Pectin-Degrading Enzymes during Soursop (Annona muricata L.) Fruit Ripening: A Bioinformatics Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gene Identification and Phylogenetic Analysis
2.2. Differential Expression Analysis
2.3. Mapping to the Cherimoya (Annona cherimola) Genome
2.4. Functional Enrichment Analysis
2.5. Gene Co-Expression Networks
3. Results
3.1. Phylogenetic and Gene Differential Expression Analysis
3.2. Mapping into the Cherimoya Genome
3.3. Functional Enrichment Analysis
3.4. Gene Co-Expression Network
4. Discussion
4.1. PME and PMEis
4.2. PG
4.3. PL
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Available online: https//nube.siap.gob.mx/cierreagricola/ (accessed on 15 August 2023).
- Nayak, A.; Hegde, K. A comprehensive review on the miracle nature of Annona muricata. J. Pharm. Sci. 2021, 11, 1–18. [Google Scholar] [CrossRef]
- Dos Santos, R.S.; Arge, L.W.; Costa, S.I.; Machado, N.D.; de Mello-Farias, P.C.; Rombaldi, C.V.; de Oliveira, A.C. Genetic regulation and the impact of omics in fruit ripening. Plant Omics 2015, 8, 78–88. [Google Scholar]
- Omboki, R.B.; Wu, W.; Xie, X.; Mamadou, G. Ripening genetics of the tomato fruit. Int. J. Agric. Crop Sci. 2015, 8, 567–572. [Google Scholar]
- Zhang, Q.; Pu, T.; Wang, Y.; Bai, Y.; Suo, Y.; Fu, J. Genome-wide identification and expression analysis of the PME and PMEi gene families in Diospyros kaki: A bioinformatics study. Horticulture 2022, 8, 1159. [Google Scholar] [CrossRef]
- Philippe, F.; Pelloux, J.; Rayon, C. Plant pectin acetylesterase structure and function: New insights from bioinformatic analysis. BMC Genom. 2017, 18, 456. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Chan, A.; Jung, M.; Lee, Y. Recent advances in understanding the roles of pectin as an active participant in plant signaling networks. Plants 2021, 10, 1712. [Google Scholar] [CrossRef]
- Wen, B.; Zhang, F.; Wu, X.; Li, H. Characterization of the tomato (Solanum lycopersicum) pectin methylesterase: Evolution, activity of isoforms and expression during fruit ripening. Front. Plant Sci. 2020, 11, 238. [Google Scholar] [CrossRef]
- Huang, W.; Chen, M.; Zhao, T.; Han, F.; Zhang, Q.; Liu, X.; Jiang, C.; Zhong, C. Genome-wide identification and expression analysis of polygalacturonase gene family in kiwifruit (Actinidia chinensis) during fruit softening. Plants 2020, 9, 327. [Google Scholar] [CrossRef] [PubMed]
- Al Hinai, T.Z.S.; Vreeburg, C.L.M.; Murray, L.; Sadler, I.H.; Fry, S.C. Fruit softening: Evidence for pectate lyase action in vivo in date (Phoenix dactylifera) and rosaceous fruit cell walls. Ann. Bot. 2021, 128, 511–525. [Google Scholar] [CrossRef]
- Wormit, A.; Björn, U. The multifaceted role of pectin methylesterase inhibitors (PMEIs). Int. J. Mol. Sci. 2018, 19, 2878. [Google Scholar] [CrossRef]
- Bolívar-Fernández, N.; Saucedo-Veloz, C.; Solís-Pereira, S.; Sauri-Duch, E. Maduración de frutos de saramuyo (Annona squamosa L.) desarrollados en Yucatán, México. Agrociencia 2009, 43, 133–141. [Google Scholar]
- Liu, W.; Zhang, J.; Jiao, C.; Yin, X.; Fei, Z.; Wu, Q.; Chen, K. Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Fruit Hortic. Res. 2019, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Weijin, L.; Tao, Z.; Jundi, Z.; Jinxiang, L.; Changchung, Y.; Kaidong, L. Comparative transcriptomic analysis of Split and non-split atemoya (Annona cherimola Mill. × Annona squamosa L.) fruit to identify potential genes involved in the fruit splitting process. Sci. Direct 2019, 248, 216–224. [Google Scholar] [CrossRef]
