Effect of Organic Additives on the Micropropagation of Asparagus officinalis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Explant Preparation
2.2. Preparation of Organic Additives and Culture Medium
2.3. Effect of Organic Additives on Shoot Proliferation
2.4. Effect of Coconut Water on Root Proliferation
2.5. Ex Vitro Acclimatization of the A. officinalis Plantlets
2.6. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Effect of Organic Additives on Shoot Proliferation
3.2. Effect of Coconut Water on Root Proliferation
3.3. Ex Vitro Acclimatization of In Vitro Regenerated A. officinalis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kubota, S.; Konno, I.; Kanno, A. Molecular phylogeny of the genus Asparagus (Asparagaceae) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor. Appl. Genet. 2012, 124, 345–354. [Google Scholar] [CrossRef]
- Kubituki, K.; Rudall, P.J. Asparagaceae. In The Families and Genera of Vascular Plants; Kubituki, K., Ed.; Springer: Berlin/Heidenberg, Germany, 1998; pp. 125–128. [Google Scholar]
- Esmaeili, A.K.; Taha, R.M.; Mohajer, S.; Banisalam, B. In vitro regeneration and comparison of phenolic content, antioxidant and antityrosinase activity of in vivo and in vitro grown Asparagus offinalis. Sains Malays. 2016, 45, 373–381. [Google Scholar]
- Encina, C.L.; Regalado, J.J. Aspects of in vitro plant tissue culture and breeding of asparagus: A review. Horticulturae 2022, 8, 439. [Google Scholar] [CrossRef]
- Shimoyamada, M.; Suzuki, M.; Sonta, H.; Maruyama, M.; Okubo, K. Antifungal activity of the saponin fraction obtained from Asparagus officinalis L. and its active principle. Agric. Biol. Chem. 1990, 54, 2553–2557. [Google Scholar] [CrossRef]
- Terada, K.; Honda, C.; Suwa, K.; Takeyama, S.; Oku, H.; Kamisako, W. Acetylenic compounds isolated from cultured cells of Asparagus officinalis. Chem. Pharm. Bull. 1995, 43, 564–566. [Google Scholar] [CrossRef]
- Makoto, S.; Masayuki, S.; Makiko, M.; Watanabe, K. An antifungal saponin from white asparagus (Asparagus officinalis L.) bottoms. J. Sci. Food. Agric. 1996, 72, 430–434. [Google Scholar]
- Shao, Y.; Poobrasert, O.; Kennelly, E.J.; Chin, C.K.; Ho, C.T.; Huang, M.T.; Garrison, S.A.; Cordell, G.A. Steroidal saponins from Asparagus officinalis and their cytotoxic activity. Planta. Med. 1997, 63, 258–262. [Google Scholar] [CrossRef]
- Jang, D.S.; Cuendet, M.; Fong, H.H.; Pezzuto, J.M.; Kinghorn, A.D. Constituents of Asparagus officinalis evaluated for inhibitory activity against cyclooxygenase-2. J. Agric. Food Chem. 2004, 52, 2218–2222. [Google Scholar] [CrossRef]
- Negi, J.S.; Singh, P.; Joshi, G.P.; Rawat, M.S.; Bisht, V.K. Chemical constituents of Asparagus. Pharmacogn. Rev. 2010, 4, 215–220. [Google Scholar]
- Bousserouel, S.; Grandois, J.; Gosse, F.; Werner, D.; Barth, S.W.; Marchioni, E.; Marescaux, J.; Raul, F.A. Methanolic extract of white asparagus shoots activates trail apoptotic death pathway in human cancer cells and inhibits colon carcinogenesis in a preclinical model. Int. J. Oncol. 2013, 43, 394–404. [Google Scholar] [CrossRef]
- Statista. Global Leading Asparagus Producing Countries in 2021. Available online: https://www.statista.com/statistics/279556/global-top-asparagus-producing-countries/ (accessed on 6 January 2023).
