in cell population when cell lines were exposed to the seed extract of M. oleifera. Phenotypic changes in the cells were observed in cells treated with leaf extract and bark extract. | [118] |
Leaves | Aqueous extract | Apoptosis assay | Human pancreatic cancer cell lines [PANC-1] | Nuclear factor kappa B (NF-κB) pathway is involved in growth and proliferation of cells by the inhibition of apoptosis. Treatment of human pancreatic cells with the aqueous extract of M. oleifera showed down-regulation of p65, phospho-IκBα and IκBα proteins levels compared to untreated cells by targeting NF-kB signaling pathway thereby inhibiting survival of pancreatic cancer cell by promoting apoptosis | [30,119] |
Leaves and cisplantin | Aqueous extract | Apoptosis assay | Human pancreatic cancer cell lines [PANC-1] | M. oleifera leaf extract in combination with cisplatin showed strong synergistic effect by targeting NF-kB signaling pathway. Cisplatin is a chemotherapeutic agent that is based on platinum and has fewer efficacies when given alone in pancreatic cancer while combination of cisplatin with M. oleifera leaf extract increases its efficacy due to role of M. oleifera leaf extract in inhibition of NF-kB signaling. | [30,120] |
Leaves | Moringa leaves extract and poly D-L-lactide-co-glycolide (PLGA)-chitosan (CS) and polyethylene glycol (PEG) loaded nanoparticles | MTT assay | Breast cancer cell line MCF-7, Human colorectal carcinoma cell line HCT 116/(Caco-2) | PLGA is a type of FDA-approved biodegradable nanoparticles that help in the targeted delivery of various treatments. Coating with CS and PEG helps in the longevity of the treatment and improves biocompatibility. Treatment of Breast cancer cell line MCF-7, Human colorectal carcinoma cell line HCT 116/(Caco-2) with M. oleifera leaf extract loaded with PLGA-CS-PEG increases the efficiency of the extract by inducing the apoptosis of more number of cancer cells. | [114] |
Tree Part [Extract] | Model Animal | Treatment and Time Duration | Results | References | |
---|---|---|---|---|---|
Blood Glucose | Insulin Level and Other Effect | ||||
Leaf powder | Alloxan-induced diabetic Sprague-Dawley rats | Time: 8 h Conc.: 50 mg/kg | At the second week, a significant reduction was observed in BG in diabetic rats treated with M. oleifera, from 300 mg/dL to 100 mg/dL as compared with controls. | Insulin level not measured No change in numbers of lactic acid bacteria | [164] |
Leaf powder | Alloxan-induced diabetic mice | Treatment time: 1, 3 and 5 h Diabetic Con: Untreated Diabetic positive Con: Insulin 0.7 IU/kg Diabetic MO: 100, 300, and 500 mg/kg MO | Reduction in diabetic rats at 5 h with 300 and 500 mg/kg M. oleifera (p < 0.01); 500 mg/kg dose dependent significant reductions in Blood glucose level by 34.3%, 60.9%, and 66.4% after 1, 3, and 5 h, time points respectively. | No changes in diabetic mice Significant increase in catalase, no changes in superoxide dismutase, and significant reduction in MDA | [159] |
Aqueous leaf extract | STZ-induced diabetic Wistar rats | Treatment time: 3 weeks Con: Untreated Con M. oleifera: 100, 200, and 300 mg/kg M. oleifera Diabetic M. oleifera: 100, 200, and 300 mg/kg M. oleifera Diabetic positive Con: Glipizide 2.5 mg/kg | Significant reduction in fasting BG of diabetic rats treated with MO. Reduction after 1, 2, and 3 weeks with 200 mg was 25.9%, 53.5%, and 69.2%, respectively. | Insulin level not measured Increase in Hb and total protein levels. | [137] |
Methanolic leaf extract | STZ-induced diabetic Wistar rats | Treatment time: 6 weeks Con: Untreated Con M. oleifera: 250 mg/kg M. oleifera Diabetic Con: Untreated Diabetic M. oleifera: 250 mg/kg M. oleifera | Reduction in diabetic rats from 30.96 to 27.6 mmol/L, p < 0.05. | Insulin level not measured, Reduction in the activities of hepatic enzymes. Significant reduction of cholesterol, LDL, IL-6, TNF-α and MCP-1. Significant increase in HDL | [165] |
