Effects of Plant Growth Regulators on Plum (Prunus domestica L.) Grown on Two Rootstocks at Harvest and at the Postharvest Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plum Production and Preharvest Treatments
2.2. Pomological Properties, Respiration Rate and Ethylene Production
2.3. Physicochemical Properties
2.4. Statistical Analysis
3. Results
3.1. Univariate Results
3.2. Multivariate Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansmann, C.F.; Combrink, J.C. Plums and related fruits. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Cambridge, UK, 2003; pp. 4606–4610. ISBN 9780122270550. [Google Scholar]
- Igwe, E.O.; Charlton, K.E. A systematic review on the health effects of plums (Prunus domestica and Prunus salicina). Phytother. Res. 2016, 30, 701–731. [Google Scholar] [CrossRef]
- Canli, F.A.; Sahin, M.; Ercisli, S.; Yilmaz, O.; Temurtas, N.; Pektas, M. Harvest and postharvest quality of sweet cherry are improved by pre-harvest benzyladenine and benzyladenine plus gibberellin applications. J. Appl. Bot. Food Qual. 2015, 88, 255–258. [Google Scholar]
- Erogul, D.; Sen, F. The effect of preharvest gibberellic acid applications on fruit quality of ‘Angelino’ plums during storage. Sci. Hortic. 2016, 202, 111–116. [Google Scholar] [CrossRef]
- Barreto, C.F.; Navroski, R.; Zandoná, R.R.; Farias, R.D.M.; Malgarim, M.B.; De Mello-Farias, P.C. Effect of chemical thinning using 6-benzyladenine (BA) on Maciel peach (Prunus persica L.). Aust. J. Crop Sci. 2018, 12, 980–984. [Google Scholar] [CrossRef]
- Kumari, S.; Bakshi, P.; Sharma, A.; Wali, V.; Jasrotia, A.; Kour, S. Use of Plant Growth Regulators for Improving Fruit Production in Sub Tropical Crops. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Adams, P.A.; Montague, M.J.; Tepfer, M.; Rayle, D.L.; Ikuma, H.; Kaufman, P.B. Effect of Gibberellic Acid on the Plasticity and Elasticity of Avena Stem Segments. Plant Physiol. 1975, 56, 757–760. [Google Scholar] [CrossRef] [Green Version]
- Kamijima, O. Consideration on the Mechanism of Expression of Dwarf Genes in Rice Plants. II. The Actions of Dwarf Genes on Cell Division and Cell Elongation in Parenchyma of Internode. Jpn. J. Breed. 1981, 31, 302–315. [Google Scholar] [CrossRef] [Green Version]
- Canli, F.A.; Pektas, M.; Kelen, M. Effects of pre-harvest plant growth regulator sprays on fruit quality of ‘Deveci’ pear (Pyrus communis L.). J. Appl. Biological. Sci. 2009, 3, 81–84. [Google Scholar]
- Zeman, S.; Čmelik, Z.; Jemrić, T. Size and weight of sweet cherry (Prunus avium L. ‘Regina’) fruit treated with 3, 5, 6-TPA and GA3. Agric. Conspec. Sci. 2012, 77, 45–47. [Google Scholar]
- Zhang, C.; Whiting, M. Plant growth regulators improve sweet cherry fruit quality without reducing endocarp growth. Sci. Hortic. 2013, 150, 73–79. [Google Scholar] [CrossRef]
- Milić, B.; Tarlanović, J.; Keserović, Z.; Zorić, L.; Blagojević, B.; Magazin, N. The growth of apple central fruits as affected by thinning with NAA, BA and naphthenic acids. Erwerbs-Obstbau 2017, 59, 185–193. [Google Scholar] [CrossRef]
- Wismer, P.T.; Proctor, J.T.A.; Elfving, D.C. Benzyladenine affects cell division and cell size during apple fruit thinning. J. Am. Soc. Hortic. Sci. 1995, 120, 802–807. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Sharma, N.; Sharma, D.P.; Chauhan, N. Effect of plant growth regulators on fruit set, yield efficiency, fruit size and russet formation in apple cv. scarlet spur II. Int. J. Pure Appl. Biosci. 2018, 6, 692–698. [Google Scholar]
- Canli, F.A.; Sahin, M.; Temurtas, N.; Pektas, M. Improving fruit quality of apricot by means of preharvest benzyladenine and benzyladenine plus gibberellin applications. Horttechnology 2014, 24, 424–427. [Google Scholar] [CrossRef] [Green Version]