- Corpas-Hervias, C.; Melero-Vara, J.M.; Molinero-Ruiz, M.L.; Zurera-Munoz, C.; Basallote-Ureba, M.J. Characterization of isolates of Fusarium spp. obtained from asparagus in Spain. Plant Dis. 2006, 90, 1441–1451. [Google Scholar] [CrossRef]
- Rasad, F.M.; Hasbullah, N.A.; Azis, N.A.; Daud, N.F.; Lassim, M.M. Micropropagation of Asparagus officinalis L. (garden asparagus) in vitro. Int. J. Life Sci. Res. 2019, 7, 123–129. [Google Scholar]
- Maung, M.; Myint, K.T.; Thu, M.K. Effects of different explant types, plant growth regulators and shoot density on in vitro regeneration of asparagus (Asparagus officinalis L.). J. Agric. Res. 2019, 6, 109–115. [Google Scholar]
- Minh, L.N.; Nhat, T.N.T.; Diem, S.L.H.; Mironov, A.; Vorobyev, M.; Orlova, E. Micropropagation of Asparagus officinalis L. through callus development. Bio. Web Conf. 2022, 47, 04001. [Google Scholar]
- Häkkinen, S.T.; Nygren, H.; Nohynek, L.; Pimiä, R.P.; Heiniö, R.L.; Maiorova, N.; Rischer, H.; Ritala, A. Plant cell cultures as food-Aspects of sustainability and safety. Plant Cell Rep. 2020, 39, 1655–1668. [Google Scholar] [CrossRef]
- Hamdeni, I.; Louhaichi, M.; Slim, S.; Boulila, A.; Bettaieb, T. Incorporation of organic growth additives to enhance in vitro tissue culture for producing genetically stable plants. Plants 2022, 11, 3087. [Google Scholar] [CrossRef]
- Khorsha, S.; Alizadeh, M.; Mashayekhi, K. The usefulness of apricot gum as an organic additive in grapevine tissue culture media. Adv. Hortic. Sci. 2016, 30, 111–118. [Google Scholar]
- Thejaswini, R.; Narasimhan, S. Undefined organic additives stimulate in vitro seed germination of Dendrobium ovatum (willd.) Kraenzl, a medicinal orchid. Int. J. Pharma. Med. Biol. Sci. 2017, 6, 29–31. [Google Scholar] [CrossRef]
- Hartati, S.; Arniputri, R.B.; Soliah, L.A.; Cahyono, O. Effects of organic additives and naphthalene acetic acid (NAA) application on the in vitro growth of black orchid hybrid (Coelogyne pandurata Lindley). Bulg. J. Agric. Sci. 2017, 23, 951–957. [Google Scholar]
- Samala, S.; Thipwong, J. Influences of organic additives on asymbiotic seed germination of Dendrobium cruentum Rchb. F. for in vitro micropropagation. Trends Sci. 2022, 19, 4181. [Google Scholar] [CrossRef]
- Wu, K.; Zeng, S.; Lin, D.; Teixeira da Silva, J.A.; Bu, Z.; Zhang, J.; Duan, J. In vitro propagation and reintroduction of the endangered Renanthera imschootiama Rolfe. PLoS ONE 2014, 9, e110033. [Google Scholar]
- Selakorn, O.; Phasinam, K.; Kassanuk, T.; Sutaphan, S. Influence of organic additives on multiple shoot formation of Musa (AA group) ‘Kluai Nam Thai’ in vitro. Rajabhat J. Sci. Humanit. Soc. Sci. 2020, 21, 347–353. [Google Scholar]
- Sosnowski, J.; Truba, M.; Vasileva, V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture 2023, 13, 724. [Google Scholar] [CrossRef]
- Yong, J.W.H.; Ge, L.; Ng, Y.F.; Tan, S.N. Chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules 2009, 14, 5144–5164. [Google Scholar] [CrossRef] [PubMed]
- Manawadu, I.; Dahanayake, N.; Senanayake, S.G.N. Effects of different natural organic additives on in vitro shoot regeneration of Raphanus sativa L. var. beeralu. J. Agric. Sci. Technol. 2014, 4, 219–223. [Google Scholar]
- Maharjan, S.; Thakuri, L.S.; Thapa, B.B.; Pradhan, S.; Pant, K.K.; Joshi, G.P.; Pant, B. In vitro propagation of the endangered orchid Dendrobium chryseum Rolfe from protocorms culture. Nepal. J. Sci. Technol. 2020, 19, 39–47. [Google Scholar] [CrossRef]
