Growth and Yield of Okra Exposed to a Consortium of Rhizobacteria with Different Organic Carriers under Controlled and Natural Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location
2.2. Collection of Bacteria and Organic Carriers
2.3. Testing Compatibility and Consortium Preparation
2.4. Formulation Development and Seed Inoculation
2.5. Pot Trial
2.6. Field Trial
2.7. Determination of Growth Parameters
2.8. Samples Preparation and Determination of Plant Nutrients
2.9. Microbial Biomass Carbon and Nitrogen Determination
2.10. Determination of Microbial Population
2.11. Statistical Analysis
3. Results
3.1. Pot Trial
3.1.1. Effect of Different Carrier Materials on Physiological Parameters of Okra in the Pot Trial
3.1.2. Effect of Different Carrier Materials on Nutrients Uptake of Okra in the Pot Trial
3.1.3. Nutritional Status of Okra Fruit in the Pot Trial
3.1.4. Effect of Different Carrier Materials on Yield Parameters of Okra in the Pot Trial
3.2. Field Trial
3.2.1. Effect of Different Carrier Materials on the Growth and Microbial Parameters of Okra in Field Trial
3.2.2. Effect of Different Carrier Materials on Nutrients Uptake of Okra in Pot Trial
3.2.3. Nutritional Status of Okra Fruit in Field Trial
3.2.4. Effect of Different Carrier Materials on Yield Parameters of Okra in Field Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agregán, R.; Pateiro, M.; Bohrer, B.M.; Shariati, M.A.; Nawaz, A.; Gohari, G.; Lorenzo, J.M. Biological activity and development of functional foods fortified with okra (Abelmoschus esculentus). Crit. Rev. Food Sci. Nutr. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Fernandes, Â.; Barros, L.; Ferreira, I.C. Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage. Food Chem. 2018, 242, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Saima, S.; Ghaffar, F.; Yasin, G.; Nawaz, M.; Ahmad, K.M. Effect of salt stress on germination and early seedling growth in Okra (Abelmoschus esculentus). Sarhad J. Agric. 2022, 38, 388–397. [Google Scholar] [CrossRef]
- Armanda, D.T.; Guinée, J.B.; Tukker, A. The second green revolution: Innovative urban agriculture’s contribution to food security and sustainability—A review. Glob. Food Secur. 2019, 22, 13–24. [Google Scholar] [CrossRef]
- Aamir, M.; Samal, S.; Rai, A.; Kashyap, S.P.; Singh, S.K.; Ahmed, M.; Upadhyay, R.S. Plant microbiome: Diversity, distribution, and functional relevance in crop improvement and sustainable agriculture. In Microbiome Stimulants for Crops; Cambridge Woodhead Publishing Sawston: Cambridge, UK, 2021; pp. 417–436. [Google Scholar]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and environmental effects of heavy metals. J. King Saud Univ.-Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Hama, J.R.; Kolpin, D.W.; LeFevre, G.H.; Hubbard, L.E.; Powers, M.M.; Strobel, B.W. Exposure and transport of alkaloids and phytoestrogens from soybeans to agricultural soils and streams in the midwestern United States. Environ. Sci. Technol. 2021, 55, 11029–11039. [Google Scholar] [CrossRef]
