A Novel Model Fusion Approach for Greenhouse Crop Yield Prediction
Abstract
:1. Introduction
2. Methodology
2.1. Biophysical Model
2.2. ML Model
2.2.1. Data Normalization
2.2.2. CNN Part
2.3. RNN Part
2.4. Fusion Model
3. Experimental Studies
3.1. Biophysical Model Results
3.2. Machine Learning Model Results
3.3. Model Fusion Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hoogenboom, G. Contribution of agrometeorology to the simulation of crop production and its applications. Agric. For. Meteorol. 2000, 103, 137–157. [Google Scholar] [CrossRef]
- Vanthoor, B.; Visser, P.; Stanghellini, C.; Henten, E. A methodology for model-based greenhouse design: Part 2, description and validation of a tomato yield model. Biosyst. Eng. 2011, 110, 378–395. [Google Scholar] [CrossRef]
- Jones, J.; Dayan, E.; Allen, L.; VanKeulen, H.; Challa, H. A dynamic tomato growth and yield model (TOMGRO). Trans. ASAE 1998, 34, 663–672. [Google Scholar] [CrossRef]
- Jones, J.; Kenig, A.; Vallejos, C. Reduced state-variable tomato growth model. Trans. ASAE 1999, 42, 255–265. [Google Scholar] [CrossRef]
- Gong, L.; Yu, M.; Jiang, S.; Cutsuridis, V.; Kollias, S.; Pearson, S. Studies of evolutionary algorithms for the reduced Tomgro model calibration for modelling tomato yields. Smart Agric. Technol. 2021, 1, 1–8. [Google Scholar] [CrossRef]
- Heuvelink, E. Evaluation of a dynamic simulation model for tomato crop growth and development. Ann. Bot. 1999, 83, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Wei, R.; Xu, L. An Integrated Yield Prediction Model for Greenhouse Tomato. Agronomy 2019, 9, 873. [Google Scholar] [CrossRef] [Green Version]
- Seginer, I.; Gary, C.; Tchamitchian, M. Optimal temperature regimes for a greenhouse crop with a carbohydrate pool: A modelling study. Sci. Hortic. 1994, 60, 55–80. [Google Scholar] [CrossRef]
- Kuijpers, W.; Molengraft, M.; Mourik, S.; Ooster, A.; Henten, E. Model selection with a common structure: Tomato crop growth models. Biosyst. Eng. 2019, 187, 247–257. [Google Scholar] [CrossRef]
- Vazquez-Cruz, M.; Guzman-Cruz, R.; Lopez-Cruz, I.; Cornejo-Perez, O.; Torres-Pacheco, I.; Guevara-Gonzalez, R. Global sensitivity analysis by means of EFAST and Sobol’ methods andcalibration of reduced state-variable TOMGRO model using geneticalgorithms. Comput. Electron. Agric. 2014, 100, 1–12. [Google Scholar] [CrossRef]
- Sim, H.; Kim, D.; Ahn, M.; Ahn, S.; Kim, S. Prediction of Strawberry Growth and Fruit Yield based on Environmental and Growth Data in a Greenhouse for Soil Cultivation with Applied Autonomous Facilities. Hortic. Sci. Technol. 2020, 38, 840–849. [Google Scholar]
- Gholipoor, M.; Nadali, F. Fruit yield prediction of pepper using artificial neural network. Sci. Hortic. 2019, 250, 249–253. [Google Scholar] [CrossRef]
- Qaddoum, K.; Hines, E.; Iliescu, D. Yield prediction for tomato greenhouse using EFUNN. ISRN Artif. Intell. 2013, 2013, 249–253. [Google Scholar] [CrossRef]