- Argenta, L.C.; Krammes, J.G.; Megguer, C.A.; Amarante, C.V.T.; Mattheis, J. Ripening and quality of ‘Laetitia’ plums following harvest and cold storage as affected by inhibition of ethylene action. Pesqui. Agropecuária Bras. 2003, 38, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Romero, D.; Castillo, S.; Valero, D. Forced-air cooling applied before fruit handling to prevent mechanical damage of plums (Prunus salicina Lindl.). Postharvest Biol. Technol. 2003, 28, 135–142. [Google Scholar] [CrossRef]
- Manganaris, G.A.; Vicente, A.R.; Crisosto, C.H.; Labavitch, J.M. Effect of dips in a 1-methylcyclopropene-generating solution on ‘Harrow Sun’ plums stored under different temperature regimes. J. Agric. Food Chem. 2007, 55, 7015–7020. [Google Scholar] [CrossRef]
- Manganaris, G.A.; Vicente, A.R.; Crisosto, C.H. Effect of pre-harvest and post-harvest conditions and treatments on plum fruit quality. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2008, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M.; Valero, D. Changes in hydrophilic and lipophilic antioxidant activity and related bioactive compounds during postharvest storage of yellow and purple plum cultivars. Postharvest Biol. Technol. 2009, 51, 354–363. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, Z.; Swinny, E.E. Sugars and organic acids in Japanese plums (Prunus salicina Lindell) as influenced by maturation, harvest date, storage temperature and period. Int. J. Food Sci. Technol. 2009, 44, 1973–1982. [Google Scholar] [CrossRef]
- Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Valverde, J.M.; Valero, D.; Serrano, M. Modified atmosphere packaging of yellow and purple plum cultivars. 2. Effect on bioactive compounds and antioxidant activity. Postharvest Biol. Technol. 2011, 61, 110–116. [Google Scholar] [CrossRef]
- Karaman, S.; Ozturk, B.; Genc, N.; Celik, S.M. Effect of Preharvest Application of Methyl Jasmonate on Fruit Quality of Plum (Prunus Salicina Lindell cv. “Fortune”) at Harvest and during Cold Storage. J. Food Process. Preserv. 2013, 37, 1049–1059. [Google Scholar] [CrossRef]
- Ozturk, B.; Kucuker, E.; Karaman, S.; Yıldız, K.; Kılıc, K. Effect of Aminoethoxyvinylglycine and Methyl Jasmonate on Individual Phenolics and Post-harvest Fruit Quality of Three Different Japanese Plums (Prunus salicina Lindell). Int. J. Food Eng. 2013, 9, 421–432. [Google Scholar] [CrossRef]
- Fanning, K.J.; Topp, B.; Russell, D.; Stanley, R.; Netzel, M. Japanese plums (Prunus salicina Lindl.) and phytochemicals–breeding, horticultural practice, postharvest storage, processing and bioactivity. J. Sci. Food Agric. 2014, 94, 2137–2147. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yuan, C.; Chen, Y.; Li, H.; Liu, J. Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf-life of plums. Sci. Hortic. 2014, 176, 45–53. [Google Scholar] [CrossRef]
- Zapata, P.J.; Martínez-Esplá, A.; Guillén, F.; Díaz-Mula, H.M.; Martínez-Romero, D.; Serrano, M.; Valero, D. Preharvest application of methyl jasmonate (MeJA) in two plum cultivars. 2. Improvement of fruit quality and antioxidant systems during postharvest storage. Postharvest Biol. Technol. 2014, 98, 115–122. [Google Scholar] [CrossRef]
- Rozo-Romero, L.X.; Álvarez-Herrera, J.G.; Balaguera-López, H.E. Ethylene and changes during ripening in ‘Horvin’ plum (Prunus salicina Lindl.) fruits. Agron. Colomb. 2015, 33, 228–237. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Srivastav, M.; Varghese, E. Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Sci. Hortic. 2017, 226, 104–109. [Google Scholar] [CrossRef]
- Farcuh, M.; Rivero, R.M.; Sadka, A.; Blumwald, E. Ethylene regulation of sugar metabolism in climacteric and non-climacteric plums. Postharvest Biol. Technol. 2018, 139, 20–30. [Google Scholar] [CrossRef]
- Wang, R.; Wang, L.; Yuan, S.; Li, Q.; Pan, H.; Cao, J.; Jiang, W. Compositional modifications of bioactive compounds and changes in the edible quality and antioxidant activity of ‘Friar’ plum fruit during flesh reddening at intermediate temperatures. Food Chem. 2018, 254, 26–35. [Google Scholar] [CrossRef]
- Martínez-Romero, D.; Castillo, S.; Guillén, F.; Paladine, D.; Zapata, P.J.; Valero, D.; Serrano, M. Rosehip oil coating delays postharvest ripening and maintains quality of European and Japanese plum cultivars. Postharvest Biol. Technol. 2019, 155, 29–36. [Google Scholar] [CrossRef]