- Daniel, A.I.; Fadaka, A.O.; Gokul, A.; Bakare, O.O.; Aina, O.; Fisher, S.; Burt, A.F.; Mavumengwana, V.; Keyster, M.; Klein, A. Biofertilizer: The Future of Food Security and Food Safety. Microorganisms 2022, 10, 1220. [Google Scholar] [CrossRef]
- Barman, M.; Paul, S.; Choudhury, A.G.; Roy, P.; Sen, J. Biofertilizer as prospective input for sustainable agriculture in India. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1177–1186. [Google Scholar] [CrossRef]
- Singh, H.B. Management of plant pathogens with microorganisms. Proc. Natl. Acad. Sci. USA 2014, 80, 443–454. [Google Scholar]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; El Enshasy, H. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Ali, R. Role of Recombinant DNA Technology in Biofertilizer Production. In Microbiota and Biofertilizers; Springer: Cham, Switzerland, 2021; pp. 143–163. [Google Scholar]
- Dar, A.; Zahir, Z.A.; Iqbal, M.; Mehmood, A.; Javed, A.; Hussain, A.; Ahmad, M. Efficacy of rhizobacterial exopolysaccharides in improving plant growth, physiology, and soil properties. Environ. Monit. Assess. 2021, 193, 515. [Google Scholar] [CrossRef]
- Brahmaprakash, G.P.; Sahu, P.K. Biofertilizers for sustainability. J. Indian Inst. Sci. 2012, 9, 37–62. [Google Scholar]
- Singh, D.P.; Prabha, R.; Renu, S.; Sahu, P.K.; Singh, V. Agrowaste bioconversion and microbial fortification have prospects for soil health, crop productivity, and eco-enterprising. Int. J. Recycl. Org. Waste Agric. 2019, 8, 457–472. [Google Scholar] [CrossRef] [Green Version]
- Dar, A.; Zahir, Z.A.; Asghar, H.N.; Ahmad, R. Preliminary screening of rhizobacteria for biocontrol of little seed canary grass (Phalaris minor Retz.) and wild oat (Avena fatua L.) in wheat. Can. J. Microbiol. 2020, 66, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Farhangi-Abriz, S.; Torabian, S.; Qin, R.; Noulas, C.; Lu, Y.; Gao, S. Biochar effects on yield of cereal and legume crops using meta-analysis. Sci. Total Environ. 2021, 775, 145869. [Google Scholar] [CrossRef]
- Salehi, A.; Tasdighi, H.; Gholamhoseini, M. Evaluation of proline, chlorophyll, soluble sugar content, and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. J. Trop. Biomed. 2016, 6, 886–891. [Google Scholar] [CrossRef] [Green Version]
