Low Tree Vigor, Free Palmette Training Form, and High Planting Density Increase Olive and Oil Yield Efficiency in Dry, Sloping Areas of Mediterranean Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Conditions
2.2. Experiment Layout and Measurements
2.3. Olive Oil Standard Quality
2.4. Phenol Compounds
2.5. Volatile Compounds
2.6. Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tous, J.; Romero, A.; Hermoso, J.F.; Msallem, M.; Larbi, A. Olive orchard design and mechanization: Present and future. Acta Hortic. 2014, 1057, 231–246. [Google Scholar] [CrossRef]
- Duarte, F.; Jones, N.; Fleskens, L. Traditional olive orchards on sloping land: Sustainability or abandonment? J. Environ. Manag. 2008, 89, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Rallo, L.; Barranco, D.; Caballero, J.M.; Del Río, C.; Martin, A.; Tous, J.; Trujillo, I. (Eds.) Variedades de Olivo en España; Junta de Andalucía, MAPA and Ediciones Mundi-Prensa: Madrid, Spain, 2005. [Google Scholar]
- De la Rosa, R.; León, L.; Barranco, D.; Rallo, L. El programa de mejora genética de olivo de Córdoba. Actas Hortic. 2006, 45, 195–196. [Google Scholar]
- Cunill, M.; Duran, S.; Mestre, M.; Bordas, M. Selección de variedades mejoradas de olivo adaptadas a condiciones de producción superintensiva. Actas Hortic. 2006, 45, 183–184. [Google Scholar]
- Pannelli, G.; Rosati, A.; Pandolfi, S.; Padula, G.; Mennone, C.; Giordani, E.; Bellini, E. Field evaluation of olive selections derived from a breeding program. In Proceedings of the Second International Seminar Olivebioteq, Marsala-Mazara del Vallo, Italy, 5–10 November 2006; pp. 95–102. [Google Scholar]
- Tous, J.; Romero, A.; Hermoso, J.F.; Ninot, A.; Howad, W. Selección de nuevos materiales de olivo en el IRTA de Cataluña—Resultados preliminares. In Proceedings of the II Jornadas Nacionales del Grupo Olivicultura de la SECH, Tarragona, Spain, 2–3 March 2009. [Google Scholar]
- Moutier, N.; Ricard, J.M.; Le Verge, S.; García, G.; Ben Sadok, I.; Hucbourg, B.; Metral, R.; Calleja, M.; Clipet, C.; Dosba, F.; et al. Agronomical and genetical approaches developed in France for new olive planting systems. Adv. Hortic. Sci. 2010, 24, 35–42. [Google Scholar]
- Del Rio, C.; Caballero, J. Resultados preliminares sobre el empleo de patrones para modificar el vigor y/o la producción de la variedad de olivo ‘Picual. Actas Hortic. 2006, 45, 179–180. [Google Scholar]
- Baldoni, L.; Fontanazza, G. Preliminary results on olive clonal rootstocks behaviour in the field. Acta Hortic. 1990, 286, 37–40. [Google Scholar] [CrossRef]
- Nardini, A.; Gasco, A.; Raimondo, F.; Gortan, E.; Lo Gullo, M.A.; Caruso, T.; Salleo, S. Is Rootstock-Induced Dwarfing in Olive an Effect of Reduced Plant Hydraulic Efficiency? Tree Physiol. 2006, 26, 1137–1144. [Google Scholar] [CrossRef]