- Wang, L.; Sang, W.; Xu, R.; Cao, J. Alteration of flesh color and enhancement of bioactive substances via the stimulation of anthocyanin biosynthesis in ‘Friar’ plum fruit by low temperature and the removal. Food Chem. 2002, 310, 125862. [Google Scholar] [CrossRef] [PubMed]
- Lippert, F.; Blanke, M.M. Effect of mechanical harvest and timing of 1-MCP application on respiration and fruit quality of European plums Prunus domestica L. Postharvest Biol. Technol. 2004, 34, 305–311. [Google Scholar] [CrossRef]
- Rato, A.E.; Marreiros, H.I.; Santos, A.C.; Barroso, J.M. Effects of different fruit calcium levels on the postharvest physiology of plums (Prunus domestica L.). In Proceedings of the V International Postharvest Symposium 682, Verona, Italy, 6–11 June 2004; pp. 171–176. [Google Scholar]
- Usenik, V.; Štampar, F.; Veberič, R. Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chem. 2009, 114, 529–534. [Google Scholar] [CrossRef]
- Usenik, V.; Stampar, F.; Kastelec, D. Phytochemicals in fruits of two Prunus domestica L. plum cultivars during ripening. J. Sci. Food Agric. 2013, 93, 681–692. [Google Scholar] [CrossRef]
- Arion, C.M.; Tabart, J.; Kevers, C.; Niculaua, M.; Filimon, R.; Beceanu, D.; Dommes, J. Antioxidant potential of different plum cultivars during storage. Food Chem. 2017, 146, 485–491. [Google Scholar] [CrossRef]
- Mohamad, S.B. Studies on Non-destructive Detection of fruit Maturity and on Postharvest Physiology of European Plum (Prunus domestica L.). Ph.D. Thesis, Technische Universität München, Munich, Germany, 2015. [Google Scholar]
- Martínez-Romero, D.; Zapata, P.J.; Guillén, F.; Paladines-Quezada, D.; Castillo, S.; Valero, D.; Serrano, M. The addition of rosehip oil to Aloe gels improves their properties as postharvest coatings for maintaining quality in plum. Food Chem. 2017, 217, 585–592. [Google Scholar] [CrossRef]
- Gülüş, A.; Bilge, T.Ü.R.K.; Okşar, R.E.; Fatih, Ş.E.N. Hasat öncesi farklı konsantrasyonlarda gibberellik asit uygulamalarının ‘Obilnaja’ japon eriği meyvelerinin depolanmasına etkileri. Çomü Ziraat Fakültesi Derg. 2017, 5, 21–26. [Google Scholar]
- Kirmani, S.N.; Wani, G.M.; Wani, M.S.; Ghani, M.Y.; Abid, M.; Muzamil, S.; Raja, H.; Malik, A.R. Effect of preharvest application of calcium chloride (CaCl2), Gibberlic acid (GA3) and Napthelenic acetic acid (NAA) on storage of Plum (Prunus salicina L.) cv. Santa Rosa under ambient storage conditions. Afr. J. Agric. Res. 2013, 8, 812–818. [Google Scholar]
- Wang, Y.; Li, Y.C.; Bi, Y.; Wu, L.F.; Ding, B. Preharvest GA3 sprays reduced chilling injury and maintained quality of plums during storage. In Proceedings of the VII International Postharvest Symposium 1012, Kuala Lumpur, Malaysia, 25–29 June 2012; pp. 271–276. [Google Scholar]
- Kirmani, S.N.; Mir, M.M.; Iqbal, U.M.A.R.; Jan, A.; Javaid, K.; Malik, A.R.; Khan, F.A. Impact of preharvest chemical application on plum (Prunus salicina L.) cv. Santa Rosa quality during storage. Bioscience 2015, 10, 211–215. [Google Scholar]
- Harman, Y.; Sen, F. The effect of different concentrations of pre-harvest gibberellic acid on the quality and durability of ‘Obilnaja’ and ‘Black Star’ plum varieties. Food Sci. Technol. 2016, 36, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Maged, S.M.; El-Abd, M.A.; Kotb, H.R. Improve Yield and Fruit Quality of Plum cv “African Rose” by Different Thinning Treatments. Egyp. J. Hort. 2020, 47, 149–159. [Google Scholar]
- Vangdal, E.; Flatland, S.; Lunde Knutsen, I.; Larsen, H. Factors affecting storability and shelf life in plums (Prunus domestica L.). In Proceedings of the II EUFRIN Plum and Prune Working Group Meeting on Present Constraints of Plum Growing in Europe 968, Craiova, Romania, 20–22 July 2010; pp. 197–203. [Google Scholar]
- Faostat. Database FAO. 2022. Available online: http://faostat.fao.org/home/E (accessed on 18 February 2022).
