Annona muricata Leaves as a Source of Bioactive Compounds: Extraction and Quantification Using Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Ultrasound-Assisted Extraction (UAE) of Phenolic Compounds
2.4. Total Soluble Phenols (TSP)
2.5. Yield of Total Soluble Phenols
2.6. Response Surface Methodology Analysis (RSM) to Obtain the Optimal UAE Conditions
2.7. Model Reliability and Comparison of the Content of Bioactive Compounds from A. muricata Leaf Extract Using Optimal UAE Conditions with Extracts by Decoction and Infusion
2.7.1. Phenolic Compounds
2.7.2. Total Alkaloids
2.7.3. Total Acetogenins
2.7.4. Identification of Phenolic Compounds
2.7.5. Effectiveness of Ultrasound to Extract Bioactive Compounds Compared with Decoction and Infusion
- BC-ContentUAE = Bioactive compound content measured in UAE extract.
- BC-Contentdecoction or infusion = Bioactive compound content measured in infusion or decoction extract.
2.7.6. Antioxidant Capacity (AOX)
2.7.7. Toxicity with the Brine Shrimp Lethality Test
2.8. Statistical Analysis
3. Results and Discussion
3.1. Total Soluble Phenols and Yield from A. muricata Leaves by Ultrasound-Assisted Extraction
3.2. Optimal UAE Conditions to Extract Total Soluble Phenols from Annona muricata Leaves
3.3. Model Reliability and Comparison of the Content of Bioactive Compounds from A. muricata Leaf Extract Using Optimal UAE Conditions with Extracts by Decoction and Infusion
3.4. Phenolic Profile
3.5. Toxicity with the Brine Shrimp Lethality Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernández-Fuentes, G.A.; Peraza Campos, A.L.; Ceballos-Magaña, S.G.; Muñiz-Valencia, R.; Parra-Delgado, H. HPLC-DAD method for the detection of five annopurpuricins in root samples of Annona Purpurea. Phyt. Anal. 2020, 31, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Coria-Téllez, A.V.; Montalvo-González, E.; Yahia, E.M.; Obledo-Vázquez, E.N. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab. J. Chem. 2018, 11, 662–691. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Fuentes, G.A.; García-Argáez, A.N.; Peraza Campos, A.L.; Delgado- Enciso, I.; Muñiz-Valencia, R.; Martínez-Martínez, F.J.; Toninello, A.; Gómez-Sandoval, Z.; Mojita-Sánchez, J.P.; Via, L.D.; et al. Cytotoxic acetogenins from the roots of Annona purpurea. Int. J. Mol. Sci. 2021, 20, 1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawwar, M.; Ayoub, N.; Hussein, S.; Hashim, A.; El-Sharawy, R.; Wende, K.; Harms, M.; Lindequist, U. A flavonol triglycoside and investigation of the antioxidant and cell-stimulating activities of Annona muricata Linn. Arch. Pharm. Res. 2012, 35, 761–767. [Google Scholar] [CrossRef] [PubMed]
- George, V.C.; Kumar, D.R.; Suresh, P.K.; Kumar, R.A. Antioxidant, DNA protective efficacy and HPLC analysis of Annona muricata (soursop) extracts. J. Food Sci. Technol. 2015, 52, 2328–2335. [Google Scholar] [CrossRef] [PubMed]
- Justino, A.B.; Miranda, N.V.C.; Franco, R.R.; Martins, M.M.; Da Silva, N.M.; Espindola, F.S. Annona muricata Linn. Leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed. Phamacother. 2018, 100, 83–92. [Google Scholar] [CrossRef]