- Ditta, A.; Imtiaz, M.; Mehmood, S.; Rizwan, M.S.; Mubeen, F.; Aziz, O.; Tu, S. Rock phosphate-enriched organic fertilizer with phosphate-solubilizing microorganisms improves nodulation, growth, and yield of legumes. Commun. Soil Sci. Plant Anal. 2018, 49, 2715–2725. [Google Scholar] [CrossRef]
- Ait Rahou, Y.; Douira, A.; Tahiri, A.I.; Cherkaoui, E.M.; Benkirane, R.; Meddich, A. Application of plant growth-promoting rhizobacteria combined with compost as a management strategy against Verticillium dahliae in tomato. Can. J. Plant Pathol. 2022, 1–22. [Google Scholar] [CrossRef]
- Sakya, A.T.; Purnomo, J.; Bima, D.A. Application of GA3 and PGPRs on growth and antioxidant content of Parijoto (Medinilla verrucosa) in peat soil. IOP Conf. Ser. Earth Environ. Sci. 2022, 1016, 012009. [Google Scholar] [CrossRef]
- Kaljeet, S.; Keyeo, F.; Amir, H.G. Influence of carrier materials and storage temperature on the survivability of rhizobial inoculant. Asian J. Plant Sci. 2011, 10, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Liu, X.; Mao, P.; Li, L.; Ma, J. Impact of biochar application on yield-scaled greenhouse gas intensity: A meta-analysis. Sci. Total Environ. 2019, 656, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Sashidhar, P.; Kochar, M.; Singh, B.; Gupta, M.; Cahill, D.; Adholeya, A.; Dubey, M. Biochar for delivery of agri-inputs: Current status and future perspectives. Sci. Total Environ. 2020, 703, 134892. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual, 2nd ed.; International Center for Agriculture in Dry Areas (ICARDA): Aleppo, Syria, 2001. [Google Scholar]
- Safdar, H.; Jamil, M.; Hussain, A.; Albalawi, B.F.A.; Ditta, A.; Dar, A.; Aimen, A.; Ahmad, H.T.; Nazir, Q.; Ahmad, M. The Effect of Different Carrier Materials on the Growth and Yield of Spinach under Pot and Field Experimental Conditions. Sustainability 2022, 14, 12255. [Google Scholar] [CrossRef]
- Zahir, Z.A.; Ahmad, M.; Hilger, T.H.; Dar, A.; Malik, S.R.; Abbas, G.; Rasche, F. Field evaluation of multistrain biofertilizer for improving the productivity of different mungbean genotypes. Soil Environ. 2018, 37, 45–52. [Google Scholar] [CrossRef]
- Lazcano-Ferrat, I.; Lovatt, C.J. Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifolius A. Gray during water deficit. Crop Sci. 1999, 39, 467–475. [Google Scholar] [CrossRef]
- Wolf, B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Champman, H.D.; Pratt, P.F. Methods of Analysis for Soil Plants and Water; University of California, Division of Agricultural Sciences: Davis, CA, USA, 1978; Volume 4034. [Google Scholar]
- Okalebo, J.R.; Gathua, K.W.; Woomer, P.L. Laboratory Methods of Soil and Plant Analysis: A Working Manual Second Edition; Sacred Africa: Nairobi, Kenya, 2022; Volume 21, pp. 25–26. [Google Scholar]
- Anderson, J.M.; Ingram, J.S.I. A Handbook of Methods; CAB International: Wallingford, UK, 1993; Volume 221, pp. 62–65. [Google Scholar]