- Milošević, T.; Milošević, N. The physical and chemical attributes of plum influenced by rootstock. Acta Aliment. 2012, 41, 293–303. [Google Scholar] [CrossRef]
- Popara, G.; Magazin, N.; Keserović, Z.; Milić, B.; Milović, M.; Kalajdžić, J.; Manojlović, M. Rootstock and Interstock Effects on Plum cv. ‘Čačanska Lepotica’ Young Tree Performance and Fruit Quality Traits. Erwerbs-Obstbau 2020, 62, 421–428. [Google Scholar] [CrossRef]
- Rato, A.E.; Agulheiro, A.C.; Barroso, J.M.; Riquelme, F. Soil and rootstock influence on fruit quality of plums (Prunus domestica L.). Sci. Hortic. 2008, 118, 218–222. [Google Scholar] [CrossRef]
- Grzyb, Z.S.; Sitarek, M.; Kozinski, B. Effect of different rootstocks on growth, yield and fruit quality of four plum cultivars (in Central of Poland). In Proceedings of the VI International Symposium on Plum and Prune Genetics, Breeding, Pomology 478, Warszawa-Skierniewice, Poland, 18–22 August 1997; pp. 239–242. [Google Scholar]
- Mandić, A.; Kevrešan, Ž.; Mastilović, J. Development and validation of static headspace gas chromatography with flame ionization detection method for determination of ethylene. In Proceedings of the 6th South East Europe International Postharvest Conference, Quality Management in Postharvest Systems, Novi Sad, Serbia, 26–28 June 2019; p. 65. [Google Scholar]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Costache, M.A.; Campeanu, G.; Neata, G. Studies concerning the extraction of chlorophyll and total carotenoids from vegetables. Rom. Biotechnol. Lett. 2012, 17, 7703–7708. [Google Scholar]
- Milenković, L.; Mastilović, J.; Kevrešan, Ž.; Bajić, A.; Gledić, A.; Stanojević, L.; Cvetković, D.; Šunić, L.; Ilić, Z.S. Effect of shading and grafting on yield and quality of tomato. J. Sci. Food Agric. 2019, 100, 623–633. [Google Scholar] [CrossRef]
- Hajam, M.A.; Hassan, G.I.; Bhat, T.A.; Bhat, I.A.; Rather, A.M.; Parray, E.A.; Khan, I.F. Understanding plant growth regulators, their interplay: For nursery establishment in fruits. Int. J. Chem. Stud. 2017, 5, 905–910. [Google Scholar]
- González-Rossia, D.; Juan, M.; Reig, C.; Agusti, M. The inhibition of flowering by means of gibberellic acid application reduces the cost of hand thinning in Japanese plums (Prunus salicina Lindl.). Sci. Hortic. 2006, 110, 319–323. [Google Scholar] [CrossRef]
- Nabil, W.A.; Magda, N.; Wally, A.S. Effect of gibberellic acid alone or combined with two antioxidants on fruit set, yield and fruit quality of “Hollywood” and “Golden Japanese” plum cultivars. Egypt. J. Hort. 2013, 40, 121–132. [Google Scholar]
- Erogul, D.; Sen, F. Effects of gibberellic acid treatments on fruit thinning and fruit quality in Japanese plum (Prunus salicina Lindl.). Sci. Hortic. 2015, 186, 137–142. [Google Scholar] [CrossRef]
- Ennab, H.A.; Abo Ogela, H.M. Effect of GA3 and Sitofex (CPPU) Spraying on Yield and Fruit Quality of “Kelsey” Plum Trees (Prunus salicina Lindl.). Ann. Agric. Sci. Moshtohor. 2019, 57, 993–1002. [Google Scholar] [CrossRef]
- Abdel-Sattar, M.; Marzouk, H.; Al-Sabrout, M. Enhancement of Hollywood plum setting, retention and fruit quality. J. App. Sci. Res. 2013, 9, 4125–4131. [Google Scholar]
- Hassan, H.S.A.; Sarrwy, S.M.A.; Mostafa, E.A.M. Effect of foliar spraying with liquid organic fertilizer, some micronutrients, and gibberellins on leaf mineral content, fruit set, yield, and fruit quality of “Hollywood” plum trees. ABJNA 2010, 1, 638–643. [Google Scholar]