- Salazar, R.; López, I.; Rojano, A.; Schmidt, U.; Dannehl, D. Tomato yield prediction in a semi-closed greenhouse. In Proceedings of the International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): International Symposium on Innovation and New Technologies in Protected Cropping, Brisbane, Australia, 17–22 August 2015. [Google Scholar]
- Alhnait, B.; Pearson, S.; Leontidis, G.; Kollias, S. Using Deep Learning to Predict Plant Growth and Yield in Greenhouse Environments. arXiv 2019, arXiv:1907.00624. [Google Scholar] [CrossRef]
- Alhnait, B.; Kollias, S.; Leontidis, G.; Shouyong, J.; Schamp, B.; Pearson, S. An autoencoder wavelet based deep neural network with attention mechanism for multi-step prediction of plant growth. Inf. Sci. 2021, 560, 35–50. [Google Scholar] [CrossRef]
- Gong, L.; Yu, M.; Jiang, S.; Cutsuridis, V.; Kollias, S.; Pearson, S. Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN. Sensors 2021, 21, 4537. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C. Pattern Recognition and Machine Learning; Springer Inc.: New York, NY, USA, 2007. [Google Scholar]
- Arias, A.; Rodriguez, F.; Berenguel, M.; Heuvelink, E. Calibration and validation of complex and simplified tomato growth models for control purposes in the Southeast of Spain. Acta Hortic. 2004, 654, 147–154. [Google Scholar]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 1–21. [Google Scholar] [CrossRef]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Phys. D Nolinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
Training Dataset | Testing Dataset | ||
---|---|---|---|
CO (mmp) | Min | 370.94 | 478.05 |
Max | 967.40 | 1691.43 | |
Median | 629.97 | 769.79 | |
Mean | 624.19 | 770.37 | |
Standard deviation | 129.58 | 175.61 | |
Temperature (C) | Min | 3.68 | 4.72 |
Max | 23.89 | 23.69 | |
Median | 18.46 | 18.31 | |
Mean | 17.01 | 17.18 | |
Standard deviation | 4.25 | 3.94 | |
Humidity deficit (g/kg) | Min | 0.13 | 0 |
Max | 7.27 | 6.08 | |
Median | 2.78 | 2.58 | |
Mean | 2.91 | 2.65 | |
Standard deviation | 1.29 | 1.33 | |
Relative humidity (%) | Min | 65.31 | 65.09 |
Max | 98.50 | 100 | |
Median | 83.22 | 84.73 | |
Mean | 82.19 | 83.99 | |
Standard deviation | 5.88 | 6.72 | |
Radiation (W/m) | Min | 0.58 | 0.59 |
Max | 83.02 | 82.91 | |
Median | 43.41 | 42.81 | |
Mean | 42.19 | 42.17 | |
Standard deviation | 18.92 | 19.37 |
Parameter | Description | Range of Estimate | Unit |
---|---|---|---|
Maximum node development rate | [0.35, 0.4] | node d | |
Parameter in expolinear equation | [14, 16] | node | |
Maximum leaf area expansion | [0.05, 0.08] | m node | |
Parameter in expolinear equation | [0.45, 0.55] | node | |
Maximum increase in vegetative tissue d.w. growth per node | [8, 10] | g[d.w.] node | |
CO coefficiency | [0.08, 0.12] | mol m s | |
Critic temperature | [19, 21] | C | |