- Khatun, M.; Roy, P.K.; Razzak, M.A. Additive effect of coconut water with various hormones on in vitro regeneration of carnation (Dianthus caryophyllus L.). J. Anim. Plant Sci. 2018, 28, 589–596. [Google Scholar]
- Ng, Z.C.; Tan, S.H.; Shiekh Mahmud, S.H.R.; Ma, N.L. Preliminary study on micropropagation of Hylocereus polyrhizus with waste coconut water and sucrose. Mater. Sci. Forum. 2020, 981, 316–321. [Google Scholar] [CrossRef]
- Nilanthi, D.; Yang, Y.S. Effects of sucrose and other additives on in vitro growth and development of purple coneflower (Echinacea purpurea L.). Adv. Biol. 2014, 2014, 402309. [Google Scholar] [CrossRef]
- Rohmah, K.N.; Taratima, W. Effect of chitosan, coconut water and potato extract on protocorm growth and plantlet regeneration of Cymbidium aloifolium (L.) Sw. Curr. Appl. Sci. Technol. 2022, 22, 1–10. [Google Scholar]
- Anhwange, B.A.; Ugye, T.J.; Nyiaatagher, T.D. Chemicals composition of Musa sapientum (banana) peels. Electron. J. Environ. Agric. Food Chem. 2009, 8, 437–442. [Google Scholar]
- Fernando, H.R.P.; Srilaong, V.; Pongprasert, N.; Boonyaritthongchai, P.; Jitareerat, P. Changes in antioxidant properties and chemical composition during ripening in banana variety ‘Hom Thong’ (AAA group) and ‘Khai’ (AA group). Int. Food Res. J. 2014, 21, 749–754. [Google Scholar]
- Ssamula, A.; Arinaitwe, G.; Mukasa, S.B. Banana juice as an alternative energy source for banana in vitro growth medium. Afr. Crop Sci. J. 2015, 23, 59–66. [Google Scholar]
- Daud, N.; Taha, R.M.; Noor, N.N.M.; Alimon, H. Effects of different organic additives on in vitro shoot regeneration of Celosia sp. Pak. J. Biol. Sci. 2011, 14, 546–551. [Google Scholar] [CrossRef]
- Aktar, S.; Nasiruddin, K.M.; Hossain, K. Effects of different media and organic additives interaction on in vitro regeneration of Dendrobium orchid. J. Agric. Rural Dev. 2008, 6, 69–74. [Google Scholar] [CrossRef]
- Gansau, J.A.; Indan, H.; Abdullah, S.N.; David, D.; Marbawi, H.; Jawan, R. Effects of organic additives and plant growth regulators on protocorm development of Dendrobium lowii. Trans. Sci. Technol. 2016, 3, 462–468. [Google Scholar]
- De Stefano, D.; Costa, B.N.S.; Downing, J.; Fallahi, E.; Khoddamzadeh, A.A. In vitro micropropagation and acclimatization of an endangered native orchid using organic supplements. Am. J. Plant Sci. 2022, 13, 380–395. [Google Scholar] [CrossRef]
- Islam, M.O.; Islam, M.S.; Saleh, M.A. Effect of banana extract on growth and development of protocorm like bodies in Dendrobium sp. orchid. Agriculturists 2015, 13, 101–108. [Google Scholar] [CrossRef]
- Bartova, V.; Barta, J. Chemical composition and nutritional value of protein concentrates isolated from potato (Solanum tiberosum L.) fruit juice by precipitation with ethanol or ferric chloride. J. Agri. Food Chem. 2009, 57, 9028–9034. [Google Scholar] [CrossRef]
- Molnar, Z.; Virag, E.; Ordog, V. Natural substances in tissue culture media of higher plants. Acta. Biol. Szeged. 2011, 55, 123–127. [Google Scholar]
- Ouyang, J.W.; Liang, H.; Zhang, C.; Zhao, T.H.; Jia, S.E. The effect of potato extract used as additive in anther culture medium on culture responses in Triticum aestivum. Cereal Res. Commun. 2004, 32, 501–508. [Google Scholar] [CrossRef]