- Hasrat, J.A.; De Bruyne, T.; De Backer, J.P.; Vauquelin, G.; Vlietinck, A.J. Isoquinoline derivatives isolated from the fruit of Annona muricata as 5-HTergic 5-HT(1A) receptor agonists in rats: Unexploited antidepressive (lad) products. J. Pharm. Pharmacol. 1997, 49, 1145–1149. [Google Scholar] [CrossRef]
- Fofana, S.; Keita, A.; Balde, S.; Ziyaev, R.; Aripova, S.F. Alkaloids from leaves of Annona muricata. Chem. Nat. Compd. 2012, 48, 714. [Google Scholar] [CrossRef] [Green Version]
- Champy, P.; Guérineau, V.; Laprévote, O. MALDI-TOF MS profiling of annonaceous acetogenins in Annona muricata products for human consumption. Molecules 2009, 14, 5235–5246. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Syakirah, H.; Rahman, A.; Wan-Ibrahim, W.S.; Ismail, N.; Nadrah, T.; Ismail, N.T.; Mohd-salleh, S.F.; Wong, M.P.; Abdul, M.R.; Hashim, M.N. Phytocompounds of Anonna muricata leaves extract and cytotoxic effects on breast cancer cells. Asian Pacif. J. Trop. Med. 2018, 11, 659–665. [Google Scholar]
- Gavamukulya, Y.; Maina, E.N.; Meroka, A.M.; El-Shemy, H.A.; Magoma, G.; Wamunyokoli, F. In search of new anticancer drugs: Data for cytotoxic activities of green synthesized silver nanoparticles from ethanolic extracts of fruits and leaves of Annona muricata and 5-Fluorouracil against HeLa, PC3 and PNT1A cell lines. J. Data Brief. 2019, 26, 104442. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Silva, E.K.; Alvarenga, V.O.; Costa, L.R.; Cunha, R.L.; Sant’Ana, A.S.; Freitas, M.Q.; Meireles, M.A.A.; Cruz, A.G. Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrason. Sonochem. 2018, 44, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, J.T.; Silva, E.K.; Ranadheera, C.S.; Moraes, J.; Raices, R.S.; Silva, M.C.; Ferreira, M.S.; Freitas, M.Q.; Meireles, M.A.A.; Cruz, A.G. Effect of high-intensity ultrasound on the nutritional profile and volatile compounds of a prebiotic soursop whey beverage. Ultrason. Sonochem. 2019, 55, 157–164. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, T.H.; Ong, P.Y.; Wong, S.L.; Hamdan, N.; Elgharbawy, A.A.M.; Azmi, N.A. Integrated ultrasound-mechanical stirrer technique for extraction of total alkaloid content from Annona muricate. Proc. Biochem. 2021, 109, 104–116. [Google Scholar] [CrossRef]
- Leal, F.C.; Farias, F.O.; do Amaral, W.; Toci, A.T.; Mafra, M.R.; Igarashi-Mafra, L. Green solvents to value Annona muricata L. leaves as antioxidants source: Process optimization and potential as a natural food additive. Waste Biomass. Valori. 2022, 13, 1233–1241. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. SonoChem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; Smyth, T.J.; O’Donnell, C.P. Optimization of ultrasound-assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef]
- Montreau, F.R. Sur le dosage des composés phénoliques totaux dans les vins par la méthode Folin-Ciocalteu. Connaiss Vigne Vin. 1972, 24, 397–404. [Google Scholar] [CrossRef]