v | Transition from vegetative development to fruit development | [0.8, 1] | node |
K | Development time from first fruit to ripe one | [0.8, 1] | node |
m | Light transmission coefficient | [0.01, 0.015] | dimensionless |
Nodes per plant | [16, 18] | node | |
Maximum new growth to fruit partitioning | [0.8, 1] | [fraction] d | |
E | Growth efficiency | [0.9, 1.2] | g[d.w.] g [CHO] |
D | CO to CHO conversion coefficient | [4, 6] | gmh |
GA | DE | PSO | |
---|---|---|---|
Mean and std of RMSE (g/m) | 45.16 ± 13.11 | 55.36 ± 18.07 | 36.17 ± 7.64 |
Mean and std of R2 | 0.9969 ± 0.0017 | 0.9953 ± 0.0030 | 0.9980 ± 0.0001 |
Mean and std of NSE (g/m) | 0.9938 ± 0.0033 | 0.9907 ± 0.0060 | 0.9961 ± 0.0016 |
Mean and std of PBIAS (g/m) | −2.0359 ± 1.8813 | −3.6000 ± 1.8670 | −1.1713 ± 1.4105 |
RMSEs | R2s | NSEs | PBIASE | |
---|---|---|---|---|
MLP | 66.63 ± 17.01 | 0.9863 ± 0.0064 | 0.9863 ± 0.0066 | 0.7465 ± 1.9304 |
SVR | 116.78 ± 0 | 0.9318 ± 0 | 0.9330 ± 0 | 6.1768 ± 0 |
RFR | 26.73 ± 0.33 | 0.9979 ± 0.0001 | 0.9979 ± 0.0001 | 0.5817 ± 0.0380 |
GBR | 26.70 ± 0.57 | 0.9980 ± 0.0001 | 0.9980 ± 0.0001 | 0.5227 ± 0.0589 |
LSTM-RNN | 29.95 ± 2.27 | 0.9973 ± 0.0005 | 0.9973 ± 0.0005 | 0.0824 ± 0.2260 |
CNN | 31.26 ± 4.99 | 0.9961 ± 0.0019 | 0.9961 ± 0.0019 | −0.1345 ± 0.1810 |
CNN-RNN | 21.69 ± 3.10 | 0.9986 ± 0.0004 | 0.9987 ± 0.0004 | −0.0363 ± 0.5918 |
RMSEs | R2s | NSEs | PBIASE | |
---|---|---|---|---|
Biophysical model | 36.17 ± 7.64 | 0.9980 ± 0.0001 | 0.9961 ± 0.0016 | −1.1713 ± 1.4105 |
CNN−RNN | 21.69 ± 3.10 | 0.9986 ± 0.0004 | 0.9987 ± 0.0004 | −0.0363 ± 0.5918 |
Linear combination | 20.85 ± 3.19 | 0.9992 ± 0.0002 | 0.9985 ± 0.0005 | −0.1669 ± 0.4103 |
Bayesian combination | 21.51 ± 3.79 | 0.9991 ± 0.0003 | 0.9982 ± 0.0006 | 0.4259 ± 0.8575 |
NN combination | 17.69 ± 3.47 | 0.9995 ± 0.0002 | 0.9989 ± 0.0004 | 0.1791 ± 0.6837 |
RFR combination | 18.68 ± 2.94 | 0.9994 ± 0.0002 | 0.9988 ± 0.0003 | −0.1465 ± 0.6758 |
GBR combination | 20.67 ± 3.10 | 0.9992 ± 0.0002 | 0.9985 ± 0.0005 | −0.0715 ± 0.7245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, L.; Yu, M.; Cutsuridis, V.; Kollias, S.; Pearson, S. A Novel Model Fusion Approach for Greenhouse Crop Yield Prediction. Horticulturae 2023, 9, 5. https://doi.org/10.3390/horticulturae9010005
Gong L, Yu M, Cutsuridis V, Kollias S, Pearson S. A Novel Model Fusion Approach for Greenhouse Crop Yield Prediction. Horticulturae. 2023; 9(1):5. https://doi.org/10.3390/horticulturae9010005
Chicago/Turabian StyleGong, Liyun, Miao Yu, Vassilis Cutsuridis, Stefanos Kollias, and Simon Pearson. 2023. "A Novel Model Fusion Approach for Greenhouse Crop Yield Prediction" Horticulturae 9, no. 1: 5. https://doi.org/10.3390/horticulturae9010005
APA StyleGong, L., Yu, M., Cutsuridis, V., Kollias, S., & Pearson, S. (2023). A Novel Model Fusion Approach for Greenhouse Crop Yield Prediction. Horticulturae, 9(1), 5. https://doi.org/10.3390/horticulturae9010005