Positive Changes in Fruit Quality, Leaf Antioxidant Defense System, and Soil Fertility of Beni-Madonna Tangor Citrus (Citrus nanko × C. amakusa) after Field AMF Inoculation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Experimental Design
2.3. Determination of Root Mycorrhizal Colonization and Soil Hyphal Length
2.4. Determination of Soil Nutrient Levels
2.5. Determination of Fruit Quality
2.6. Determination of Leaf Physiological Parameters
2.7. Statistical Analysis
3. Results
3.1. Root AMF Colonization and Soil Hyphal Length
3.2. External Quality of Fruits
3.3. Internal Quality of Fruits
3.4. Leaf Chlorophyll Index, Flavonoid Index, and Nitrogen Balance Index
3.5. Leaf Antioxidant Enzyme Activities and Antioxidant Concentrations
3.6. Leaf H2O2, O2•−, and MDA levels
3.7. Soil Nutrient Levels and Aggregate Stability
3.8. Correlation Analysis
4. Discussion
4.1. Effects of AMF on Soil Nutrient Levels and Aggregte Stability
4.2. Effects of AMF on Fruit Quality
4.3. Effects of AMF on Leaf Antioxidant Defense Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, A.E.; Groten, K. The costs and benefits of plant–arbuscular mycorrhizal fungal interactions. Ann. Rev. Plant Biol. 2022, 73, 649–672. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.N.; Wu, Q.S.; Kuča, K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. 2021, 23, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Hernádi, I.; Sasvári, Z.; Albrechtová, J.; Vosátka, M.; Posta, K. Arbuscular mycorrhizal inoculant increases yield of spice pepper and affects the indigenous fungal community in the field. HortScience 2012, 47, 603–606. [Google Scholar] [CrossRef]
- Sheng, M.; Rosche, C.; Al-Gharaibeh, M.; Bullington, L.S.; Callaway, R.M.; Clark, T.; Cleveland, C.C.; Duan, W.Y.; Flory, S.L.; Khasa, D.P.; et al. Acquisition and evolution of enhanced mutualism-an underappreciated mechanism for invasive success? ISME J. 2022, 16, 2467–2478. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Silva, A.M.; Nunes, F.M. Citrus reticulata Blanco peels as a source of antioxidant and anti-proliferative phenolic compounds. Ind. Crop. Prod. 2018, 111, 141–148. [Google Scholar] [CrossRef]
- de Sousa, M.A.; Granada, C.E. Biological control of pre- and post-harvest microbial diseases in citrus by using beneficial microorganisms. BioControl 2023, 68, 75–86. [Google Scholar] [CrossRef]
- Yu, X.L.; Wu, L.S. Introduction performance and high quality cultivation techniques of citrus cv ‘Ehime No. 38’. Southeast Hortic. 2017, 5, 40–43. [Google Scholar]
- Gonzatto, M.P.; Griebeler, S.R.; Schwarz, S.F. Dwarfing rootstocks for high-density citrus orchards. In Fruit Industry; Kahramanoglu, I., Wan, C.P., Eds.; IntechOpen: London, UK, 2022; pp. 1–16. [Google Scholar]
- Ortas, I.; Ustuner, O. The effects of single species, dual species and indigenous mycorrhiza inoculation on citrus growth and nutrient uptake. Eur. J. Soil Biol. 2014, 63, 64–69. [Google Scholar] [CrossRef]
- Hartmond, U.; Schaesberg, N.V.; Graham, J.H.; Syvertsen, J.P. Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings. Plant Soil. 1987, 104, 37–43. [Google Scholar] [CrossRef]
- Li, Q.S.; Srivastava, A.K.; Zou, Y.N.; Wu, Q.S. Field inoculation responses of arbuscular mycorrhizal fungi versus endophytic fungi on sugar metabolism associated changes in fruit quality of Lane late navel orange. Sci. Hortic. 2023, 308, 111587. [Google Scholar] [CrossRef]
- Yan, C.; Rizwan, H.M.; Liang, D.; Reichelt, M.; Mithöfer, A.; Scholz, S.S.; Oelmüller, R.; Chen, F. The effect of the root-colonizing Piriformospora indica on passion fruit (Passiflora edulis) development: Initial defense shifts to fitness benefits and higher fruit quality. Food Chem. 2021, 359, 129671. [Google Scholar] [CrossRef] [PubMed]
- Avio, L.; Sbrana, C.; Giovannetti, M.; Frassinetti, S. Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Sci. Hortic. 2017, 224, 265–271. [Google Scholar] [CrossRef]