- Aydar, A.Y.; Bağdatlıoğlu, N.; Köseoğlu, O. Effect on olive oil extraction and optimization of ultrasound-assisted extraction of extra virgin olive oil by response surface methodology (RSM). Grasas Aceites 2017, 68, 189. [Google Scholar] [CrossRef]
- Coria-Téllez, A.V.; Obledo-Vázquez, E.N.; Padilla-Camberos, E.; González-Ávila, M.; Martínez-Velázquez, M. Bioactivity, nutritional property, and rapid chemical characterization of aqueous extract of Annona muricata leaf from Mexico. Trop. J. Pharm. Res. 2019, 18, 611–617. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Coll, F.V. Phenolic composition of propolis from China and from South America. Zeitschrift für Naturforschung C 1994, 49, 712–718. [Google Scholar] [CrossRef]
- Hartzfeld, P.W.; Forkner, R.; Hunter, M.D.; Hagerman, A.E. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 2002, 50, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.D.; McDowell, R.T.E.; Van Soest, P.J.; Horvath, P.R.J. Condensed tannins: A factor limiting the use of cassava forage. J. Sci. Food Agric. 1982, 33, 213–220. [Google Scholar] [CrossRef]
- Aguilar-Hernández, G.; Zepeda-Vallejo, L.G.; García-Magaña, M.L.; Vivar-Vera, M.A.; Pérez-Larios, A.; Girón-Pérez, M.I.; Coria-Tellez, A.V.; Rodríguez-Aguayo, C.; Montalvo-González, E. Extraction of alkaloids using ultrasound from pulp and by-products of soursop fruit (Annona muricata L.). Appl. Sci. 2020, 10, 4869. [Google Scholar] [CrossRef]
- Aguilar-Hernández, G.; Vivar-Vera, M.A.; García-Magaña, M.L.; González-Silva, N.; Pérez-Larios, A.; Montalvo-González, E. Ultrasound-assisted extraction of total acetogenins from the soursop fruit by response surface methodology. Molecules 2020, 25, 1139. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Hernández, G.; García-Magaña, M.L.; Vivar-Vera, M.A.; Sáyago-Ayerdi, S.G.; Sánchez-Burgos, J.A.; Morales-Castro, J.; Anaya-Esparza, L.M.; Montalvo-González, E. Optimization of ultrasound-assisted extraction of phenolic compounds from Annona muricata. Molecules 2019, 24, 904. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymol. 1996, 299, 15–27. [Google Scholar]
- Anaya-Esparza, L.M.; González-Silva, N.; Yahia, E.M.; González-Vargas, O.A.; Montalvo-González, E.; Pérez-Larios, A. Effect of TiO2-ZnO-MgO mixed oxide on microbial growth and toxicity against Artemia salina. Nanomaterials 2019, 9, 992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasco, C.; Ruales, J.; Kamal-Eldin, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Preciado-Saldaña, A.M.; Domínguez-Avila, J.A.; Ayala-Zavala, J.F.; Villegas-Ochoa, M.A.; Sáyago-Ayerdi, S.G.; Wall-Medrano, A.; González-Cordova, A.F.; González-Aguilar, G.A. Formulation and characterization of an optimized functional beverage from hibiscus (Hibiscus sabdariffa L.) and green tea (Camellia sinensis L.). Food Sci. Technol. Inter. 2019, 25, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Gavamukulya, Y.; Abou-Elella, F.; Wamunyokoli, F.; Ael-Shemy, H. Phytochemical screening, antioxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). As. Pac. J. Trop. Med. 2014, 7, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Saleh, I.A.; Vinatoru, M.; Mason, T.J.; Abdel-Azim, N.S.; Aboutabl, E.A.; Hammouda, F.M. A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves. Ultrason. Sonochem. 2016, 31, 330–336. [Google Scholar] [CrossRef]