- Daza, A.; García-Galavís, P.A.; Grande, M.J.; Santamaría, C. Fruit quality parameters of ‘Pioneer’ Japanese plums produced on eight different rootstocks. Sci. Hortic. 2008, 118, 206–211. [Google Scholar] [CrossRef]
- Orazem, P.; Stampar, F.; Hudina, M. Quality analysis of ‘Redhaven’ peach fruit grafted on 11 rootstocks of different genetic origin in a replant soil. Food Chem. 2011, 124, 1691–1698. [Google Scholar] [CrossRef]
- Markuszewski, B.; Kopytowski, J. Evaluation of plum cultivars grafted on ‘Wangenheim Prune’ rootstock in the northeast of Poland. Folia Hortic. 2013, 25, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Reig, G.; Forcada, C.F.; Mestre, L.; Jiménez, S.; Betrán, J.A.; Moreno, M.Á. Horticultural, leaf mineral and fruit quality traits of two ‘Greengage’ plum cultivars budded on plum based rootstocks in Mediterranean conditions. Sci. Hortic. 2018, 232, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Ilić, R.; Glišić, I.; Milošević, T.; Paunović, G. Influence of the rootstock on the physical-mechanical properties of the plum fruit (Prunus domestica L.). Acta Agric. Serbica 2019, 24, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Milatović, D.; Radović, M.M.; Zec, G.; Boškov, D. The influence of rootstocks on the growth, yield and fruit quality of the plum cultivar Čačanska Rana. J. Agric. Sci. 2019, 64, 165–174. [Google Scholar] [CrossRef]
- Oliveira, J.A.A.; Bruckner, C.H.; Silva, D.F.P.D.; Santos, C.E.M.D.; Soares, W.D.S.; Nunes, L.V. Performance of interstocks in the plant development and fruit quality of plum trees. Acta Sci. Agron. 2018, 41, 39928. [Google Scholar] [CrossRef]
- Radović, M.; Milatović, D.; Tešić, Ž.; Tosti, T.; Gašić, U.; Dojčinović, B.; Zagorac, D.D. Influence of rootstocks on the chemical composition of the fruits of plum cultivars. J. Food Compost. Anal. 2020, 92, 103480. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Farcuh, M.; Cohen, Y.; Crisosto, C.; Sadka, A.; Blumwald, E. Non-climacteric ripening and sorbitol homeostasis in plum fruits. Plant Sci. 2015, 231, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Bapat, V.A.; Trivedi, P.K.; Ghosh, A.; Sane, V.A.; Ganapathi, T.R.; Nath, P. Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnol. Adv. 2010, 28, 94–107. [Google Scholar] [CrossRef]
- Gundewadi, G.; Reddy, V.R.; Bhimappa, B.B. Physiological and biochemical basis of fruit development and ripening—A review. J. Hill Agric. 2018, 9, 7–21. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, M.; Wang, A. Recent advances in the regulation of climacteric fruit ripening: Hormone, transcription factor and epigenetic modifications. Front. Agric. Sci. Eng. 2021, 8, 314–334. [Google Scholar]
- Chen, Z.; Zhu, C. Combined effects of aqueous chlorine dioxide and ultrasonic treatments on postharvest storage quality of plum fruit (Prunus salicina L.). Postharvest Biol. Technol. 2011, 61, 117–123. [Google Scholar] [CrossRef]
- Bal, E. Postharvest Aminoethoxy Vinyl Glycine (AVG) Treatment Affects Maturity and Storage Life of Plum. J. Agric. Sci. Technol. 2019, 21, 1569–1579. [Google Scholar]
- Khan, A.S.; Singh, Z.; Abbasi, N.A.; Swinny, E.E. Pre-or post-harvest applications of putrescine and low temperature storage affect fruit ripening and quality of ‘Angelino’ plum. J. Sci. Food Agric. 2008, 88, 1686–1695. [Google Scholar] [CrossRef]