Methanolic leaf extract | STZ-induced diabetic Wistar rats | Treatment time: 3 weeks Con: Untreated Diabetic Con: Untreated Diabetic M. oleifera: 200 mg/kg/day M. oleifera | Reduction in BG levels in diabetic rats from 229 ± 9.05 mg/dL to 86 ± 4.2 mg/dL, p < 0.05 | Oxidative stress attenuation and normalization of mitochondrial function in liver. | [166] |
Methanolic leaf extract | Alloxan-induced diabetic Wistar rats | Treatment time: 6 weeks Con: Untreated Diabetic Con: Untreated Diabetic M. oleifera: 300 or 600 mg/kg Diabetic positive Con: metformin 100 mg/kg | Reduction in diabetic rats. Blood glucose was reduced by 76% at 300 mg/kg and 84% at 600 mg/kg, p < 0.001. In addition, glucose tolerance was improved by 56% and 57% with 300 or 600 mg/kg of M. oleifera, respectively, p < 0.001. | Significant increase in diabetic rats. Serum insulin levels increased 1.3–1.7-fold, p < 0.01. Significant reductions in triglycerides, total cholesterol and LDL. Significant increase in HDL. | [167] |
Separate ethanolic extracts from leaves, seeds, and stem | C57BLKS/J Iar- + Leprdb/+ Ledprdb and C57BLKS/J Iar-m +/Leprdb mice | Treatment time: 5 weeks Con: Untreated M. oleifera: 150 mg/kg M. oleifera Metformin: 150 mg/kg | Reduction in diabetic mice (only studied in leaves extract). Reduction in fasting blood glucose from 483 to 312 mg/dL, p < 0.05. | Significant increase in diabetic mice (only studied in leaves extract). Increased insulin levels from 946 ± 92 to 1678 ± 268 pg/mL, p < 0.05. Significant decrease in triglycerides and LDL. Decreased expression of inflammatory markers in the kidneys. | [168] |
Compounds extracted from seeds | STZ-induced diabetic ICR mice | Treatment time 2 weeks Con: Untreated Diabetic Con: Untreated Diabetic M. oleifera: 20 mg/kg per M. oleifera compound | Reduction in diabetic mice (p < 0.05). | Insulin level not measured and no other effect | [169] |
Seed powder | STZ-induced diabetic Albino rats | Treatment time: 4 weeks Con: Untreated Diabetic Con: Untreated Diabetic M. oleifera: 50 or 100 mg/kg M. oleifera for 4 weeks | Reduction in diabetic rats from 266 to 148 mg/dL, p < 0.05. | Insulin level not measured, Significant decrease in HbA1C. Significant reduction in lipid peroxide. Significant increase in antioxidant enzymes. Significant decrease in IL-6. Improvement of urinary and kidney functions. | [170] |
Leaf powder | Male Sprague Dawley rats | Treatment time: Hyperglycemia was induced by applying 150 mg/kg alloxan monohydrate 50 mg/mL for 8 weeks | In second week, glucose levels in the diabetic group treated with M. oleifera diminished in comparison to the untreated diabetic group. The healthy group treated with M. oleifera showed lower values (24 mg/dL) in comparison to the control group (53 mg/dL). | Increase in body weight The doses of M. oleifera powder leaf tested revealed no adverse effects in experimental animals. | [163] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prajapati, C.; Ankola, M.; Upadhyay, T.K.; Sharangi, A.B.; Alabdallah, N.M.; Al-Saeed, F.A.; Muzammil, K.; Saeed, M. Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. Horticulturae 2022, 8, 492. https://doi.org/10.3390/horticulturae8060492
Prajapati C, Ankola M, Upadhyay TK, Sharangi AB, Alabdallah NM, Al-Saeed FA, Muzammil K, Saeed M. Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. Horticulturae. 2022; 8(6):492. https://doi.org/10.3390/horticulturae8060492
Chicago/Turabian StylePrajapati, Chirag, Meera Ankola, Tarun Kumar Upadhyay, Amit Baran Sharangi, Nadiyah M. Alabdallah, Fatimah A. Al-Saeed, Khursheed Muzammil, and Mohd Saeed. 2022. "Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance" Horticulturae 8, no. 6: 492. https://doi.org/10.3390/horticulturae8060492
APA StylePrajapati, C., Ankola, M., Upadhyay, T. K., Sharangi, A. B., Alabdallah, N. M., Al-Saeed, F. A., Muzammil, K., & Saeed, M. (2022). Moringa oleifera: Miracle Plant with a Plethora of Medicinal, Therapeutic, and Economic Importance. Horticulturae, 8(6), 492. https://doi.org/10.3390/horticulturae8060492