- Zamora-Gasga, V.M.; Serafín-García, M.S.; Sánchez-Burgos, J.A.; Velázquez-Estrada, R.M.; Sáyago-Ayerdi, S.G. Optimization of ultrasonic-assisted extraction of antioxidant compounds from starfruit (Averroha carambola L) leaves. J. Food Proc. Preserv. 2016, 41, e13093. [Google Scholar] [CrossRef]
- Anaya-Esparza, L.M.; Ramos-Aguirre, D.; Zamora-Gasga, V.M.; Yahia, E.; Montalvo-González, E. Optimization of ultrasonic-assisted extraction of phenolic compounds from Justicia spicigera leaves. Food Sci. Biotech. 2018, 27, 1093–1102. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Aguilera-Saez, L.M.; Gómez-Caravaca, A.M.; Verardo, V.; Fernández-Gutiérrez, A.F.; Fernández, I.; Arráez-Román, D. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Anal. Bioanal. Chem. 2017, 410, 3607–3619. [Google Scholar] [CrossRef]
- Ghitescu, R.E.; Volf, I.; Carausu, C.; Bühlmann, A.M.; Gilca, I.A.; Popa, V.I. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason. Sonochem. 2015, 22, 535–541. [Google Scholar] [CrossRef]
- Najmuddin, S.U.F.; Alitheen, N.B.; Hamid, M.; Nik Abd Rahman, N.M.A. Comparative study of antioxidant level and activity from leaf extracts of Annona muricata Linn obtained from different locations, Pertanika. J. Trop. Agric. Sci. 2017, 40, 119–130. [Google Scholar]
- Minari, J.B.; Okeke, U. Chemopreventive effect of Annona muricata on DMBA-induced cell proliferation in the breast tissues of female albino mice. Egypt J. Med. Hum. Genet. 2014, 15, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Champy, P.; Melot, A.; Guérineau, V.; Gleye, C.; Fall, D.; Höglinger, G.U.; Ruberg, M.; Lannuzel, A.; Laprévote, O.; Laurens, A.; et al. Quantification of acetogenins in Annona muricata linked to atypical parkinsonism in Guadeloupe. Move Disorders: Official J. Intern. Parkinson Movem. Disord. Soc. 2005, 20, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.R.T.; Lage, G.A.; Medeiros, F.S.; Filho, J.D.S.; Pimenta, L.P.S. Total α, β-unsaturated-γ-lactone acetogenins in Annona muricata by proton NMR spectroscopy. Appl. Magn. Reson. 2015, 46, 153–160. [Google Scholar] [CrossRef]
- Neske, A.; Hidalgo, J.R.; Cabedo, N.; Cortes, D. Acetogenins from Annonaceae family. Their potential biological applications. Phytochemistry 2020, 174, 112332. [Google Scholar]
- Cao, Q.; Teng, J.; Wei, B.; Huang, L.; Xia, N. Phenolic compounds, bioactivity, and bioaccessibility of ethanol extracts from passion fruit peel based on simulated gastrointestinal digestion. Food Chem. 2021, 356, 129682. [Google Scholar] [CrossRef]
- Roduan, M.R.M.; Hamid, R.A.; Cheah, Y.K.; Mohtarrudin, N. Cytotoxicity, antitumor-promoting and antioxidant activities of Annona muricata in vitro. J. Herb. Med. 2019, 15, 100219. [Google Scholar] [CrossRef]