- Rugini, E.; Silvestri, C.; Ceccarelli, M.; Muleo, R.; Cristofori, V. Mutagenesis and Biotechnology Techniques as Tools for Selecting New Stable Diploid and Tetraploid Olive Genotypes and Their Dwarfing Agronomical Characterization. HortScience 2016, 51, 799–804. [Google Scholar] [CrossRef]
- Lo Bianco, R.; Proietti, P.; Regni, L.; Caruso, T. Planting Systems for Modern Olive Growing: Strengths and Weaknesses. Agriculture 2021, 11, 494. [Google Scholar] [CrossRef]
- Zhang, Q. Automation in Tree Fruit Production: Principles and Practice; CABI: Boston, MA, USA, 2017; p. 304. [Google Scholar]
- Trentacoste, E.R.; Puertas, C.M.; Sadras, V.O. Effect of irrigation and tree density on vegetative growth, oil yield and water use efficiency in young olive orchard under arid conditions in Mendoza, Argentina. Irrig. Sci. 2015, 33, 429–440. [Google Scholar] [CrossRef]
- Erel, R.; Dag, A.; Ben-Gal, A.; Schwartz, A.; Yermiyahu, U. Flowering and fruit set of olive trees in response to nitrogen, phosphorus, and potassium. J. Am. Soc. Hortic. Sci. 2008, 133, 639–647. [Google Scholar] [CrossRef]
- De la Rosa, R.; León, L.; Guerrero, N.; Rallo, L.; Barranco, D. Preliminary results of an olive cultivar trial at high density. Aust. J. Agric. Res. 2007, 58, 392–395. [Google Scholar] [CrossRef]
- Dag, A.; Avidan, B.; Birger, R.; Lavee, S. High-density olive orchards in Israel. In Proceedings of the Second International Seminar Olivebioteq, Marsala-Mazara del Vallo, Italy, 5–10 November 2006; Volume 2, pp. 31–35. [Google Scholar]
- Grattan, S.R.; Berenguer, M.J.; Connell, J.H.; Polito, V.S.; Vossen, P.M. Olive oil production as influenced by different quantities of applied water. Agric. Water Manag. 2006, 85, 133–140. [Google Scholar] [CrossRef]
- Tous, J.; Romero, A.; Plana, J.; Hermoso, J.F. Olive oil cultivars suitable for very-high density planting conditions. In Proceedings of the V International Symposium on Olive Growing, Izmir, Turkey, 27 September 2004; Volume 791, pp. 403–408. [Google Scholar]
- Moriana, A.; Orgaz, F.; Pastor, M.; Fereres, E. Yield responses of a mature olive orchard to water deficits. J. Am. Soc. Hortic. Sci. 2003, 128, 425–431. [Google Scholar] [CrossRef]
- Lo Bianco, R.; Massenti, R.; Marra, F.P.; Caruso, T. Effect of soil permanent grass cover on growth, yield and water status of rainfed olive trees in Sicily. Acta Hortic. 2017, 1177, 319–325. [Google Scholar] [CrossRef]
- Diez, C.M.; Moral, J.; Cabello, D.; Morello, P.; Rallo, L.; Barranco, D. Cultivar and tree density as key factors in the long-term performance of super high-density olive orchards. Front. Plant Sci. 2016, 8, 1790. [Google Scholar] [CrossRef] [PubMed]