- Palomino-Hermosillo, Y.A.; Berumen-Varela, G.; Ochoa-Jiménez, V.A.; Balois-Morales, R.; Jiménez-Zurita, J.O.; Bautista-Rosales, P.U.; Martínez-González, M.E.; López-Guzmán, G.G.; Cortés-Cruz, M.A.; Guzmán, L.F. Transcriptome analysis of soursop (Annona muricata L.) fruit under postharvest storage identifies genes families involved in ripening. Plants 2022, 11, 1798. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Jiménez, V.A.; Balois-Morales, R.; López-Guzmán, G.G.; Jiménez-Zurita, J.O.; Felipe-Guzmán, L.; Berumen-Varela, G. Changes in quality and gene transcript levels of soursop (Annona muricata L.) fruits during ripening. Mex. J. Biotechnol. 2023, 8, 1–16. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A. IQ-TREE: A fast effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, 256–259. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analysis of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Talavera, A.; Fernández-Pozo, N.; Matas, A.J.; Hormaza, J.I.; Bombarely, A. Genomics in neglected and underutilized fruits crops: A chromosome-scale genome sequence of cherimoya (Annona cherimola). Plants People Planet 2023, 5, 408–423. [Google Scholar] [CrossRef]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleics Acids Res. 2008, 36, 3421–3435. [Google Scholar] [CrossRef]
- Louvet, R.; Cavel, E.; Gutiérrez, L.; Guénin, S.; Roge, D.; Gillet, F.; Guerineau, F.; Pelloux, J. Comprehensive expression profiling of the pectin methylesterase gene family during silique development in Arabidopsis thaliana. Planta 2006, 224, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, Y.; Wang, S.; Zhang, Q.; Yang, S. Genome-wide identification of PME genes, evolution and expression analyses in soybean (Glycine max L.). BMC Plant Biol. 2021, 21, 578. [Google Scholar] [CrossRef]
- Li, Z.X.; Wu, L.M.; Wang, C.; Wang, Y.; He, L.G.; Wang, Z.J.; Ma, X.F.; Bai, F.X.; Feng, G.Z.; Liu, J.H. Characterization of pectin methylesterase gene family and its possible role in juice sac granulation in navel orange (Citrus sinensis Obsbeck). BMC Genome 2022, 23, 185. [Google Scholar] [CrossRef]
- Tang, G.; Chen, G.; Ke, J.; Wang, J.; Zhang, D.; Liu, D.; Huang, J.; Zeng, S.; Liao, M.; Wei, X.; et al. The Annona montana genome reveals the development and flavor formation in mountain soursop fruit. Ornam. Plant Res. 2023, 3, 14. [Google Scholar] [CrossRef]
- Verma, C.; Mani-Tiwari, A.M.; Mishra, S. Biochemical and molecular characterization of cell wall degrading enzyme, pectin methylesterase versus banana ripening: An overview. Asian J. Biotechnol. 2017, 9, 1–23. [Google Scholar] [CrossRef]
- Müller, K.; Levesque, T.G.; Fernandes, A.; Wormit, A.; Bartels, S.; Usadel, B.; Kermode, A. Overexpression of a pectin methylesterase inhibitors in Arabidopsis thaliana leads to altered growth morphology of the stem and defective organ separation. Plant Signal. Behav. 2013, 8, e26464. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, C.; Li, Q.H.; Qiao, X.; Li, X.; Cai, Y.L.; Wang, P.; Sun, Y.Y.; Zhang, H.; Zhang, S.L. Characterization of the pectin methylesterase inhibitor gene family in Rosaceae and role of PbrPMEI23/39/41 in methylesterified pectin distribution in pear pollen tube. Planta 2021, 253, 118. [Google Scholar] [CrossRef]
- Lionetti, V.; Raiola, A.; Mattei, B.; Bellincampi, D. The grapevine VvPMEI1 gene encodes a novel functional pectin methylesterase inhibitor associated to grape berry development. PLoS ONE 2015, 10, e0133810. [Google Scholar] [CrossRef]
- Martínez-González, M.E.; Balois-Morales, R.; Alia-Tejacal, I.; Cortes-Cruz, M.A.; Palomino-Hermosillo, Y.A.; López-Guzmán, G. Postharvest fruits: Maturation, softening and transcriptional control. Rev. Mex. Cienc. Agríc. 2017, 8, 4089–4101. [Google Scholar] [CrossRef]
- Desphande, A.B.; Anamika, K.; Jha, V.; Chidley, H.G.; Oak, P.S.; Kadoo, N.Y.; Pujari, K.H.; Giri, A.P.; Gupta, V.S. Transcriptional transitions in Alphonso mango (Mangifera indica L.) during fruit development and ripening explain its distinct aroma and shelf-life characteristics. Sci. Rep. 2017, 7, 8711. [Google Scholar] [CrossRef]