- Pérez-González, A.; Rebollar-Zepeda, A.M.; León-Carmona, J.R.; Galano, A. Reactivity indexes and OH bond dissociation energies of a large series of polyphenols: Implications for their free radical scavenging activity. J. Mexican Chem. Soc. 2012, 56, 241–249. [Google Scholar]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Tundis, R.; Bonesi, M.; Menichini, F.; Mastellone, V.; Avallone, L.; Menichini, F. Radical scavenging, antioxidant and metal chelating activities of Annona cherimola Mill (cherimoya) peel and pulp in relation to their total phenolic and total flavonoid contents. J. Food Comp. Anal. 2012, 25, 179–184. [Google Scholar] [CrossRef]
- Kim, D.O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agri. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef] [PubMed]
- Cercato, L.M.; Araújo, J.M.D.; Oliveira, A.S.; Melo, A.J.; Lima, B.S.; Dos Santos, E.W.P.; Dos, A.G.; Neto, S.; Albuquerque-Junior, R.L.C.; Duarte, M.C.; et al. Reduced cutaneous inflammation associated with antioxidant action after topical application of the aqueous extract of Annona muricata leaves. Inflammopharmacology 2021, 29, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Barros, B.R.; do Nascimento, D.K.D.; de Araújo, D.R.C.; da Costa Batista, F.R.; de Oliveira Lima, A.M.N.; da Cruz Filho, I.J.; de Oliveira, M.L.; de Melo, C.M.L. Phytochemical analysis, nutritional profile and immunostimulatory activity of aqueous extract from Malpighia emarginata DC leaves. Biocat. Agri. Biotech. 2020, 23, 101442. [Google Scholar] [CrossRef]
- Palacz-Wrobel, M.; Borkowska, P.; Paul-Samojedny, M.; Kowalczyk, M.; Fila-Danilow, A.; Suchanek-Raif, R.; Kowalski, J. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages. Biomed. Pharmacother. 2017, 93, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Renzetti, A.; Betts, J.W.; Fukumoto, K.; Rutherford, R.N. Antibacterial green tea catechins from a molecular perspective: Mechanisms of action and structure–activity relationships. Food Funct. 2020, 11, 9370–9396. [Google Scholar] [CrossRef]
- Badhani, B.; Sharma, N.; Kakkar, R. Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications. RSC Adv. 2015, 5, 27540–27557. [Google Scholar] [CrossRef]
- González-Esquinca, A.R.; Cazáres, L.M.L.; Guzmán, M.A.S.; De la Cruz-Chacón, I.; Hernández, G.L.; Breceda, S.F.; Gerardo, P.M. In vitro larvicidal evaluation of Annona muricata L., A. diversifolia Saff. and A. lutescens Saff. extracts against Anastrepha ludens larvae (Diptera, Tephritidae). Interciencia 2012, 37, 284–289. [Google Scholar]
- Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G.; Bhagwandin, N.; Smith, P.J.; Folb, P.I. In vitro antiplasmodial activity of medicinal plants native to or naturalized in South Africa. J. Ethnopharm. 2004, 92, 177–191. [Google Scholar] [CrossRef]
Run | Predictors | Final Temperature (°C) | Total Soluble Phenols (mg/100 mL) | Yield (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
X PC (s) | X SA (%) | XET (min) | Experimental | 1 Predicted | Error Rate (%) | Experimental | 1 Predicted | Error Rate (%) | ||
1 | 0.4 | 40 | 4 | 24 ± 0.04 | 163.16 ± 6.54 cde | 163.16 | 0.00 | 5.44 ± 0.16 abc | 5.44 | 0.00 |
2 | 0.4 | 80 | 4 | 23 ± 2.00 | 151.02 ± 1.88 bcd | 151.02 | 0.00 | 4.87 ± 0.12 de | 4.87 | 0.00 |