- Alexander, M. Most-probable-number method for microbial populations. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 1965, 9, 1467–1472. [Google Scholar]
- Steel, D. Bayesian statistics in radiocarbon calibration. Philos. Sci. 2001, 68, S153–S164. [Google Scholar] [CrossRef]
- Rengalakshmi, R.; Prabavathy, V.R.; Jegan, S.; Selvamukilan, B. Building bioeconomy in agriculture: Harnessing soil microbes for sustaining ecosystem services. In Towards a Sustainable Bioeconomy: Principles, Challenges, and Perspectives; Springer: Cham, Switzerland, 2018; pp. 261–277. [Google Scholar]
- Majeed, A.; Muhammad, Z. Salinity: A major agricultural problem—Causes, impacts on crop productivity and management strategies. In Plant Abiotic Stress Tolerance; Springer: Cham, Switzerland, 2019; pp. 83–99. [Google Scholar]
- Hassan, T.U.; Bano, A. Role of carrier-based biofertilizer in the reclamation of saline soil and wheat growth. Arch. Agron. Soil Sci. 2015, 61, 1719–1731. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, B.; Shafi, M.; Ma, J.; Guo, J.; Wu, J.; Ye, Z.; Liu, D.; Jin, H. Effects of biochar on growth, and heavy metals accumulation of Moso bamboo (Phyllostachys pubescens), soil physical properties, and heavy metals solubility in soil. Chemosphere 2019, 219, 510–516. [Google Scholar] [CrossRef]
- Pacheco-Aguirre, J.A.; Ruíz-Sánchez, E.; Ballina-Gómez, H.S.; Alvarado-López, C.J. Does polymer-based encapsulation enhance the performance of plant growth-promoting microorganisms? A meta-analysis views. Agrociencia 2017, 51, 173–187. [Google Scholar]
- Shahzad, S.; Khan, M.Y.; Zahir, Z.A.; Asghar, H.N.; Chaudhry, U.K. Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt-affected field conditions. Pak. J. Bot. 2017, 49, 1523–1530. [Google Scholar]
- Khandare, R.N.; Chandra, R.; Pareek, N.; Raverkar, K.P. Carrier-based and liquid bioinoculants of Azotobacter and PSB saved chemical fertilizers in wheat (Triticum aestivum L.) and enhanced soil biological properties in Mollisols. J. Plant Nutr. 2020, 43, 36–50. [Google Scholar] [CrossRef]
- Espiritu, B.M. Use of compost with microbial inoculation in container media for mungbean (Vigna radiata L. Wilckzek) and pechay (Brassica napus L.). J. ISSAAS Int. Soc. Southeast Asian Agric. Sci. 2011, 17, 160–168. [Google Scholar]
- Albareda, M.; Rodríguez-Navarro, D.N.; Camacho, M.; Temprano, F.J. Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biol. Biochem. 2008, 40, 2771–2779. [Google Scholar] [CrossRef]
- Sangeetha, D.; Stella, D. Survival of plant growth promoting bacterial inoculants in different carrier materials. Int. J. Pharm. Biol. Arch. 2012, 3, 170–178. [Google Scholar]