- Zhai, Z.; Feng, G.; Wang, Y.; Sun, Y.; Peng, X.; Xiao, Y.; Zhang, X.; Jiao, J.; Wang, W.; Du, B.; et al. Genome-wide identification of xyloglucan endotransglucosylasa/hydrolase (XHT) and polygalacturonase (PG) genes and characterization of their role in fruit softening of sweet cherry. Int. J. Mol. Sci. 2021, 22, 12331. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Hou, Q.; Wang, L.; Zhang, T.; Zhao, W.; Yan, T.; Zhao, L.; Li, J.; Wan, X. Genome-wide identification and characterization of polygalacturonase gene family in maize (Zea mays L.). Int. J. Mol. Sci. 2021, 22, 10722. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yeats, T.H.; Uluisik, S.; Rose, J.K.; Seymour, G.B. Fruit softening: Revisiting the role of pectin. Trends Plant Sci. 2018, 23, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Zurita, J.O.; Balois-Morales, R.; López-Guzmán, G.G.; Palomino-Hermosillo, Y.A.; Bautista-Rosales, P.U. Guanay-1, Guanay-2 y Guanay-3: Nuevas variedades de guanábana para Nayarit. Rev. Mex. Cienc. Agríc. 2023, 14, 641–646. [Google Scholar] [CrossRef]
GO ID | GO Annotation | Corrected p-Value |
---|---|---|
GO:0042545 | Cell wall modification | 9.77 × 10−39 |
GO:0071555 | Cell wall organization | 9.65 × 10−37 |
GO:0071554 | Cell wall organization or biogenesis | 7.18 × 10−34 |
GO:0005975 | Carbohydrate metabolic process | 2.64 × 10−11 |
GO:0004857 | Enzyme inhibitor activity | 3.19 × 10−23 |
GO:0030234 | Enzyme regulator activity | 3.24 × 10−18 |
GO:0004650 | Polygalacturonase activity | 7.75 × 10−38 |
GO:0030599 | Pectinesterase activity | 2.63 × 10−39 |
GO:0030312 | External encapsulating structure | 3.78 × 10−37 |
GO:0005618 | Cell wall | 9.77 × 10−39 |
Biological process | |
Cell wall organization or biogenesis GO:0071554 | PME02, PME03, PME32, PME31, PME08, PME30, PME35, PME28, PME07, PME06, PME21, PMEi17, PME04, and PMEi05 |
Cell wall organization GO:0071555 | |
Cell wall organization or biogenesis GO:0071554 | PME02, PME03, PME32, PME31, PME08, PME30, PME35, PME28, PME07, PME14, PME17, PME19, PME15, PME26, PME27, PME13, PME20, and PME01 |
Molecular function | |
Carbohydrate metabolic process GO:0005975 | PG52, PG48, PG44, PG38, PG19, PG02, PG23, PG22, PG39, PG30, PG31, PG16, PG27, PG33, PG28, PG15, PG23, PG35, PG32, PG34, PG20, PG21, and PG51 |
Enzyme inhibitor activity GO:0004857 | PMEi01, PMEi13, PMEi32, PMEi38, PMEi39, PMEi17, PMEi14, PMEi22, PME28, PMEi06, PME19, PMEi04, PMEi03, PMEi29, PMEi05, and PMEi21 |
Enzyme regulator activity GO:0030234 | PMEi01, PMEi13, PMEi32, PMEi29, PMEi17, PMEi05, and PMEi21 |
Polygalacturonase activity GO:0004650 | PG52, PG44, PG38, PG19, PG02, PG23, PG22, PG39, PG30, PG31, PG16, PG27, PG33, PG28, PG15, PG26, PG35, PG32, PG34, PG20, PG21, PG51 |
Pectinesterase activity GO:0030599 | PME02, PME03, PME32, PME31, PME08, PME30, PME35, PME28, PME07, PME14, PME17, PME19, PME15, PME26, PME27, PME13, PME20, PME01, PME06, PME21, PMEi17, and PME04 |
Cellular component | |
External encapsulating structure GO:0030312 | PME02, PME03, PME32, PME31, PME08, PME30, PME35, PME28, PME07, PME14, PME17, PME19, PME15, PME26, PME27, PME13, PME20, PME01, PME06, PME21, PMEi17, PME04, and PMEi05 |
Cell wall GO:0005618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Rincón, L.A.; Balois-Morales, R.; Bautista-Rosales, P.U.; Ochoa-Jiménez, V.A.; Bello-Lara, J.E.; Berumen-Varela, G. Pectin-Degrading Enzymes during Soursop (Annona muricata L.) Fruit Ripening: A Bioinformatics Approach. Horticulturae 2023, 9, 1150. https://doi.org/10.3390/horticulturae9101150
Díaz-Rincón LA, Balois-Morales R, Bautista-Rosales PU, Ochoa-Jiménez VA, Bello-Lara JE, Berumen-Varela G. Pectin-Degrading Enzymes during Soursop (Annona muricata L.) Fruit Ripening: A Bioinformatics Approach. Horticulturae. 2023; 9(10):1150. https://doi.org/10.3390/horticulturae9101150
Chicago/Turabian StyleDíaz-Rincón, Lilia Aurora, Rosendo Balois-Morales, Pedro Ulises Bautista-Rosales, Verónica Alhelí Ochoa-Jiménez, Juan Esteban Bello-Lara, and Guillermo Berumen-Varela. 2023. "Pectin-Degrading Enzymes during Soursop (Annona muricata L.) Fruit Ripening: A Bioinformatics Approach" Horticulturae 9, no. 10: 1150. https://doi.org/10.3390/horticulturae9101150
APA StyleDíaz-Rincón, L. A., Balois-Morales, R., Bautista-Rosales, P. U., Ochoa-Jiménez, V. A., Bello-Lara, J. E., & Berumen-Varela, G. (2023). Pectin-Degrading Enzymes during Soursop (Annona muricata L.) Fruit Ripening: A Bioinformatics Approach. Horticulturae, 9(10), 1150. https://doi.org/10.3390/horticulturae9101150