3 | 1.0 | 40 | 4 | 24 ± 1.15 | 137.78 ± 5.98 ab | 137.78 | 0.00 | 4.65 ± 0.17 de | 4.65 | 0.00 |
4 | 1.0 | 80 | 4 | 24 ± 1.00 | 141.93 ± 4.01 ab | 141.93 | 0.00 | 4.73 ± 0.12 de | 4.73 | 0.00 |
5 | 0.7 | 40 | 2 | 22 ± 2.08 | 130.36 ± 3.44 a | 131.56 | −0.92 | 4.46 ± 0.19 de | 4.46 | 0.00 |
6 | 0.7 | 80 | 2 | 24 ± 0.01 | 153.09 ± 5.18 bcd | 154.29 | −0.78 | 5.01 ± 0.16 bcd | 5.01 | 0.00 |
7 | 0.7 | 40 | 6 | 23 ± 1.73 | 132.18 ± 1.95 a | 130.98 | −0.91 | 4.50 ± 0.45 de | 4.50 | 0.00 |
8 | 0.7 | 80 | 6 | 24 ± 1.15 | 173.33 ± 9.46 e | 172.13 | 0.69 | 5.70 ± 0.06 a | 5.70 | 0.00 |
9 | 0.4 | 60 | 2 | 24 ± 0.01 | 142.51 ± 8.45 ab | 141.31 | 0.84 | 4.78 ±0.09 de | 4.78 | 0.00 |
10 | 1.0 | 60 | 2 | 24 ± 0.58 | 127.77 ± 1.59 a | 126.57 | 0.94 | 4.41 ± 0.12 e | 4.41 | 0.00 |
11 | 0.4 | 60 | 6 | 23 ± 2.65 | 137.47 ± 8.10 ab | 138.67 | −0.87 | 4.57 ± 0.26 de | 4.57 | 0.00 |
12 | 1.0 | 60 | 6 | 25 ± 1.00 | 145.26 ± 10.99 abc | 146.46 | −0.83 | 4.84 ± 0.11 de | 4.84 | 0.00 |
13 | 0.7 | 60 | 4 | 25 ± 0.01 | 174.32 ± 6.09 e | 169.02 | 3.04 | 5.68 ± 0.26 a | 5.53 | 2.72 |
14 | 0.7 | 60 | 4 | 23 ± 1.58 | 164.51 ± 4.30 de | 169.02 | −2.74 | 5.43 ± 0.18 abc | 5.53 | −1.70 |
15 | 0.7 | 60 | 4 | 24 ± 0.58 | 168.24 ± 5.31 de | 169.02 | −0.46 | 5.46 ± 0.15 ab | 5.53 | −1.13 |
Parameter | Total Soluble Phenols (mg/100 mL) | Yield (%) |
---|---|---|
Extraction time (min) | 4.54 | 4.79 |
Pulse-Cycle (s) | 0.70 | 0.70 |
Sonication amplitude (%) | 80 | 80 |
Predicted optimal value | 180.52 | 5.86 |
−95% Confidence | 166.47 | 5.43 |
+95% Confidence | 184.55 | 6.30 |
Parameter (mg/100 mL of Extract) | 1 UAE | 2 Decoction | 3 Infusion | Effectiveness (n-Fold) | |
---|---|---|---|---|---|
UAE vs. Decoction | UAE vs. Infusion | ||||
Soluble phenols | 178.48 ± 2.72 a | 25.66 ± 3.69 b | 17.55 ± 0.64 c | 7 | 10 |
Total flavonoids | 20.18 ± 0.30 a | 0.83 ± 0.06 b | 0.98 ± 0.01 b | 24 | 20 |
Hydrolyzable polyphenols | 27.81 ± 2.62 a | 0.06 ± 0.01 b | 0.03 ± 0.01 c | 464 | 927 |
Condensed tannins | 167.07 ± 68.10 a | 24.22 ± 0.49 b | 6.49 ± 0.16 c | 7 | 26 |
Total alkaloids | 30.44 ± 1.67 a | 0.57 ± 0.12 b | 0.45 ± 0.07 b | 53 | 68 |
Total acetogenins | 14.62 ± 0.72 a | ND | ND |
No. | Compound | RT (min) | Content (mg/100 mL of Extract) | ||
---|---|---|---|---|---|
1 UAE Extract | 2 Decoction | 3 Infusion | |||
Phenolic acids | |||||
1 | Shikimic acid | 3.78 | 3.05 ± 0.02 a | 0.35 ± 0.01 b | 0.38 ± 0.02 b |
2 | Gallic acid | 11.19 | 6.80 ± 1.21 a | 0.62 ± 0.01 b | 0.61 ± 0.20 b |
3 | Protocatechuic acid | 15.1 | 0.18 ± 0.02 ab | 0.15 ± 0.01 b | 0.20 ± 0.01 a |
4 | Neochlorogenic acid | 18.09 | 3.52 ± 0.62 a | 0.51 ± 0.01 b | 0.95 ± 0.06 b |
5 | 3,4-Dihydroxyphenylacetic acid | 18.47 | 1.11 ± 0.59 a | 0.25 ± 0.01 b | 0.24 ± 0.07 b |
6 | 4-Hydroxybenzoic acid | 18.76 | 0.85 ± 0.22 a | 0.23 ± 0.22 b | 0.19 ± 0.03 b |
7 | Chlorogenic acid | 19.55 | 0.72 ± 0.28 a | 0.72 ± 0.28 a | 0.49 ± 0.03 a |
8 | 4-Hydroxyphenylacetic acid | 19.89 | 6.28 ± 0.16 a | 1.89 ± 0.02 b | 2.14 ± 0.06 b |
9 | Vanillic acid | 20.36 | 0.99 ± 0.12 a | 0.28 ± 0.01 b | 0.22 ± 0.01 b |
10 | Syringic acid | 20.94 | 1.17 ± 0.19 a | 0.10 ± 0.01 b | 0.11 ± 0.01 b |