- Tous, J.; Romero, A.; Hermoso, J.F. New trends in olive orchard design for continuous mechanical harvesting. Adv. Hortic. Sci. 2010, 24, 43–52. [Google Scholar]
- Saponari, M.; Giampetruzzi, A.; Loconsole, G.; Boscia, D.; Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 2019, 109, 175–186. [Google Scholar] [CrossRef]
- Marino, G.; Macaluso, L.; Marra, F.P.; Ferguson, L.; Marchese, A.; Campisi, G.; Volo, P.; Laudicina, V.A.; Caruso, T. Horticultural performance of 23 Sicilian olive genotypes in hedgerow systems: Vegetative growth, productive potential and oil quality. Sci. Hortic. 2017, 217, 217–225. [Google Scholar] [CrossRef]
- Grilo, F.; Sedaghat, S.; Di Stefano, V.; Sacchi, R.; Caruso, T.; Lo Bianco, R. Tree Planting Density and Canopy Position Affect ‘Cerasuola’ and ‘Koroneiki’ Olive Oil Quality. Horticulturae 2021, 7, 11. [Google Scholar] [CrossRef]
- Mineo, V.; Planeta, D.; Finoli, C.; Giuliano, S. Fatty acids, Sterols and Antioxidant compounds of minor and neglected cultivar of Sicilian virgin olive oils. Prog. Nutr. 2007, 9, 259–263. [Google Scholar]
- Lo Bianco, R.; Panno, G.; Avellone, G. Characterization of Sicilian olive genotypes by multivariate analysis of leaf and fruit chemical and morphological properties. J. Agric. Sci. 2013, 5, 229. [Google Scholar] [CrossRef]
- Grilo, F.; Novara, M.E.; D’Oca, M.C.; Rubino, S.; Lo Bianco, R.; Di Stefano, V. Quality evaluation of extra-virgin olive oils from Sicilian genotypes grown in a high-density system. J. Food Sci. Nutr. 2020, 71, 397–409. [Google Scholar] [CrossRef]
- Famiani, F.; Proietti, P.; Inglese, P. Progettazione e impianto dell’oliveto. In Collana Divulgativa dell’Accademia Volume VI; Accademia Nazionale dell’Olivo e dell’Olio: Spoleto, Italy, 2011. [Google Scholar]
- Marino, G.; Caruso, T.; Ferguson, L.; Marra, F.P. Gas exchanges and stem water potential define stress thresholds for efficient irrigation management in olive (Olea europea L.). Water 2018, 10, 342. [Google Scholar] [CrossRef]
- Taticchi, A.; Esposto, S.; Veneziani, G.; Minnocci, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Daidone, L.; Sebastiani, L.; Servili, M. High vacuum-assisted extraction affects virgin olive oil quality: Impact on phenolic and volatile compounds. Food Chem. 2021, 342, 128369. [Google Scholar] [CrossRef]
- Selvaggini, R.; Esposto, S.; Taticchi, A.; Urbani, S.; Veneziani, G.; Di Maio, I.; Servili, M. Optimization of the temperature and oxygen concentration conditions in the malaxation during the oil mechanical extraction process of four Italian olive cultivars. J. Agric. Food Chem. 2014, 62, 3813–3822. [Google Scholar] [CrossRef]
- The jamovi Project. jamovi (Version 2.0). [Computer Software]. 2021. Available online: https://www.jamovi.org (accessed on 25 August 2021).