- Vance, E.D.; Chapin, F.S. Substrate limitations to microbial activity in taiga forest floors. Soil Biol. Biochem. 2001, 33, 173–188. [Google Scholar] [CrossRef]
- Priyanka, M.; Koshy, E.P. Effect of vegetable and fruit waste on seed germination and growth of Solanum lycopersicum. Asian J. Bio Sci. 2016, 11, 1–5. [Google Scholar]
- Phiromtan, M.; Mala, T.; Srinives, P. Effect of various carriers and storage temperatures on survival of Azotobacter vinelandii NDD-CK-1 in powder inoculant. Mod. Appl. Sci. 2013, 7, 81. [Google Scholar] [CrossRef]
- Naheed, Z.; Ayyaz, A.; Rehman, A.; Khan, N.A.; Qayyum, S. Agronomic traits of Okra cultivars under agro-climatic conditions of Baffa (KPK), Pakistan. J. Mater. Environ. Sci. 2013, 4, 655–662. [Google Scholar]
- Choudhary, K.; More, S.J.; Bhanderi, D.R. Impact of biofertilizers and chemical fertilizers on growth and yield of okra (Abelmoschus esculentus L. Moench). Ecoscan 2015, 9, 67–70. [Google Scholar]
- Kumar, A.; Tinna, D.; Gandhi, N. Evaluation of biofertilizers and inorganic fertilizers on vegetative growth and yield of okra (Abelomoschus esculentus L. Moench). Eval. J. Pharmacogn. Phytochem. 2019, SP4, 91–94. [Google Scholar]
Analysis | Unit | Soil Sample |
---|---|---|
Textural class | Sandy Clay Loam | |
ECe | dS m–1 | 0.63 |
pH | 8.3 | |
Saturation Percentage | % | 34.0 |
Organic matter | % | 0.48 |
Phosphorus | mg kg−1 | 5.53 |
Potassium | mg kg−1 | 153.0 |
Nitrogen | % | 0.024 |
Treatment | Shoot Fresh Weight (g) | Root Fresh Weight (g) | Shoot Dry Weight (g) | Root Dry Weight (g) | Shoot Length (cm) | Root Length (cm) | Bacterial Population CFU × 104 g−1 Soil | Microbial Biomass C (mg/kg) |
---|---|---|---|---|---|---|---|---|
Control | 144.4 ± 0.188 g* | 20.4 ± 0.210 f | 71.5 ± 0.071 f | 10.3 ± 0.044 f | 56.7 ± 0.482 f | 5.20 ± 0.0957 d | 53.3 ± 0.2693 f | 577.7 ± 0.754 g |
PGPR | 149.8 ± 0.336 f | 21.4 ± 0.176 e | 82.3 ± 0.140 | 11.8 ± 0.064 de | 58.2 ± 0.092 e | 5.32 ± 0.1126 d | 58.7 ± 0.2693 e | 599.2 ± 1.345 f |
Peat + PGPR | 180.7 ± 0.336 a | 25.1 ± 0.026 a | 92.1 ± 0.046 a | 13.0 ± 0.003 a | 71.0 ± 0.247 a | 6.76 ± 0.1423 a | 64.3 ± 0.2693 a | 722.8 ± 1.345 a |
Pressmud + PGPR | 173.2 ± 0.123 c | 23.3 ± 0.123 c | 87.1 ± 0.046 c | 12.2 ± 0.046 c | 62.3 ± 0.56 c | 5.84 ± 0.1185 bc | 62.0 ± 0.4665 b | 692.8 ± 0.494 c |
Compost + PGPR | 177.2 ± 0.071 b | 24.2 ± 0.123 b | 89.1 ± 0.046 b | 12.6 ± 0.046 b | 63.9 ± 0.246 b | 6.01 ± 0.1368 b | 63.0 ± 0.466 b | 708.6 ± 0.285 b |
Charcoal + PGPR | 168.5 ± 0.22 e | 22.2 ± 0.071 d | 84.7 ± 0.499 d | 11.6 ± 0.047 d | 59.4 ± 0.474 de | 5.54 ± 0.0118 cd | 60.3 ± 0.269 d | 674.1 ± 0.882 e |
Biochar + PGPR | 169.8 ± 0.097 d | 22.6 ± 0.071 d | 85.3 ± 0.047 d | 11.9 ± 0.049 d | 60.4 ± 0.118 d | 5.78 ± 0.018 bc | 61.3 ± 0.269 cd | 679.8 ± 0.764 d |