11 | 3-Hydroxybenzoic acid | 20.98 | 1.33 ± 0.18 a | 0.56 ± 0.01 b | 0.21 ± 0.02 c |
12 | Caffeic acid | 21.46 | 0.26 ± 0.02 a | 0.09 ± 0.01 b | ND |
13 | 4-Hydroxybenzaldehyde acid | 22.06 | 0.61 ± 0.25 a | 0.05 ± 0.01 b | 0.05 ± 0.01 b |
14 | Homovanillic acid | 22.32 | 1.14 ± 0.10 a | 3.40 ± 0.07 b | 0.66 ± 0.16 c |
15 | 3-(4-Hydroxyphenyl) propionic acid | 23.21 | 5.96 ± 0.12 a | 0.54 ± 0.01 b | 0.15 ± 0.05 c |
16 | p-Coumaric acid | 23.99 | 6.79 ± 0.66 a | 0.99 ± 0.02 b | 0.82 ± 0.02 b |
17 | Trans-ferulic acid | 24.43 | 5.47 ± 0.91 a | 0.66 ± 0.02 b | 0.48 ± 0.01 b |
18 | trans-cinnamic acid | 34.69 | 0.25 ± 0.03 | ND | ND |
Total (mg/100 mL) | 46.48 | 11.39 | 7.9 | ||
Flavonoids | |||||
19 | Gallocatechin | 17.7 | 7.59 ± 1.60 a | 7.01 ± 0.04 a | 5.43 ± 0.27 a |
20 | Epigallocatechin | 20.54 | 14.80 ± 0.71 a | 0.74 ± 0.04 b | 0.52 ± 0.34 b |
21 | Catechin | 21.55 | 1.51 ± 0.57 a | 0.57 ± 0.03 ab | 0.18 ± 0.01 b |
22 | Epicatechin | 22.31 | 5.64 ± 1.12 a | 0.32 ± 0.01 b | 0.14 ± 0.01 b |
23 | Rutin | 23.42 | 0.47 ± 0.01 a | 0.14 ± 0.01 b | 0.08 ± 0.01 c |
Total (mg/100 mL) | 30.01 | 8.78 | 6.35 | ||
Ellagic tannins | |||||
24 | Ellagic acid | 25.64 | 4.31 ± 0.31 a | 0.62 ± 0.02 b | 0.48 ± 0.01 b |
Total phenolic compounds (mg/100 mL) | 80.8 | 20.79 | 14.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nolasco-González, Y.; Chacón-López, M.A.; Ortiz-Basurto, R.I.; Aguilera-Aguirre, S.; González-Aguilar, G.A.; Rodríguez-Aguayo, C.; Navarro-Cortez, M.C.; García-Galindo, H.S.; García-Magaña, M.d.L.; Meza-Espinoza, L.; et al. Annona muricata Leaves as a Source of Bioactive Compounds: Extraction and Quantification Using Ultrasound. Horticulturae 2022, 8, 560. https://doi.org/10.3390/horticulturae8070560
Nolasco-González Y, Chacón-López MA, Ortiz-Basurto RI, Aguilera-Aguirre S, González-Aguilar GA, Rodríguez-Aguayo C, Navarro-Cortez MC, García-Galindo HS, García-Magaña MdL, Meza-Espinoza L, et al. Annona muricata Leaves as a Source of Bioactive Compounds: Extraction and Quantification Using Ultrasound. Horticulturae. 2022; 8(7):560. https://doi.org/10.3390/horticulturae8070560
Chicago/Turabian StyleNolasco-González, Yolanda, Martina Alejandra Chacón-López, Rosa Isela Ortiz-Basurto, Selene Aguilera-Aguirre, Gustavo Adolfo González-Aguilar, Cristian Rodríguez-Aguayo, Merle Catalina Navarro-Cortez, Hugo Sergio García-Galindo, María de Lourdes García-Magaña, Libier Meza-Espinoza, and et al. 2022. "Annona muricata Leaves as a Source of Bioactive Compounds: Extraction and Quantification Using Ultrasound" Horticulturae 8, no. 7: 560. https://doi.org/10.3390/horticulturae8070560
APA StyleNolasco-González, Y., Chacón-López, M. A., Ortiz-Basurto, R. I., Aguilera-Aguirre, S., González-Aguilar, G. A., Rodríguez-Aguayo, C., Navarro-Cortez, M. C., García-Galindo, H. S., García-Magaña, M. d. L., Meza-Espinoza, L., & Montalvo-González, E. (2022). Annona muricata Leaves as a Source of Bioactive Compounds: Extraction and Quantification Using Ultrasound. Horticulturae, 8(7), 560. https://doi.org/10.3390/horticulturae8070560