- Marino, G.; Macaluso, L.; Grilo, F.; Marra, F.P.; Caruso, T. Toward the valorization of olive (Olea europaea var. europaea L.) biodiversity: Horticultural performance of seven Sicilian cultivars in a hedgerow planting system. Sci. Hortic. 2019, 256, 108583. [Google Scholar] [CrossRef]
- Pastor, M.; García-Vila, M.; Soriano, M.A.; Vega, V.; Fereres, V. Productivity of olive orchards in response to tree density. J. Hortic. Sci. Biotechnol. 2007, 82, 555–562. [Google Scholar] [CrossRef]
- Carella, A.; Massenti, R.; Milazzo, G.; Caruso, T.; Lo Bianco, R. Fruiting, Morphology, and Architecture of ‘Arbequina’ and ‘Calatina’ Olive Branches. Horticulturae 2022, 8, 109. [Google Scholar] [CrossRef]
- Proietti, P.; Nasini, L.; Reale, L.R.L.; Caruso, T.; Ferranti, F. Productive and vegetative behavior of olive cultivars in super high-density olive grove. Sci. Agric. 2015, 72, 20–27. [Google Scholar] [CrossRef] [Green Version]
System | Cultivar | Canopy Volume (m3) | Growth Efficiency (m3 cm−2 TCSA) | Canopy Surface (m2) | S/V | Canopy/Soil Surf. | Prunings (kg) |
---|---|---|---|---|---|---|---|
CLx2 | Abunara | 19.1 | 0.112 | 21.4 | 1.21 | 2.14 | 8.94 |
Calatina | 13.8 | 0.148 | 16.1 | 1.25 | 1.61 | 4.43 | |
Nocellara | 14.4 | 0.108 | 15.9 | 1.18 | 1.59 | 5.98 | |
FPx3 | Abunara | 20.4 | 0.111 | 20.9 | 1.12 | 1.40 | 11.0 |
Calatina | 16.6 | 0.182 | 20.1 | 1.36 | 1.34 | 4.44 | |
Nocellara | 20.2 | 0.119 | 22.6 | 1.19 | 1.50 | 7.53 | |
GVx4 | Abunara | 21.5 | 0.104 | 27.6 | 1.27 | 1.38 | 9.02 |
Calatina | 14.5 | 0.134 | 20.8 | 1.48 | 1.04 | 4.80 | |
Nocellara | 19.6 | 0.099 | 25.8 | 1.31 | 1.29 | 10.8 | |
PVx5 | Abunara | 23.1 | 0.110 | 29.0 | 1.25 | 1.16 | 11.0 |
Calatina | 18.7 | 0.135 | 25.0 | 1.35 | 1.00 | 8.63 | |
Nocellara | 28.0 | 0.116 | 32.5 | 1.16 | 1.30 | 8.71 | |
Tukey HSD(α < 0.05) | 3.46 | 0.030 | 4.80 | 0.20 | 0.02 | 5.72 |
Cultivar | Acidity (%) | Peroxide Value (meq O2 kg−1 Oil) | K232 | K270 | ∆K |
---|---|---|---|---|---|
2020 | |||||
Abunara | 0.28 ± 0.02 a z | 3.7 ± 0.2 a | 1.60 ± 0.11 a | 0.09 ± 0.005 b | −0.002 ± 0.0001 b |
Calatina | 0.27 ± 0.01 a | 3.5 ± 0.2 a | 1.74 ± 0.06 a | 0.11 ± 0.004 a | −0.004 ± 0.0003 a |
Nocellara | 0.30 ± 0.02 a | 3.7 ± 0.2 a | 1.55 ± 0.05 a | 0.09 ± 0.005b | −0.001 ± 0.0001 c |
2021 | |||||
Abunara | 0.19 ± 0.03 a | 5.1 ± 0.2 a | 1.60 ± 0.10 a | 0.11 ± 0.010 a | −0.001 ± 0.0005 b |
Calatina | 0.22 ± 0.02 a | 4.9 ± 0.4 a | 1.60 ± 0.05 a | 0.12 ± 0.009 a | −0.003 ± 0.0003 a |
Nocellara | 0.25 ± 0.01 a | 2.7 ± 0.2 b | 1.47 ± 0.03 a | 0.10 ± 0.013 a | −0.003 ± 0.0010 a |
Abunara | Calatina | Nocellara | |
---|---|---|---|
2020 | |||
Myristic (C14:0) | n.d. | n.d. | n.d. |
Palmitic (C16:0) | 13.74 ± 0.05 a z | 9.57 ± 0.09 c | 10.70 ± 0.02 b |