LSD (p ≤ 0.05) | 0.6931 | 0.4834 | 0.7537 | 0.1737 | 1.3146 | 0.3561 | 1.2674 | 3.4393 |
Treatment | Microbial Biomass N (mg/kg) | Nitrogen in Roots (%) | Nitrogen in Shoots (%) | Potassium in Shoots (%) | Potassium in Roots (%) | Phosphorus in Shoot (%) | Phosphorus in Root (%) | Iron in Plant (mg/kg) | Zinc in Plant (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
Control | 2.28 ± 0.044 d* | 1.26 ± 0.021 e | 0.85 ± 0.017 d | 1.14 ± 0.006 d | 1.11 ± 0.006 d | 0.52 ± 0.005 c | 0.460 ± 0.005 e | 5.41 ± 0.174 e | 5.70 ± 0.109 e |
PGPR | 2.38 ± 0.005 c | 1.3 ± 0.005 e | 0.87 ± 0.016 cd | 1.20 ± 0.023 cd | 1.17 ± 0.023 cd | 0.526 ± 0.027 bc | 0.470 ± 0.005 de | 5.6 ± 0.009 e | 5.95 ± 0.0134 d |
Peat + PGPR | 2.81 ± 0.002 a | 1.4 ± 0.010 a | 1.00 ± 0.0001 a | 1.38 ± 0.0035 a | 1.34 ± 0.004 a | 0.596 ± 0.039 a | 0.540 ± 0.008 a | 6.36 ± 0.027 a | 7.02 ± 0.0046 a |
Press mud + PGPR | 2.56 ± 0.019 b | 1.39 ± 0.005 bc | 0.94 ± 0.021 b | 1.243 ± 0.029 bc | 1.21 ± 0.029 bc | 0.553 ± 0.007 bc | 0.496 ± 0.010 bc | 5.98 ± 0.008 bc | 6.40 ± 0.0466 b |
Compost + PGPR | 2.60 ± 0.019 b | 1.42 ± 0.009 b | 0.94 ± 0.021 b | 1.28 ± 0.016 b | 1.25 ± 0.016 b | 0.570 ± 0.0046 b | 0.509 ± 0.004 b | 6.01 ± 0.0008 b | 6.50 ± 0.0466 b |
Charcoal + PGPR | 2.41 ± 0.0119 c | 1.34 ± 0.0027 d | 0.90 ± 0.003 bc | 1.23 ± 0.022 bc | 1.20 ± 0.022 bc | 0.540 ± 0.009 bc | 0.484 ± 0.006 cd | 5.73 ± 0.0123 c | 6.03 ± 0.03 cd |
Biochar + PGPR | 2.48 ± 0.0018 c | 1.36 ± 0.017 cd | 0.93 ± 0.005 b | 1.21 ± 0.005 c | 1.18 ± 0.005 c | 0.543 ± 0.01 bc | 0.480 ± 0.005 c–e | 5.81 ± 0.015 d | 6.19 ± 0.0046 c |
LSD (p ≤ 0.05) | 0.0751 | 0.0422 | 0.0531 | 0.067 | 0.0663 | 0.0458 | 0.0234 | 0.2518 | 0.1879 |
Treatment | Nitrogen in Fruit (%) | Phosphorus in Fruit (%) | Potassium in Fruit (%) | Fruit Diameter (cm) | Okra Yield (g/pot) |
---|---|---|---|---|---|
Control | 1.72 ± 0.054 e* | 0.382 ± 0.0035 e | 1.24 ± 0.0057 d | 0.99 ± 0.0490 d | 8.83 ± 0.0971 d |
PGPR | 1.78 ± 0.0028 de | 0.39 ± 0.0046 de | 1.31 ± 0.0233 cd | 1.43 ± 0.0374 bc | 9.8 ± 0.1234 bc |
Peat + PGPR | 2.02 a ± 0.0087 a | 0.446 ± 0.0053 a | 1.46 ± 0.0061 a | 1.54 ± 0.0117 a | 10.6 ± 0.3703 a |
Pressmud + PGPR | 1.89 ± 0.0033 bc | 0.412 ± 0.0072 bc | 1.35 ± 0.0290 bc | 1.49 ± 0.0257 bc | 9.63 ± 0.2569 bc |
Compost + PGPR | 1.91 ± 0.001 b | 0.423 ± 0.0033 b | 1.38 ± 0.0159 b | 1.51 ± 0.0356 ab | 10.1 ± 0.2394 ab |
Charcoal + PGPR | 1.82 ± 0.0041 cd | 0.403 ± 0.0048 cd | 1.34 ± 0.0217 bc | 1.45 ± 0.0239 bc | 9.17 ± 0.0712 cd |
Biochar + PGPR | 1.86 ± 0.017 bc | 0.399 ± 0.0039 de | 1.32 ± 0.0046 bc | 1.38 ± 0.0097 c | 9.33 ± 0.0538 cd |
LSD (p ≤ 0.05) | 0.0813 | 0.0183 | 0.0667 | 0.1151 | 0.7241 |