- Islam, M.O.; Akter, M.; Prodhan, A.K.M.A. Effect of potato extract on in vitro seed germination and seedling growth of local Vanda roxburgii orchid. J. Bangladesh Agric. Univ. 2011, 9, 211–215. [Google Scholar] [CrossRef]
- Aishwarya, P.P.; Seenivasan, N.; Naik, D.S. Coconut water as a root hormone: Biological and chemical composition and applications. Pharma Innov. J. 2022, 11, 1678–1681. [Google Scholar]
- Asma, N.; Kashif, A.; Saifullah, K. Optimized and improved method for the in vitro propagation of kiwifruit using coconut water. Pak. J. Bot. 2007, 40, 2355–2360. [Google Scholar]
- Ogatis, R.A. A comparative evaluation of coconut water as root setting medium for Rhizopora stylosa hypocotyl propagation. Int. J. Sci. Res. 2016, 5, 2061–2063. [Google Scholar]
- Akhiriana, E.; Samanhudi; Yunus, A. Coconut water and IAA effect on the in vitro growth of Tribulus terrestris L. Acta Univ. Agric. Silvic. Mendelianae Brun. 2019, 67, 9–18. [Google Scholar] [CrossRef]
- Mardhikasari, S.; Yunus, A.; Samanhudi, S. Modification of media for banana in vitro propagation with foliar fertilizer and coconut water in cv. Rajabulu. Caraka Tani J. Sustain. Agric. 2020, 35, 23–32. [Google Scholar] [CrossRef]
- Sreekumar, S.; Mukunthakumar, S.; Seeni, S. Morphogenetic response of six Philodendron cultivars in vitro. Indian J. Exp. Biol. 2001, 39, 1280–1287. [Google Scholar] [PubMed]
- Desjardins, Y.; Tiessen, H.; Harney, P.M. The effect of sucrose and ancymidol on the in vitro rooting of nodal sections of asparagus. HortScience 1987, 22, 131–133. [Google Scholar] [CrossRef]
- Shigeta, J.; Sato, K.; Tanaka, S.; Nakayama, M.; Mii, M. Efficient plant regeneration of asparagus by inducing normal roots from in vitro multiplied shoot explants using gellan gum and glucose. Plant Sci. 1996, 113, 99–104. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Fajerska, E.H.; Grabski, K.; Tukaj, Z. Promoting effects of organic medium supplements on the micropropagation of promising ornamental Daphne species (Thymelaeaceae). In Vitro Cell. Dev. Biol. Plant. 2013, 49, 51–59. [Google Scholar] [CrossRef]
- Chen, F.C.; Wang, C.Y.; Fang, J.Y. Micropropagation of self-heading Philodendron via direct shoot regeneration. Sci. Hortic. 2012, 141, 23–29. [Google Scholar] [CrossRef]
- Hassan, H.M.S.; Ali, M.A.M.; Soliman, D.A. Effect of low cost gelling agents and some growth regulators on micropropagation of Philodendron selloum. J. Plant Prod. 2016, 7, 169–176. [Google Scholar] [CrossRef]
- Alawaadh, A.A.; Dewir, Y.H.; Alwihibi, M.S.; Aldubai, A.A.; El-Hendawy, S.; Naidoo, Y. Micropropagation of lacy tree Philodendron (Philodendron bipinnatifidum Schott ex Endl.). HortScience 2020, 55, 294–299. [Google Scholar] [CrossRef]
- Hoang, N.N.; Kitaya, Y.; Shibuya, T.; Endo, R. Effects of supporting materials in in vitro acclimatization stage on ex vitro growth of wasabi plants. Sci. Hortic. 2020, 261, 109042. [Google Scholar] [CrossRef]
- Choi, J.M.; Chung, H.J.; Choi, J.S. Physico-chemical properties of organic and inorganic materials used as container media. Hortic. Sci. Technol. 2000, 18, 529–535. [Google Scholar]
- Oh, M.M.; Seo, J.H.; Park, J.S.; Son, J.E. Physicochemical properties of mixtures of inorganic supporting materials affect growth of potato (Solanum tuberosum L.) plantlets cultured photoautotrophically in a nutrient-circulated micropropagation system. Hortic. Environ. Biotechnol. 2012, 53, 497–504. [Google Scholar] [CrossRef]