- Ilyas, F.; Ali, M.A.; Ahmed, N.; Arshad, M.; Hussain, S.; Ahmad, S.; Riaz, M.; Haider, I.; Ullah, H.H.; Bilal, M.; et al. Importance of soil microbes in improving citrus production: Excellence of mycorrhizal fungi. In Citrus Production: Technological Advancements and Adaptation to Changing Climate; Hussain, S., Khalid, M.F., Ali, M.A., Hasanuzzaman, M., Ahmad, S., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 217–227. [Google Scholar]
- Wang, P.; Shu, B.; Wang, Y.; Zhang, D.J.; Liu, J.F.; Xia, R.X. Diversity of arbuscular mycorrhizal fungi in red tangerine (Citrus reticulata Blanco) rootstock rhizospheric soils from hillside citrus orchards. Pedobiologia 2013, 56, 161–167. [Google Scholar] [CrossRef]
- Xiao, J.X.; Hu, C.Y.; Chen, Y.Y.; Yang, B.; Hua, J. Effects of low magnesium and an arbuscular mycorrhizal fungus on the growth, magnesium distribution and photosynthesis of two citrus cultivars. Sci. Hortic. 2014, 177, 14–20. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Bethlenfalvay, G.J.; Ames, R.N. Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. Am. J. 1987, 51, 834–837. [Google Scholar] [CrossRef]
- Wu, Q.S.; Li, Y.; Zou, Y.N.; He, X.H. Arbuscular mycorrhiza mediates glomalin-related soil protein production and soil enzyme activities in the rhizosphere of trifoliate orange grown under different P levels. Mycorrhiza 2015, 25, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Yoder, R.E. A direct method of aggregate analysis of soil and a study of the physical nature of erosion losses. Agron. J. 1936, 28, 337–351. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R. Aggregate stability and size distribution. In Methods Of Soil Analysis: Part 1 Physical And Mineralogical Methods, 5.1, 2nd ed.; Agronomy Monograph ASA: Madison, WI, USA, 1986; pp. 425–442. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtijareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Zai, L. Experimental Manual of Plant Physiology, 3rd ed.; Higher Education Press: Beijing, China, 2004. [Google Scholar]
- Sudhakar, C.; Lakshmi, A.; Giridarakumar, S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 2001, 161, 613–619. [Google Scholar] [CrossRef]
- Li, Q.S.; Xie, Y.C.; Rahman, M.M.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.S. Arbuscular mycorrhizal fungi and endophytic fungi activate leaf antioxidant defense system of lane late navel orange. J. Fungi. 2022, 8, 282. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Fatemeh, S.; Davood, S.; Majeed, A.S.; Abdoolnabi, B.; Jalal, S. Fungal endophytes alleviate drought-induced oxidative stress in mandarin (Citrus reticulata L.): Toward regulating the ascorbate–glutathione cycle. Sci. Hortic. 2020, 261, 108991. [Google Scholar]
- Gao, J.F. Plant Physiology Experiment Instruction; Higher Education Press: Beijing, China, 2006; pp. 105–108. [Google Scholar]
- Singh, A.K.; Zhu, X.; Chen, C.; Wu, J.; Yang, B.; Zakari, S.; Jiang, X.J.; Singh, N.; Liu, W. The role of glomalin in mitigation of multiple soil degradation problems. Crit. Rev. Environ. Sci. Technol. 2022, 52, 1604–1638. [Google Scholar] [CrossRef]
- Qin, Z.F.; Xie, M.X.; Zhang, Y.L.; Li, X.; Li, H.G.; Zhang, J.L. Research progress in soil organic carbon stabilization mediated by arbuscular mycorrhizal fungi. J. Plant Nutr. Fert. 2023, 29, 756–766. [Google Scholar]
- Chen, K.; Zhang, J.; Muneer, M.A.; Xue, K.; Niu, H.; Ji, B. Plant community and soil available nutrients drive arbuscular mycorrhizal fungal community shifts during alpine meadow degradation. Fungal Ecol. 2023, 62, 101211. [Google Scholar] [CrossRef]
- Cisse, G.; Essi, M.; Kedi, B.; Mollier, A.; Staunton, S. Contrasting effects of long term phosphorus fertilization on glomalin-related soil protein (GRSP). Eur. J. Soil Biol. 2021, 107, 103363. [Google Scholar] [CrossRef]
- Zhu, F.R.; Zhou, N.; Yang, M.; Ding, B.; Pan, X.J.; Qi, J.S.; Guo, D.Q. Effect of different arbuscular mycorrhizal fungi on soil nutrients in rhizosphere soil of Paris polyphylla var. yunnanensis seedlings. Chin. J. Exp. Tradit. Med. Formulae. 2020, 26, 86–95. [Google Scholar]