- Valero, D.; Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M. Effects of alginate edible coating on preserving fruit quality in four plum cultivars during postharvest storage. Postharvest Biol. Technol. 2013, 77, 1–6. [Google Scholar] [CrossRef]
- Yuan, J.J.; Yi, S.; Williams, H.A.; Park, O.H. US consumers’ perceptions of imperfect “ugly” produce. Br. Food J. 2019, 121. [Google Scholar] [CrossRef]
- Martínez-Esplá, A.; Zapata, P.J.; Valero, D.; Martínez-Romero, D.; Díaz-Mula, H.M.; Serrano, M. Preharvest treatments with salicylates enhance nutrient and antioxidant compounds in plum at harvest and after storage. J. Sci. Food Agric. 2018, 98, 2742–2750. [Google Scholar] [CrossRef] [PubMed]
- Lurie, S. Plant growth regulators for improving postharvest stone fruit quality. Acta Hortic. 2010, 884, 189–197. [Google Scholar] [CrossRef]
- Schmidt, T.; Elfving, D.C.; McFerson, J.R.; Whiting, M.D. Crop Load Overwhelms Effects of Gibberellic Acid and Ethephon on Floral Initiation in Apple. HortScience 2009, 44, 1900–1906. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Glišić, I. Apricot vegetative growth, tree mortality, productivity, fruit quality and leaf nutrient composition as affected by myrobalan rootstock and blackthorn interstem. Erwerbs-Obstbau 2015, 57, 77–91. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Glišić, I. Influence of stock on the early tree growth, yield and fruit quality traits of apricot (Prunus armeniaca L.). Tarim Bilim. Derg. 2011, 17, 167–176. [Google Scholar] [CrossRef]
- Stefanova, B.; Dragoyski, K.; Dinkova, H. Reaction of some rootstock for plums to soil and climatic conditions of Troyan. Acta Hortic. 2009, 825, 435–440. [Google Scholar] [CrossRef]
- Yordanov, I.A.; Tabakov, G.S.; Kaymakanov, V.P. Comparative study of Wavit® rootstock with two plum and two apricot cultivars in nursery. J. Agric. Sci. 2015, 60, 159–168. [Google Scholar] [CrossRef]
Storage | Rootstock | Treatment | Flesh Firmness | Skin Strength | Elasticity |
---|---|---|---|---|---|
At harvest 0 days | “WaVit” | Control | 12.4 jk | 7.21 d–h | 3.66 a |
GA3 | 12.3 i–k | 7.68 f–h | 3.94 a | ||
BA50 | 13.8 k | 8.17 g–i | 3.76 a | ||
BA100 | 12.0 ij | 6.72 b–h | 3.58 a | ||
P/P | Control | 12.5 jk | 6.90 b–h | 3.26 a | |
GA3 | 12.0 ij | 6.92 b–h | 3.52 a | ||
BA50 | 13.4 jk | 7.39 e–h | 3.22 a | ||
BA100 | 10.7 i | 6.58 a–h | 3.68 a | ||
Cold storage 28 days | “WaVit” | Control | 4.94 c–e | 6.48 a–h | 5.89 cd |
GA3 | 7.08 f–h | 6.52 a–h | 5.75 bcd | ||
BA50 | 6.47 e–g | 9.95 i | 6.04 cd | ||
BA100 | 6.11 d–f | 5.95 a–g | 4.92 b | ||
P/P | Control | 7.97 gh | 6.51 a–h | 5.21 bc | |
GA3 | 8.60 h | 7.62 f–h | 5.84 cd | ||
BA50 | 5.31 de | 6.20 a–h | 6.18 d | ||
BA100 | 5.37 de | 5.83 a–g | 5.99 cd | ||
28 days of cold storage + 4 days of shelf life | “WaVit” | Control | 3.04 a | 4.92 a–d | 8.29 fg |
GA3 | 3.39 a–c | 5.66 a–f | 8.54 g | ||
BA50 | 3.03 a | 4.49 ab | 8.32 fg | ||
BA100 | 3.20 ab | 4.54 a–c | 7.27 e | ||
P/P | Control | 2.78 a | 5.04 a–e | 7.44 ef | |
GA3 | 4.73 b–d | 8.40 hi | 8.30 fg | ||
BA50 | 2.35 a | 4.23 a | 7.30 e | ||
BA100 | 2.77 a | 5.06 a–e | 7.73 e–g | ||
Rootstock | NS | NS | NS | ||
PGR Treatment | ** | ** | * | ||
Storage | ** | ** | ** | ||
Rootstock × Treatment | NS | * | ** | ||
Rootstock × Storage | ** | NS | NS | ||
Treatment × Storage | ** | * | NS | ||
Rootstock × Treatment × Storage | NS | NS | NS |
Storage | Rootstock | Treatment | Skin | Flesh | ||||