Treatment | Shoot Fresh Weight (g) | Root Fresh Weight (g) | Shoot Dry Weight (g) | Root Dry Weight (g) | Shoot Length (cm) | Root Length (cm) | Bacterial Population CFU × 104 g−1 Soil | Microbial Biomass C (mg/kg) |
---|---|---|---|---|---|---|---|---|
Control | 288.7 ± 0.2693 g* | 49.5 ± 0.1942 e | 96.2 ± 0.0888 g | 24.7 ± 0.0971 f | 56.5 ± 0.2467 g | 6.60 ± 0.5165 c | 64.0 ± 0.4665 f | 577.5 ± 0.7629 f |
PGPR | 299.3 ± 0.5387 f | 53.3 ± 0.1425 d | 99.8 ± 0.1804 f | 26.7 ± 0.0712 e | 61.4 ± 0.1810 f | 7.30 ± 0.1007 bc | 68.0 ± 0.4665 e | 598.7 ± 1.5719 e |
Peat + PGPR | 361.4 ± 0.6729 a | 62.9 ± 0.4788 a | 120.5 ± 0.2258 a | 31.4 ± 0.2394 a | 70.4 ± 0.2467 a | 8.63 ± 0.1540 a | 78.0 ± 0.4665 a | 739.3 ± 3.3257 a |
Press mud + PGPR | 346.4 ± 0.2468 c | 59.1 ± 0.3885 c | 115.5 ± 0.0811 c | 29.5 ± 0.1942 c | 66.8 ± 0.1185 c | 7.56 ± 0.0246 b | 73.3 ± 0.2693 bc | 692.6 ± 0.4994 c |
Compost + PGPR | 354.3 ± 0.1425 b | 60.9 ± 0.1089 b | 118.1 ± 0.0473 b | 30.5 ± 0.0544 b | 68.7 ± 0.0684 b | 7.59 ± 0.0080 b | 75.0 ± 0.4665 b | 708.5 ± 0.2883 b |
Charcoal + PGPR | 337.1 ± 0.4409 e | 57.3 ± 0.9206 c | 112.4 ± 0.1464 e | 28.7 ± 0.4603 d | 64.3 ± 0.1185 e | 7.23 ± 0.0543 bc | 71.0 ± 0.4665 d | 673.9 ± 0.8921 d |
Biochar + PGPR | 339.7 ± 0.1942 d | 58.1 ± 0.6201 c | 113.2 ± 0.0653 d | 29.1 ± 0.310 cd | 65.9 ± 0.1810 d | 7.43 ± 0.0182 b | 72.3 ± 0.2693 cd | 679.6 ± 0.7726 d |
LSD (p ≤ 0.05) | 1.5074 | 1.6752 | 0.5036 | 0.9200 | 0.6654 | 0.7831 | 1.5756 | 5.5814 |
Treatment | Microbial Biomass N (mg/kg) | Nitrogen in Roots (%) | Nitrogen in Shoots (%) | Potassium in Shoots (%) | Potassium in Roots (%) | Phosphorus in Shoot (%) | Phosphorus in Root (%) | Iron in Shoot (mg/kg) | Zinc in Shoot (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
Control | 3.60 ± 0.0472 f* | 1.38 ± 0.0043 e | 1.11 ± 0.0264 d | 1.14 ± 0.0057 d | 1.16 ± 0.0057 d | 0.58 ± 0.0047 e | 0.44 ± 0.00 f | 6.87 ± 0.045 g | 0.36 ± 0.0072 e |
PGPR | 3.73 ± 0.0321 e | 1.47 ± 0.0047 d | 1.16 ± 0.0264 c | 1.20 ± 0.0236024 cd | 1.22 ± 0.024 cd | 0.59 ± 0.007 de | 0.44 ± 0.0072 f | 7.34 ± 0.014 f | 0.37 ± 0.0053 de |
Peat + PGPR | 4.36 ± 0.0094 a | 1.59 ± 0.0053 a | 1.31 ± 0.0007 a | 1.36 ± 0.0062 a | 1.38 ± 0.0062 a | 0.67 ± 0.0094 a | 0.50 ± 0.0014 a | 7.95 ± 0.010 a | 0.42 ± 0.0009 bc |
Press mud + PGPR | 4.16 ± 0.0072 c | 1.53 ± 0.0061 c | 1.25 ± 0.0143 b | 1.25 ± 0.0294 bc | 1.27 ± 0.029 bc | 0.64 ± 0.005 bc | 0.48 ± 0.005 bc | 7.74 ± 0.022 c | 0.39 ± 0.002 bc |
Compost + PGPR | 4.26 ± 0.0047 b | 1.55 ± 0.0041 b | 1.24 ± 0.0038 b | 1.28 ± 0.0161 b | 1.30 ± 0.0161 b | 0.64 ± 0.0024 b | 0.48 ± 0.0027 b | 7.83 ± 0.033 b | 0.40 ± 0.0045 b |
Charcoal + PGPR | 3.93 ± 0.0047 d | 1.48 ± 0.0058 d | 1.20 ± 0.0018 bc | 1.23 ± 0.022 bc | 1.25 ± 0.022 bc | 0.62 ± 0.005 cd | 0.460.003 cd | 7.48 ± 0.021 e | 0.38 ± 0.0049 cd |