- Christopoulos, M.; Ouzounidou, G. Climate change effects on the perceived and nutritional quality of fruit and vegetables. J. Innov. Econ. Manag. 2021, 34, 79–99. [Google Scholar]
- Horvath, K.Z.; Andryei, B.; Helyes, L.; Zoltán, P.É.K.; Nemenyi, A.; Nemeskeri, E. Effect of mycorrhizal inoculations on physiological traits and bioactive compounds of tomato under water scarcity in field conditions. Not. Bot. Horti Agrobo. 2020, 48, 1233–1247. [Google Scholar] [CrossRef]
- Gavito, M.E.; Jakobsen, I.; Mikkelsen, T.N.; Mora, F. Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol. 2019, 223, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Q.; Cheng, S.; Aroca, R.; Zou, Y.N.; Wu, Q.S. Arbuscular mycorrhizal fungi induce flavonoid synthesis for mitigating oxidative damage of trifoliate orange under water stress. Environ. Exp. Bot. 2022, 204, 105089. [Google Scholar] [CrossRef]
Treatments | Coloration Value | Rigidity (×105 kg/cm3) | Pericarp Thickness (mm) | Size (mm) | Weight (g) | |||
---|---|---|---|---|---|---|---|---|
Vertical Diameter | Horizontal Diameter | Sarcocarp | Pericarp | Single Fruit | ||||
Non-AMF | 69.2 ± 8.2 b | 31.4 ± 3.9 a | 250.8 ± 24.5 b | 65.5 ± 4.4 a | 71.7 ± 3.4 b | 154 ± 8 b | 31 ± 4 b | 187 ± 9 c |
Fm | 73.5 ± 7.5 a | 21.5 ± 2.4 b | 271.7 ± 28.5 a | 66.2 ± 3.8 a | 74.7 ± 3.7 a | 216 ± 18 a | 39 ± 2 a | 233 ± 16 b |
Mixed AMF | 74.0 ± 7.4 a | 17.2 ± 2.8 c | 277.3 ± 20.7 a | 66.6 ± 5.9 a | 75.6 ± 4.7 a | 226 ± 15 a | 37 ± 4 a | 264 ± 12 a |
Treatments | MWD (mm) | SOC (mg/g) | EE-GRSP (mg/g) | DE-GRSP (mg/g) | NH4+-N (mg/kg) | NO3−-N (mg/kg) | Olsen-P (mg/kg) | Available K (mg/kg) |
---|---|---|---|---|---|---|---|---|
Non-AMF | 1.83 ± 0.05 c | 14.1 ± 0.9 c | 0.54 ± 0.03 b | 0.72 ± 0.03 b | 38.8 ± 7.6 a | 65.9 ± 7.2 b | 50.6 ± 2.6 c | 283.7 ± 10.1 c |
Fm | 2.25 ± 0.10 a | 17.9 ± 0.2 a | 0.62 ± 0.06 a | 0.83 ± 0.06 a | 40.2 ± 4.3 a | 82.9 ± 5.1 a | 70.4 ± 3.3 a | 359.4 ± 25.6 a |
Mixed AMF | 1.98 ± 0.08 b | 16.5 ± 0.7 b | 0.56 ± 0.02 ab | 0.75 ± 0.02 b | 39.9 ± 2.7 a | 73.9 ± 1.1 b | 65.5 ± 2.9 b | 320.6 ± 21.9 b |
AMF Colonization | SOC | DE-GRSP | MWD | NO3−-N | Olsen P | Available K | EE-GRSP | |
---|---|---|---|---|---|---|---|---|
AMF colonization | 1 | 0.87 ** | 0.69 * | 0.82 ** | 0.77 ** | 0.83 ** | 0.86 ** | 0.64 * |
MWD | 0.82 ** | 0.81 ** | 0.85 ** |
Sucrose | Glucose | Fructose | Soluble Solids | |
---|---|---|---|---|
AMF colonization | 0.73 ** | 0.59 * | 0.74 ** | 0.43 |
CAT | POD | SOD | APX | GR | MDA | ASC | DHA | GSH | GSSG | H2O2 | |
---|---|---|---|---|---|---|---|---|---|---|---|
AMF colonization | 0.83 ** | 0.86 ** | 0.79 ** | 0.74 ** | 0.89 ** | −0.78 ** | 0.68 * | 0.88 ** | 0.86 ** | 0.81 ** | −0.90 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.-J.; Wang, Y.; Alqahtani, M.D.; Wu, Q.-S. Positive Changes in Fruit Quality, Leaf Antioxidant Defense System, and Soil Fertility of Beni-Madonna Tangor Citrus (Citrus nanko × C. amakusa) after Field AMF Inoculation. Horticulturae 2023, 9, 1324. https://doi.org/10.3390/horticulturae9121324
Zhou L-J, Wang Y, Alqahtani MD, Wu Q-S. Positive Changes in Fruit Quality, Leaf Antioxidant Defense System, and Soil Fertility of Beni-Madonna Tangor Citrus (Citrus nanko × C. amakusa) after Field AMF Inoculation. Horticulturae. 2023; 9(12):1324. https://doi.org/10.3390/horticulturae9121324
Chicago/Turabian StyleZhou, Li-Jun, Yu Wang, Mashael Daghash Alqahtani, and Qiang-Sheng Wu. 2023. "Positive Changes in Fruit Quality, Leaf Antioxidant Defense System, and Soil Fertility of Beni-Madonna Tangor Citrus (Citrus nanko × C. amakusa) after Field AMF Inoculation" Horticulturae 9, no. 12: 1324. https://doi.org/10.3390/horticulturae9121324
APA StyleZhou, L.-J., Wang, Y., Alqahtani, M. D., & Wu, Q.-S. (2023). Positive Changes in Fruit Quality, Leaf Antioxidant Defense System, and Soil Fertility of Beni-Madonna Tangor Citrus (Citrus nanko × C. amakusa) after Field AMF Inoculation. Horticulturae, 9(12), 1324. https://doi.org/10.3390/horticulturae9121324