---|---|---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |||
At harvest 0 days | “WaVit” | Control | 34.0 i | 6.49 g–i | −2.10 a–c | 45.8 f–h | −0.59 a | 15.6 h–k |
GA3 | 35.5 jk | 6.82 hi | 0.76 ef | 45.0 fg | 0.46 a–d | 16.8 j–m | ||
BA50 | 34.7 ij | 6.00 e–i | 1.18 f | 51.1 j | −0.98 a | 19.6 mn | ||
BA100 | 35.3 jk | 7.29 i | 0.66 ef | 50.5 ij | −0.26 ab | 20.2 k–n | ||
P/P | Control | 39.4 l | 6.07 f–i | 0.64 ef | 45.8 f–h | 1.12 b–f | 17.8 k–n | |
GA3 | 35.9 k | 4.87 b–f | −2.03 b–d | 48.1 g–j | 1.66 c–g | 20.0 n | ||
BA50 | 28.4 d–f | 6.42 g–i | −0.84 cd | 46.9 f–i | −0.39 ab | 19.7 mn | ||
BA100 | 38.5 l | 5.06 b–f | −1.56 a–d | 49.4 h–j | 0.56 a–e | 19.0 l–n | ||
Cold storage 28 days | “WaVit” | Control | 29.0 e–g | 5.20 b–g | −1.04 bc | 39.6 c–e | 0.07 a–c | 16.0 i–l |
GA3 | 29.4 fg | 5.34 c–g | −1.19 b–d | 43.1 ef | 2.79 f–j | 14.2 e–j | ||
BA50 | 30.5 h | 5.89 d–h | −0.34 de | 38.9 cd | 2.06 d–h | 10.3 cd | ||
BA100 | 29.5 gh | 4.91 b–f | −0.90 b–d | 41.1 de | 2.05 d–h | 11.2 c–f | ||
P/P | Control | 27.2 a–c | 4.60 b–d | −1.25 a–d | 39.1 cd | 2.26 e–i | 15.2 g–k | |
GA3 | 28.1 c–e | 4.62 b–d | −1.37 a–d | 39.0 cd | 3.67 h–l | 12.0 c–f | ||
BA50 | 28.3 c–e | 4.68 b–e | −0.99 b–d | 35.0 b | 1.10 b–f | 10.2 cd | ||
BA100 | 27.9 c–e | 5.78 d–h | −0.83 cd | 37.0 bc | 1.92 d–g | 12.4 d–g | ||
28 days of cold storage + 4 days of shelf life | “WaVit” | Control | 26.2 a | 3.83 ab | −1.58 a–d | 33.4 b | 4.62 kl | 11.1 c–e |
GA3 | 27.2 a–c | 4.20 a–c | −2.22 ab | 34.6 b | 4.85 lm | 12.7 d–h | ||
BA50 | 28.9 e–g | 4.38 a–c | −2.24 ab | 34.1 b | 3.82 ij–l | 12.6 d–i | ||
BA100 | 29.0 e–g | 3.83 ab | −2.58 a | 34.1 b | 3.95 j–l | 13.2 d–i | ||
P/P | Control | 27.3 b–d | 4.53 b–d | −1.27 a–d | 25.5 a | 3.12 g–k | 9.0 bc | |
GA3 | 26.8 ab | 3.18 a | −1.84 a–c | 34.3 b | 6.21 m | 14.3 f–j | ||
BA50 | 28.1 c–e | 3.93 ab | −1.86 a–c | 27.0 a | 3.10 g–k | 7.0 ab | ||
BA100 | 27.5 b–d | 3.88 ab | −1.58 a–d | 34.0 b | 4.10 jk | 5.5 a | ||
Rootstock | ** | ** | NS | ** | * | * | ||
PGR Treatment | ** | NS | NS | ** | ** | * | ||
Storage | ** | ** | ** | ** | ** | ** | ||
Rootstock × Treatment | ** | NS | ** | ** | NS | * | ||
Rootstock × Storage | ** | NS | ** | ** | NS | ** | ||
Treatment × Storage | ** | NS | NS | ** | NS | ** | ||
Rootstock v Treatment × Storage | ** | ** | ** | ** | NS | ** |
Storage | Rootstock | Treatment | TSS (%) | TA (%) | Glucose + Fructose (g kg−1 FW) | Sucrose (g kg−1 FW) | Malic Acid (g kg−1 FW) | Succinic Acid (g kg−1 FW) | Anthocyanin (mg kg−1 FW) | Carotenoid (mg kg−1 FW) |
---|---|---|---|---|---|---|---|---|---|---|
At harvest 0 days | “WaVit” | control | 15.60 bc | 1.37 o | 6.45 ab | 4.07 c–g | 2.34 c–e | 1.71 bc | 78.0 a | 3.05 ab |
GA3 | 17.58 g | 1.22 n | 7.16 a–d | 4.20 d–h | 2.61 e | 1.80 b–d | 104.5 a–c | 1.45 a | ||
BA50 | 15.70 c | 1.36 o | 6.37 a | 4.35 e–i | 2.52 de | 1.74 bc | 97.5 ab | 0.95 a | ||
BA100 | 16.86 d | 1.22 n | 6.56 ab | 4.34 e–i | 2.29 b–e | 1.71 bc | 128.5 b–d | 6.90 c–e | ||
P/P | control | 17.24 f | 1.11 m | 6.93 a–c | 5.10 i–k | 2.42 c–e | 1.71 bc | 107.5 a–c | 6.25 cd | |
GA3 | 18.40 i | 0.83 k | 6.47 ab | 5.20 k | 2.19 a–d | 1.89 b–e | 182.0 e–h | 13.15 hi | ||
BA50 | 17.12 ef | 1.01 l | 6.58 ab | 4.40 e–j | 2.36 c–e | 1.98 c–f | 96.0 ab | 6.15 c | ||
BA100 | 17.08 e | 1.01 l | 6.33 a | 4.77 g–k | 2.25 b–e | 1.83 b–d | 134.5 b–d | 8.65 ef | ||
Cold storage 28 days | “WaVit” | control | 15.12 a | 0.62 f–h | 8.02 b–f | 3.19 ab | 1.93 ab | 0.79 a | 81.5 a | 5.05 bc |
