Advances in Molecular Breeding of Vegetable Crops
Abstract
:1. Advances in Gene Editing in Context of Vegetable Molecular Breeding
2. Germplasm Diversity Evaluation for Vegetable Improvement
3. Understanding the Genetic Basis of Biotic Resistance in Vegetable Crops
4. Mining Genes Responsible for Abiotic Stresses for Vegetable Improvement
5. Organic Compounds in Vegetables and Its Interaction with Environment
Funding
Acknowledgments
Conflicts of Interest
References
- Wan, L.; Wang, Z.; Tang, M.; Hong, D.; Sun, Y.; Ren, J.; Zhang, N.; Zeng, H. CRISPR-Cas9 Gene Editing for Fruit and Vegetable Crops: Strategies and Prospects. Horticulturae 2021, 7, 193. [Google Scholar] [CrossRef]
- Chen, Y.; Mao, W.; Liu, T.; Feng, Q.; Li, L.; Li, B. Genome Editing as A Versatile Tool to Improve Horticultural Crop Qualities. Hortic. Plant J. 2020, 6, 372. [Google Scholar] [CrossRef]
- Han, F.; Liu, Y.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Wang, Y.; Ji, J.; Li, Z. Advances in Genetics and Molecular Breeding of Broccoli. Horticulturae 2021, 7, 280. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Zhao, Y.; Zong, P.; Zhan, Z.; Piao, Z. Establishment of a Simple and Efficient Agrobacterium-mediated Genetic Transformation System to Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Hortic. Plant J. 2021, 7, 117. [Google Scholar] [CrossRef]
- Uddin, M.; Billah, M.; Afroz, R.; Rahman, S.; Jahan, N.; Hossain, M.; Bagum, S.; Uddin, M.; Khaldun, A.; Azam, M.; et al. Evaluation of 130 Eggplant (Solanum melongena L.) Genotypes for Future Breeding Program Based on Qualitative and Quantitative Traits, and Various Genetic Parameters. Horticulturae 2021, 7, 376. [Google Scholar] [CrossRef]
- Zhong, Y.; Cheng, Y.; Ruan, M.; Ye, Q.; Wang, R.; Yao, Z.; Zhou, G.; Liu, J.; Yu, J.; Wan, H. High-Throughput SSR Marker Development and the Analysis of Genetic Diversity in Capsicum frutescens. Horticulturae 2021, 7, 187. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, H.; Li, Y.; Wang, Y.; Wu, X.; Li, J.; Zhang, Z.; Wang, Y.; Hu, J.; Yang, S.; et al. Genome Wide Characterization, Comparative and Genetic Diversity Analysis of Simple Sequence Repeats in Cucurbita Species. Horticulturae 2021, 7, 143. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.; Park, T.; Lee, H.; Choi, J.; Park, Y. Development of Molecular Markers Associated with Resistance to Gray Mold Disease in Onion (Allium cepa L.) through RAPD-PCR and Transcriptome Analysis. Horticulturae 2021, 7, 436. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, S.; Yang, X.; Wang, C.; Huang, Q.; Huang, R. Generation of a High-Density Genetic Map of Pepper (Capsicum annuum L.) by SLAF-seq and QTL Analysis of Phytophthora capsici Resistance. Horticulturae 2021, 7, 92. [Google Scholar] [CrossRef]
- Wang, F.; Yin, Y.; Yu, C.; Li, N.; Shen, S.; Liu, Y.; Gao, S.; Jiao, C.; Yao, M. Transcriptomics Analysis of Heat Stress-Induced Genes in Pepper (Capsicum annuum L.) Seedlings. Horticulturae 2021, 7, 339. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Xiao, J.; Cheng, G.; Gong, Z. CaHSP18.1a, a Small Heat Shock Protein from Pepper (Capsicum annuum L.), Positively Responds to Heat, Drought, and Salt Tolerance. Horticulturae 2021, 7, 117. [Google Scholar] [CrossRef]
- Gong, C.; Pang, Q.; Li, Z.; Li, Z.; Chen, R.; Sun, G.; Sun, B. Genome-Wide Identification and Characterization of Hsf and Hsp Gene Families and Gene Expression Analysis under Heat Stress in Eggplant (Solanum melongema L.). Horticulturae 2021, 7, 149. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Bai, W.; Yang, X.; Wu, H.; Lei, K.; Huang, R.; Zhang, S.; Huang, Q.; Lin, Q. Comparative Transcriptome Analysis Reveals Different Low-Nitrogen-Responsive Genes in Pepper Cultivars. Horticulturae 2021, 7, 110. [Google Scholar] [CrossRef]
- Liu, C.; Yao, X.; Li, G.; Huang, L.; Wu, X.; Xie, Z. Identification of Major Loci and Candidate Genes for Anthocyanin Biosynthesis in Broccoli Using QTL-Seq. Horticulturae 2021, 7, 246. [Google Scholar] [CrossRef]
- Xie, Y.; Tian, L.; Han, X.; Yang, Y. Research Advances in Allelopathy of Volatile Organic Compounds (VOCs) of Plants. Horticulturae 2021, 7, 278. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Y. Advances in Molecular Breeding of Vegetable Crops. Horticulturae 2022, 8, 821. https://doi.org/10.3390/horticulturae8090821
Wang Y, Zhang Y. Advances in Molecular Breeding of Vegetable Crops. Horticulturae. 2022; 8(9):821. https://doi.org/10.3390/horticulturae8090821
Chicago/Turabian StyleWang, Yaru, and Yuyang Zhang. 2022. "Advances in Molecular Breeding of Vegetable Crops" Horticulturae 8, no. 9: 821. https://doi.org/10.3390/horticulturae8090821
APA StyleWang, Y., & Zhang, Y. (2022). Advances in Molecular Breeding of Vegetable Crops. Horticulturae, 8(9), 821. https://doi.org/10.3390/horticulturae8090821