- Agampodi, V.A.; Jayawardena, B. Effect of coconut (Cocos nucifera L.) water extracts on adventitious root development in vegetative propagation of Dracaena purplecompacta L. Acta Physiol. Plant. 2009, 31, 279–284. [Google Scholar] [CrossRef]
Medium | Number of Shoots (Shoots/Explant) | Shoot Length (cm) |
---|---|---|
MS (control) | 1.50 c | 2.19 e |
MS + 0.05 mg/L NAA + 1.0 mg/L kinetin | 2.60 b | 3.70 d |
MS + 0.05 mg/L NAA + 5% (v/v) CW | 2.60 b | 5.76 c |
MS + 0.05 mg/L NAA + 10% (v/v) CW | 3.40 a | 6.53 b |
MS + 0.05 mg/L NAA + 15% (v/v) CW | 4.00 a | 7.25 a |
MS + 0.05 mg/L NAA + 20% (v/v) CW | 4.10 a | 7.26 a |
Medium | Number of Shoots (Shoots/Explant) | Shoot Length (cm) |
---|---|---|
MS (control) | 1.60 bc | 2.16 c |
MS + 0.05 mg/L NAA + 1.0 mg/L kinetin | 2.70 a | 3.69 a |
MS + 0.05 mg/L NAA + 5% (w/v) BH | 2.00 b | 3.08 a |
MS + 0.05 mg/L NAA + 10% (w/v) BH | 1.30 c | 1.55 d |
MS + 0.05 mg/L NAA + 15% (w/v) BH | 0.60 d | 0.31 e |
MS + 0.05 mg/L NAA + 20% (w/v) BH | 0.20 d | 0.06 e |
Medium | Number of Shoots (Shoots/Explant) | Shoot Length (cm) |
---|---|---|
MS (control) | 1.60 c | 2.17 e |
MS + 0.05 mg/L NAA + 1.0 mg/L kinetin | 2.50 b | 3.67 d |
MS + 0.05 mg/L NAA + 5% (w/v) PH | 2.70 b | 5.27 c |
MS + 0.05 mg/L NAA + 10% (w/v) PH | 4.00 a | 7.22 a |
MS + 0.05 mg/L NAA + 15% (w/v) PH | 3.80 a | 6.23 b |
MS + 0.05 mg/L NAA + 20% (w/v) PH | 3.70 a | 6.29 b |
Medium | Number of Roots (Roots/Explant) | Root Length (cm) |
---|---|---|
MS (control) | 2.50 ab | 1.55 c |
MS + 0.35 mg/L NAA + 0.05 mg/L kinetin | 3.10 a | 1.33 c |
MS + 5% (v/v) CW | 1.80 c | 4.54 b |
MS + 10% (v/v) CW | 2.30 bc | 4.88 b |
MS + 15% (v/v) CW | 2.60 ab | 5.35 a |
MS + 20% (v/v) CW | 3.20 a | 5.50 a |
In Vitro Plantlet from the Medium | Number of Shoots (Shoots/Plantlet) | Shoot Length (cm) | Number of Roots (Roots/Explant) | Root Length (cm) |
---|---|---|---|---|
MS (control) | 2.30 c | 11.15 c | 2.90 d | 2.74 b |
MS + 0.35 mg/L NAA + 0.05 mg/L kinetin | 6.30 a | 9.23 e | 4.10 bc | 2.27 c |
MS + 5% (v/v) CW | 4.80 b | 10.62 d | 3.70 c | 5.73 a |
MS + 10% (v/v) CW | 5.80 a | 11.66 b | 4.50 ab | 5.75 a |
MS + 15% (v/v) CW | 6.50 a | 12.56 a | 4.70 ab | 5.92 a |
MS + 20% (v/v) CW | 6.60 a | 12.79 a | 4.80 a | 6.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klanrit, P.; Lila, K.; Netsawang, P.; Siangsanor, P.; Thanonkeo, P.; Thanonkeo, S. Effect of Organic Additives on the Micropropagation of Asparagus officinalis. Horticulturae 2023, 9, 1244. https://doi.org/10.3390/horticulturae9111244
Klanrit P, Lila K, Netsawang P, Siangsanor P, Thanonkeo P, Thanonkeo S. Effect of Organic Additives on the Micropropagation of Asparagus officinalis. Horticulturae. 2023; 9(11):1244. https://doi.org/10.3390/horticulturae9111244
Chicago/Turabian StyleKlanrit, Preekamol, Khanittha Lila, Paramaporn Netsawang, Phakamas Siangsanor, Pornthap Thanonkeo, and Sudarat Thanonkeo. 2023. "Effect of Organic Additives on the Micropropagation of Asparagus officinalis" Horticulturae 9, no. 11: 1244. https://doi.org/10.3390/horticulturae9111244
APA StyleKlanrit, P., Lila, K., Netsawang, P., Siangsanor, P., Thanonkeo, P., & Thanonkeo, S. (2023). Effect of Organic Additives on the Micropropagation of Asparagus officinalis. Horticulturae, 9(11), 1244. https://doi.org/10.3390/horticulturae9111244