GA3 | 18.64 j | 0.59 d–f | 8.58 d–h | 4.01 c–g | 2.14 a–d | 0.75 a | 131.0 b–d | 11.40 gh | ||
BA50 | 16.76 d | 0.65 hi | 8.01 b–f | 2.91 a | 2.13 a–c | 0.57 a | 135.5 b–d | 6.75 c–e | ||
BA100 | 18.02 h | 0.63 gh | 8.31 c–g | 3.68 b–e | 2.07 a–c | 0.77 a | 160.5 d–g | 10.40 fg | ||
P/P | control | 17.26 f | 0.54 c | 8.77 e–h | 3.35 a–c | 2.05 a–c | 1.82 b–d | 113.0 a–c | 7.35 c–e | |
GA3 | 19.08 k | 0.50 ab | 9.46 f–j | 4.12 c–h | 2.08 a–c | 1.84 b–e | 195.5 gh | 18.15 j | ||
BA50 | 17.22 ef | 0.60 d–g | 9.05 f–i | 3.49 a–d | 2.20 a–d | 1.97 c–e | 123.0 a–d | 6.20 c | ||
BA100 | 15.54 b | 0.47 a | 7.39 a–e | 3.36 a–c | 1.87 a | 1.79 b–d | 188.0 f–h | 17.15 j | ||
28 days of cold storage + 4 days of shelf life | “WaVit” | control | 16.82 d | 0.60 e–h | 10.87 jk | 3.92 b–f | 2.57 e | 2.27 b–d | 111.5 a–c | 9.85 fg |
GA3 | 21.18 n | 0.57 de | 10.99 jk | 5.05 i–k | 2.19 a–d | 1.96 b–e | 107.5 a–c | 11.40 gh | ||
BA50 | 20.34 m | 0.54 c | 10.48 i–k | 4.89 h–k | 2.12 a–c | 1.77 bc | 141.0 b–e | 8.50 d–f | ||
BA100 | 19.06 k | 0.63 gh | 9.90 h–k | 4.66 f–k | 2.20 a–d | 1.91 b–e | 117.5 a–d | 10.30 fg | ||
P/P | control | 18.40 i | 0.63 gh | 11.12 k | 4.09 c–g | 2.34 c–e | 2.14 ef | 130.0 b–d | 9.60 fg | |
GA3 | 19.18 kl | 0.52 bc | 10.64 jk | 5.42 k | 2.25 b–e | 2.09 d–f | 258.5 i | 22.80 k | ||
BA50 | 19.24 l | 0.70 i | 9.95 h–k | 5.16 jk | 2.27 b–e | 1.96 b–e | 150.0 c–f | 13.90 i | ||
BA100 | 17.96 h | 0.57 d | 9.64 g–k | 5.21 k | 2.25 b–e | 1.92 b–e | 213.0 h | 18.00 j | ||
Rootstock | ** | ** | NS | ** | NS | ** | ** | ** | ||
PGR Treatment | ** | ** | ** | ** | NS | ** | ** | ** | ||
Storage | ** | ** | ** | ** | ** | ** | NS | ** | ||
Rootstock × Treatment | ** | ** | NS | NS | NS | ** | ** | ** | ||
Rootstock × Storage | ** | ** | NS | NS | NS | ** | NS | ** | ||
Treatment × Storage | ** | ** | NS | ** | NS | ** | ** | ** | ||
Rootstock × Treatment × Storage | ** | ** | NS | NS | NS | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barać, G.; Mastilović, J.; Kevrešan, Ž.; Milić, B.; Kovač, R.; Milović, M.; Kalajdžić, J.; Bajić, A.; Magazin, N.; Keserović, Z. Effects of Plant Growth Regulators on Plum (Prunus domestica L.) Grown on Two Rootstocks at Harvest and at the Postharvest Period. Horticulturae 2022, 8, 621. https://doi.org/10.3390/horticulturae8070621
Barać G, Mastilović J, Kevrešan Ž, Milić B, Kovač R, Milović M, Kalajdžić J, Bajić A, Magazin N, Keserović Z. Effects of Plant Growth Regulators on Plum (Prunus domestica L.) Grown on Two Rootstocks at Harvest and at the Postharvest Period. Horticulturae. 2022; 8(7):621. https://doi.org/10.3390/horticulturae8070621
Chicago/Turabian StyleBarać, Gordana, Jasna Mastilović, Žarko Kevrešan, Biserka Milić, Renata Kovač, Maja Milović, Jelena Kalajdžić, Aleksandra Bajić, Nenad Magazin, and Zoran Keserović. 2022. "Effects of Plant Growth Regulators on Plum (Prunus domestica L.) Grown on Two Rootstocks at Harvest and at the Postharvest Period" Horticulturae 8, no. 7: 621. https://doi.org/10.3390/horticulturae8070621
APA StyleBarać, G., Mastilović, J., Kevrešan, Ž., Milić, B., Kovač, R., Milović, M., Kalajdžić, J., Bajić, A., Magazin, N., & Keserović, Z. (2022). Effects of Plant Growth Regulators on Plum (Prunus domestica L.) Grown on Two Rootstocks at Harvest and at the Postharvest Period. Horticulturae, 8(7), 621. https://doi.org/10.3390/horticulturae8070621