Palmitoleic (C16:1) | 1.17 ± 0.004 a | 0.30 ± 0.007 c | 0.49 ± 0.001 b |
Margaric (C17:0) | 0.11 ± 0.0021 a | 0.04 ± 0.0009 b | 0.04 ± 0.0002 b |
Margaroleic (C17:1) | 0.23 ± 0.023 a | 0.05 ± 0.0003 b | 0.06 ± 0.0098 b |
Stearic (C18:0) | 3.23 ± 0.01 b | 3.40 ± 0.016 a | 3.35 ± 0.03 a |
Oleic (C18:1 ω-9) | 69.24 ± 0.128 c | 76.53 ± 0.02 a | 71.55 ± 0.031 b |
Linoleic (C18:2 ω-6) | 10.63 ± 0.038 b | 8.51 ± 0.058 c | 12.24 ± 0.002 a |
Linolenic(C18:3 ω-3) | 0.84 ± 0.031 a | 0.68 ± 0.025 b | 0.66 ± 0.032 b |
Arachidic (C20:0) | 0.47 ± 0.001 a | 0.47 ± 0.002 a | 0.47 ± 0.004 a |
Eicosenoic (C20:1) | 0.29 ± 0.021 b | 0.40 ± 0.02 a | 0.37 ± 0.033 ab |
Behenic (C22:0) | n.d. | n.d. | n.d. |
Lignoceric (C24:0) | 0.06 ± 0.001 a | 0.05 ± 0.002 a | 0.054 ± 0.004 a |
SFA | 17.61 ± 0.05 a | 13.53 ± 0.09 c | 14.62 ± 0.04 b |
MUFA | 70.92 ± 0.13 c | 77.28 ± 0.03 a | 72.48 ± 0.05 b |
PUFA | 11.47 ± 0.05 b | 9.19 ± 0.06 c | 12.90 ± 0.03 a |
2021 | |||
Myristic (C14:0) | n.d. | n.d. | n.d. |
Palmitic (C16:0) | 12.27 ± 0.02 ab | 10.22 ± 0.97 b | 12.72 ± 0.19 a |
Palmitoleic (C16:1) | 0.61 ± 0.009 b | 0.30 ± 0.03 c | 0.92 ± 0.02 a |
Heptadecanoic (C17:0) | 0.09 ± 0.001 b | 0.06 ± 0.02 b | 0.30 ± 0.005 a |
Heptadecenoic (C17:1) | 0.12 ± 0.005 b | 0.15 ± 0.005 a | 0.08 ± 0.002 c |
Stearic (C18:0) | 2.96 ± 0.01 b | 2.99 ± 0.004 b | 4.14 ± 0.01 a |
Oleic (C18:1 ω-9) | 71.37 ± 0.11 b | 73.50 ± 0.02 a | 69.76 ± 0.34 c |
Linoleic (C18:2 ω-6) | 10.92 ± 0.14 ab | 11.10 ± 0.22 a | 10.38 ± 0.11 b |
Linolenic(C18:3 ω-3) | 0.81 ± 0.02 a | 0.76 ± 0.06 a | 0.87 ± 0.01 a |
Arachidic (C20:0) | 0.42 ± 0.002 b | 0.40 ± 0.006 b | 0.53 ± 0.001 a |
Eicosenoic (C20:1) | 0.35 ± 0.02 b | 0.45 ± 0.005 a | 0.29 ± 0.02 c |
Behenic (C22:0) | n.d. | n.d. | n.d. |
Lignoceric (C24:0) | 0.09 ± 0.004 a | 0.07 ± 0.006 a | n.d. |
SFA | 15.82 ± 0.03 ab | 13.75 ± 0.97 b | 17.70 ± 0.19 a |
MUFA | 72.45 ± 0.11 b | 74.39 ± 0.04 a | 71.05 ± 0.35 c |
PUFA | 11.73 ± 0.14 a | 11.87 ± 0.22 a | 11.25 ± 0.11 a |
Abunara | Calatina | Nocellara | |
---|---|---|---|
2020 | |||
3,4-DHPEA | 12.8 ± 0.1 c z | 22.1 ± 0.1 b | 23.5 ± 0.03 a |
p-HPEA | 5.0 ± 0.1 c | 8.5 ± 0.1 b | 11.6 ± 0.01 a |
Vanillic acid | 0.3 ± 0.02 a | 0.2 ± 0.009 b | 0.1 ± 0.005 c |
p-Cumaric acid | 0.8 ± 0.02 a | 0.5 ± 0.04 a | 0.5 ± 0.45 a |
3,4-DHPEA-EDA | 274 ± 2.8 c | 349 ± 0.4 a | 297 ± 0.7 b |
p-HPEA-EDA | 35.4 ± 0.4 c | 93.2 ± 0.6 a | 65.2 ± 0.2 b |
(+)-1-Acetoxypinoresinol | 17.0 ± 0.02 b | 15.8 ± 0.003 c | 22.1 ± 0.01 a |
(+)-Pinoresinol | 9.8 ± 0.1 c | 15.9 ± 0.3 a | 11.3 ± 0.2 b |
3,4-DHPEA-EA | 121 ± 1.2 c | 341 ± 7.7 a | 173 ± 0.9 b |
Ligstroside aglycone | 12.9 ± 0.1 c | 41.7 ± 0.8 a | 19.6 ± 0.1 b |
Luteolin | 1.1 ± 0.01 b | 1.7 ± 0.01 a | n.d. |
Apigenin | n.d. | 0.8 ± 0.02 | n.d. |
Total phenols | 490 ± 3.2 c | 890 ± 10.9 a | 624 ± 1.6 b |