Biochar + PGPR | 3.98 ± 0.0094 d | 1.52 ± 0.0034 c | 1.20 ± 0.0022 bc | 1.22 ± 0.005 bc | 1.24 ± 0.005 bc | 0.62 ± 0.007 bc | 0.46 ± 0.005 de | 7.59 ± 0.026 d | 0.38 ± 0.005 b–d |
LSD (p ≤ 0.05) | 0.0834 | 0.0183 | 0.0566 | 0.0667 | 0.0667 | 0.0229 | 0.0163 | 0.0990 | 0.0176 |
Treatment | Nitrogen in Fruit (%) | Phosphorus in Fruit (%) | Potassium in Fruit (%) | Fruit Diameter (cm) | Okra Yield (t/ha) |
---|---|---|---|---|---|
Control | 1.71 ± 0.0250 e* | 0.47 ± 0.0250 e | 1.25 ± 0.0018 d | 1.13 ± 0.0269 d | 1.21 ± 0.247 d |
PGPR | 1.77 ± 0.0028 d | 0.49 ± 0.0028 d | 1.26 ± 0.0030 d | 1.45 ± 0.0239 c | 1.32 ± 0.289 cd |
Peat + PGPR | 1.98 ± 0.0138 a | 0.54 ± 0.0138 a | 1.44 ± 0.0059 a | 1.61 ± 0.0093 a | 1.73 ± 0.393 a |
Press mud + PGPR | 1.86 ± 0.0241 bc | 0.51 ± 0.0241 bc | 1.38 ± 0.0204 b | 1.55 ± 0.0097 bc | 1.46 ± 0.422 bc |
Compost + PGPR | 1.89 ± 0.0098 b | 0.52 ± 0.0098 b | 1.39 ± 0.0089 b | 1.58 ± 0.0093 ab | 1.66 ± 0.297 ab |
Charcoal + PGPR | 1.81 ± 0.0041 cd | 0.50 ± 0.0041 cd | 1.30 ± 0.0056 c | 1.51 ± 0.0142 bc | 1.52 ± 0.504 a–c |
Biochar + PGPR | 1.83 ± 0.0086 cd | 0.49 ± 0.0086 cd | 1.31 ± 0.0019 c | 1.52 ± 0.0257 b | 1.5 ± 0.406 bc |
LSD (p ≤ 0.05) | 0.0561 | 0.0192 | 0.0338 | 0.0691 | 0.2171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perveen, R.; Hussain, A.; Ditta, A.; Dar, A.; Aimen, A.; Ahmad, M.; Alataway, A.; Dewidar, A.Z.; Mattar, M.A. Growth and Yield of Okra Exposed to a Consortium of Rhizobacteria with Different Organic Carriers under Controlled and Natural Field Conditions. Horticulturae 2023, 9, 8. https://doi.org/10.3390/horticulturae9010008
Perveen R, Hussain A, Ditta A, Dar A, Aimen A, Ahmad M, Alataway A, Dewidar AZ, Mattar MA. Growth and Yield of Okra Exposed to a Consortium of Rhizobacteria with Different Organic Carriers under Controlled and Natural Field Conditions. Horticulturae. 2023; 9(1):8. https://doi.org/10.3390/horticulturae9010008
Chicago/Turabian StylePerveen, Rabia, Azhar Hussain, Allah Ditta, Abubakar Dar, Ayesha Aimen, Maqshoof Ahmad, Abed Alataway, Ahmed Z. Dewidar, and Mohamed A. Mattar. 2023. "Growth and Yield of Okra Exposed to a Consortium of Rhizobacteria with Different Organic Carriers under Controlled and Natural Field Conditions" Horticulturae 9, no. 1: 8. https://doi.org/10.3390/horticulturae9010008
APA StylePerveen, R., Hussain, A., Ditta, A., Dar, A., Aimen, A., Ahmad, M., Alataway, A., Dewidar, A. Z., & Mattar, M. A. (2023). Growth and Yield of Okra Exposed to a Consortium of Rhizobacteria with Different Organic Carriers under Controlled and Natural Field Conditions. Horticulturae, 9(1), 8. https://doi.org/10.3390/horticulturae9010008