Sum of oleuropein derivatives y | 408 ± 3.0 c | 712 ± 7.7 a | 494 ± 1.2 b |
Sum of ligstroside derivatives | 53.3 ± 0.4 c | 143 ± 1.0 a | 96.4 ± 0.2 b |
Sum of lignans | 26.7 ± 0.1 c | 31.6 ± 0.3 b | 33.4 ± 0.2 a |
2021 | |||
3,4-DHPEA | 16.4 ± 0.03 c | 33.7 ± 0.03 b | 47.0 ± 0.05 a |
p-HPEA | 6.30 ± 0.002 c | 11.3 ± 0.01 a | 8.6 ± 0.037 b |
Vanillic acid | 0.40 ± 0.003 b | 0.5 ± 0.0001 a | 0.5 ± 0.007 a |
p-Cumaric acid | n.d. | n.d. | n.d. |
3,4-DHPEA-EDA | 570 ± 0.8 b | 661 ± 2.1 a | 305 ± 0.90 c |
p-HPEA-EDA | 67.8 ± 0.2 b | 74.6 ± 0.1 a | 33.8 ± 0.02 c |
(+)-1-Acetoxypinoresinol | 20.7 ± 0.02 b | 25.6 ± 0.07 a | 17.1 ± 0.001 c |
(+)-Pinoresinol | 10.9 ± 0.2 b | 14.0 ± 0.02 a | 9.30 ± 0.04 c |
3,4-DHPEA-EA | 40.3 ± 0.3 c | 166 ± 0.4 a | 59.5 ± 0.30 b |
Ligstroside aglycone | 4.20 ± 0.1 b | 20.1 ± 0.1 a | 3.80 ± 0.04 c |
Luteolin | n.d. | n.d. | n.d. |
Apigenin | n.d. | n.d. | n.d. |
Total phenols | 737 ± 1.0 b | 1006 ± 2.1 a | 484 ± 1.0 c |
Sum of oleuropein derivatives | 627 ± 0.9 b | 860 ± 2.1 a | 411 ± 0.9 c |
Sum of ligstroside derivatives | 78.3 ± 0.2 b | 106 ± 0.2 a | 46.2 ± 0.1 c |
Sum of lignans | 31.7 ± 0.2 b | 39.6 ± 0.1 a | 26.4 ± 0.04 c |
Abunara | Calatina | Nocellara | |
---|---|---|---|
2020 | |||
Aldehydes | |||
Pentanal | 38 ± 2.0 a z | 38 ± 5.0 a | 30 ± 2.0 a |
(E)-2-Pentenal | 47 ± 5.0 a | 16 ± 2.0 b | 44 ± 2.0 a |
Hexanal | 645 ± 3.0 a | 321 ± 7.0 c | 397 ± 24 b |
(E)-2-Hexenal | 13,537 ± 96 a | 8946 ± 11 b | 8169 ± 52 c |
(E,E)-2,4-Hexadienal | 181 ± 1.0 a | 75 ± 1.0 c | 82 ± 1.0 b |
Sum of the aldehydes at C5 and at C6 | 14,448 ± 96 a | 9396 ± 14 b | 8722 ± 57 c |
Alcohols | |||
1-Pentanol | 446 ± 5.0 a | 356 ± 0.4 b | 309 ± 1.4 c |
1-Penten-3-ol | 137 ± 3.0 a | 69 ± 4.0 c | 85 ± 2.0 b |
(E)-2-Penten-1-ol | 59 ± 1.0 a | 61 ± 1.0 a | 55 ± 0.1 b |
(Z)-2-Penten-1-ol | 473 ± 4.0 a | 296 ± 5.0 b | 312 ± 2.0 b |
1-Hexanol | 1948 ± 4.0 a | 482 ± 6.0 c | 652 ± 0.1 b |
(E)-2-Hexen-1-ol | 523 ± 2.0 b | 915 ± 23 a | 318 ± 2.0 c |
(Z)-3-Hexen-1-ol | 4955 ± 1.0 a | 1694 ± 3.0 b | 1697 ± 16 b |
Sum of alcohols at C5 and at C6 | 8542 ± 10 a | 3875 ± 25 b | 3428 ± 17 c |
Esters | |||
Ethyl acetate | 15 ± 0.5 b | 19 ± 1.0 a | 21 ± 1.0 a |
Hexyl acetate | 230 ± 8.0 b | 448 ± 2.0 a | 137 ± 4.0 c |
(Z)-3-Hexenyl acetate | 1280 ± 24 b | 1699 ± 11 a | 476 ± 10 c |
Sum of esters at C6 | 1510 ± 25 b | 2148 ± 11 a | 613 ± 11 c |
Ketones | |||
3-Pentanone | 991 ± 4.0 a | 458 ± 1.0 c | 584 ± 3.0 b |
1-Penten-3-one | 245 ± 17 a | 145 ± 11 b | 264 ± 4.0 a |
6-Methyl-5-hepten-2-one | 11 ± 0.1 b | 19 ± 0.3 a | 19 ± 0.2 a |
Sum of ketones at C5 and at C8 | 1246 ± 17 a | 621 ± 11 c | 868 ± 5.0 b |
2021 | |||
Aldehydes | |||
Pentanal | 27 ± 2.0 b | 30 ± 3.0 b | 51 ± 3.0 a |
(E)-2-Pentenal | 66 ± 2.0 a | 31 ± 0.1 b | 35 ± 2.0 b |
Hexanal | 2253 ± 72 a | 381 ± 11 c | 635 ± 7.0 b |
(E)-2-Hexenal | 6366 ± 49 a | 5029 ± 22 b | 4154 ± 78 c |
(E,E)-2,4-Hexadienal | 471 ± 18 a | 182 ± 5.0 b | 152 ± 2.0 b |
Sum of the aldehydes at C5 and at C6 | 9183 ± 89 a | 5653 ± 25 b | 5027 ± 78 c |
Alcohols | |||
1-Pentanol | 26 ± 2.0 b | 106 ± 2.0 a | 108 ± 1.0 a |
1-Penten-3-ol | 346 ± 3.0 b | 332 ± 2.0 b | 441 ± 2.0 a |
(E)-2-Penten-1-ol | 40 ± 1.0 b | 45 ± 1.0 b | 63 ± 2.0 a |
(Z)-2-Penten-1-ol | 348 ± 2.0 b | 450 ± 4.0 a | 444 ± 15 a |
1-Hexanol | 730 ± 5.0 c | 1301 ± 12 a | 1168 ± 20 b |
(E)-2-Hexen-1-ol | 493 ± 7.0 b | 599 ± 4.0 b | 1264 ± 47 a |
(Z)-3-Hexen-1-ol | 3555 ± 93 b | 6016 ± 105 a | 5448 ± 142 a |
Sum of alcohols at C5 and at C6 | 5538 ± 98 b | 8849 ± 106 a | 8936 ± 152 a |
Esters | |||
Ethyl acetate | 11 ± 1.0 b | 37 ± 2.0 a | 16 ± 2.0 b |
Hexyl acetate | 168 ± 8.0 a | 114 ± 3.0 b | 121 ± 5.0 b |
(Z)-3-Hexenyl acetate | 603 ± 7.0 a | 406 ± 8.0 b | 394 ± 4.0 b |
Sum of esters at C6 | 771 ± 11 a | 520 ± 9.0 b | 515 ± 7.0 b |
Ketones | |||
3-Pentanone | 245 ± 8.0 b | 639 ± 14 a | 588 ± 23 a |
1-Penten-3-one | 358 ± 14 a | 70 ± 5.0 b | 42 ± 3.0 b |
6-Methyl-5-hepten-2-one | 13 ± 2.0 a | 10 ± 1.0 a | 13 ± 0.4 a |
Sum of ketones at C5 and at C8 | 616 ± 16 b | 719 ± 15 a | 643 ± 23 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massenti, R.; Ioppolo, A.; Veneziani, G.; Selvaggini, R.; Servili, M.; Lo Bianco, R.; Caruso, T. Low Tree Vigor, Free Palmette Training Form, and High Planting Density Increase Olive and Oil Yield Efficiency in Dry, Sloping Areas of Mediterranean Regions. Horticulturae 2022, 8, 817. https://doi.org/10.3390/horticulturae8090817
Massenti R, Ioppolo A, Veneziani G, Selvaggini R, Servili M, Lo Bianco R, Caruso T. Low Tree Vigor, Free Palmette Training Form, and High Planting Density Increase Olive and Oil Yield Efficiency in Dry, Sloping Areas of Mediterranean Regions. Horticulturae. 2022; 8(9):817. https://doi.org/10.3390/horticulturae8090817
Chicago/Turabian StyleMassenti, Roberto, Antonino Ioppolo, Gianluca Veneziani, Roberto Selvaggini, Maurizio Servili, Riccardo Lo Bianco, and Tiziano Caruso. 2022. "Low Tree Vigor, Free Palmette Training Form, and High Planting Density Increase Olive and Oil Yield Efficiency in Dry, Sloping Areas of Mediterranean Regions" Horticulturae 8, no. 9: 817. https://doi.org/10.3390/horticulturae8090817
APA StyleMassenti, R., Ioppolo, A., Veneziani, G., Selvaggini, R., Servili, M., Lo Bianco, R., & Caruso, T. (2022). Low Tree Vigor, Free Palmette Training Form, and High Planting Density Increase Olive and Oil Yield Efficiency in Dry, Sloping Areas of Mediterranean Regions. Horticulturae, 8(9), 817. https://doi.org/10.3390/horticulturae8090817